JPH021030B2 - - Google Patents

Info

Publication number
JPH021030B2
JPH021030B2 JP57132201A JP13220182A JPH021030B2 JP H021030 B2 JPH021030 B2 JP H021030B2 JP 57132201 A JP57132201 A JP 57132201A JP 13220182 A JP13220182 A JP 13220182A JP H021030 B2 JPH021030 B2 JP H021030B2
Authority
JP
Japan
Prior art keywords
silica
amorphous silica
recording layer
heat
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57132201A
Other languages
Japanese (ja)
Other versions
JPS5922794A (en
Inventor
Masahide Ogawa
Kunio Goto
Teiji Sato
Masanori Tanaka
Seikichi Takahashi
Kinichi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP57132201A priority Critical patent/JPS5922794A/en
Publication of JPS5922794A publication Critical patent/JPS5922794A/en
Publication of JPH021030B2 publication Critical patent/JPH021030B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/40Coatings with pigments characterised by the pigments siliceous, e.g. clays

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、感熱記録用填剤に関するもので、よ
り詳細には、新規な特性を有する微粒子無定形シ
リカから成る感熱記録紙用填剤に関する。 従来、サーマルヘツド、熱ペン、赤外線ラン
プ、レーザー等を熱源とし、フアクシミリ、プリ
ンター、データ通信、コンピユーター端末、計測
機器、切符自動販売器、複写機等の用途に用いる
感熱記録紙としては、紙等の支持体上に、ロイコ
色素等の呈色剤と該呈色剤と熱時接触してこれを
発色させるフエノール類等の発色剤とをバインダ
ー中に含有させた記録層を設けたものが広く使用
されている。 この感熱記録紙においては、記録ヘツド等を記
録層と接触させて熱による記録を行う際、記録層
中の成分が溶融して記録ヘツド等に粘着してカス
付着やステツキングを生ずることが問題となつて
いる。 この問題を解決するために、記録層中に種々の
填剤を記録層中に配合することが行われており、
例えば古くから、炭酸カルシウム、カオリン、タ
ルク、各種クレイ、アルミナ、二酸化チタン等を
配合することが知られており、最近に至つても、
含水ケイ酸アルミニウム鉱物(特開昭56−72992
号公報)、非晶質合成ケイ酸アルミニウム(特公
昭57−19035号公報)、ケイ灰石乃至はケイ酸カル
シウム(特開昭57−41995号公報)、アルカリ土類
金属塩(特開昭57−80095号公報)、水酸化アルミ
ニウム(特開昭57−14093号公報)等を配合する
ことが提案されている。 これらの提案の中に、無定形シリカを填剤とし
て配合することが含まれていないのは甚だ奇異な
感じがするが、これは無定形シリカが一般に表面
活性を有し、ロイコ色素とフエノール類との反応
に活性表面を提供して、両者の反応を促進し、こ
れによつて所謂地発色を生じ易いためと思われ
る。 従来、微粉の非晶質シリカには、湿式法による
非晶質シリカと気相法(乾式法)による非晶質シ
リカとが知られており、その特性に応じて種々の
用途に使用されている。湿式法シリカは、所謂水
ガラスのようなケイ酸アルカリ水溶液を鉱酸等で
中和することにより製造されるが、この方法では
一旦ケイ酸のゾルが生成し、このゾル粒子が凝集
してゲル状の沈澱が生成する。このため、湿式法
による微粉非晶質シリカは、一次粒径が10乃至20
ミリミクロンの微細な範囲にあるが、この微細粒
子が多数凝集して二次粒径がかなり粗大なものと
なる傾向がある。この湿式法シリカは、比較的ポ
ーラスで表面活性が大であり、比表面積は200m2/
g以上で大きいものは800m2/gのレベルに達す
る。 一方、気相法シリカは、四塩化ケイ素を酸水素
炎中で加水分解することにより製造されるが、そ
の一次粒径はやはり10乃至20ミリミクロンの微細
な範囲にあり、表面活性はかなり小さいが、それ
でも比表面積は一般に100m2/g以上の範囲にあ
る。 このような非晶質シリカを感熱記録紙用の填剤
として使用する場合には、解決しなければならな
い多くの問題がある。その第一の問題は、記録層
自体の地発色の問題であり、湿式法シリカのよう
に活性の比較的大きいシリカでは、記録以前に記
録層が固有の色相に着色し、鮮明な画像が得られ
ず、また記録後にあつては保存中にバツクグラウ
ンドが着色して、記録物の保存性乃至は寿命が低
下する。 第二に、非晶質シリカの殆んどのものは研摩材
的性質を有しており、各種の記録ヘツド或いは記
録ペン等と紙との滑らかな相対的運動、即ちスキ
ヤンを阻害したり、或いは記録ヘツドや記録層自
体が摩耗しやすいという問題がある。 第三に、カス付着を防止するという見地から
は、用いる非晶質シリカは或る程度吸油量の大き
いもの、即ち嵩の大きいものでなければならず、
その一方では地発色を防止するために表面活性を
可及的に小さくしなければならないという相対立
する要求がある。 従つて、本発明の目的は、地発色が抑制され、
優れた滑性を有し、しかもカス付着防止性能にも
優れている非晶質シリカ系感熱記録紙用填剤を提
供するにある。 本発明の他の目的は、地発色が顕著に抑制され
ると共にバツクグラウンドの白色性に優れてお
り、しかも感熱記録に際しては高濃度の画像を形
成し得る非晶質シリカ系感熱記録紙用填剤を提供
するにある。 本発明によれば、遠心沈降法で測定して4ミク
ロン以下のものが全体の90重量%以上となる二次
粒径の粒度分布を有し且つ10乃至100m2/gの
BET比表面積及び0.14乃至0.30g/c.c.の嵩密度を
有する微粒子非晶質シリカから成ることも特徴と
する感熱記録紙用填剤が提供される。 本発明は、以下に詳述する通り、濃厚な金属塩
溶液中でケイ酸アルカリと酸とを特定の条件下で
反応させるときには、上述した特性の組合せを有
する微粒子非晶質シリカが得られ、このものを感
熱記録紙用填剤として使用すると、地発色の防
止、滑性の向上、カス付着の防止及び画像濃度の
向上の点で顕著な利点が得られるという新規知見
に基ずくものである。 先ず、本発明に用いる非晶質シリカは、10乃至
100m2/g、特に30乃至70m2/g、最も好適には40
乃至60m2/gの比較的小さいBET比表面積を有す
ることが顕著な特徴である。即ち、非晶質シリカ
は、本質的に表面活性であり、ロイコ色素とフエ
ノール類との反応を促進する傾向を有することは
既に前述した通りであるが、本発明によれば、非
晶質シリカの比表面積を上述した低い範囲に抑
え、表面活性を著しく小さいものとしたことによ
り、感熱記録紙層用組成物の調製時、この組成物
の塗布乾燥時、或いは記録前後における記録紙の
保存中におけるフエノール類とロイコ色素との反
応が低いレベルに抑制され、地発色(地汚れ)が
顕著に抑制されるものである。 湿式法非晶質シリカにおいて、このように比表
面積の小さいものは極めて特異なものであり、こ
れはケイ酸アルカリ水溶液を酸で中和する際、シ
リカのゾル粒子を生成させることなく、直接シリ
カゲルの微粒子を沈澱させることにより製造可能
となるものである。 本発明に用いる非晶質シリカは、上述した小さ
い比表面積を有すること及びその特異な製法に関
連して、電子顕微鏡で誰誰測定して、20ミリミク
ロン以上、特に40乃至90ミリミクロンという比較
的大きな数平均一次粒径を有する。一般にBET
比表面積(m2/g)と一次粒径(ミリミクロン)
との間には、一般的に言つて下記式 SA=2700/D 式中、SAはBET比表面積、Dは一次粒径を
示す、 の関係がなり立つことが知られており、本発明に
用いる非晶質シリカは、公知の非晶質シリカに比
して一次粒径のかなり大きいものであることが了
解されよう。 次に、本発明に用いる非晶質シリカは、JIS−
K6220の方法で測定して、0.14乃至0.30g/c.c.、特
に0.16乃至0.26g/c.c.の嵩密度を有することも顕
著な特徴である。即ち、この嵩密度は、カス付着
防止と記録層の摩耗性との両方に密接に関連して
おり、この嵩密度が上記範囲よりも台きい場合に
は、非晶質シリカの吸油量が低下する結果とし
て、記録層のカス付着防止効果が低下する傾向
や、記録層に接する記録ヘツド等を摩耗させる傾
向があり、一方この嵩密度が上記範囲より小さい
場合には、記録層自体摩耗性が増大して、粉落
ち、剥離等を生ずる傾向がある。これに対して、
本発明によれば、嵩密度を前述した範囲内に選ぶ
ことにより、記録ヘツド等へのカス付着を防止し
つつ、記録層や記録ヘツド等の摩耗を防止し得
る。本発明に用いる非晶質シリカの嵩密度は、乾
式法シリカの嵩密度が0.04〜0.06g/c.c.の範囲に
あるのに比べればかなり大きいものであり、また
湿式法シリカの内の嵩密度の大きいものに相当す
る。 本発明による非晶質シリカは、前述した嵩密度
を有することに関連して、JIS−K5101の方法で
測定して、100乃至200c.c./100g、特に120乃至
180c.c./100gの吸油量を示す。 更に、本発明に用いる非晶質シリカは、遠心沈
降法で測定して4μ以下の粒度のものが全体の90
重量%以上となる二次粒径の粒度分布を有し、一
層好適にはその2次粒子のメジアン径は、0.2乃
至1μの範囲にある。この非晶質シリカは、既に
述べた如く一次粒径がかなり大である反面、凝集
の程度が小さく、二次粒子として著しく微細でし
かも粒度が比較的均斉なものとなつているという
特徴が明らかとなる。 非晶質シリカの二次粒径は、感熱記録により形
成される画像濃度と密接な関連があり、後述する
例に示す通り、二次粒径が微細である程濃度の高
い記録画像を与える傾向がある。即ち、感熱記録
に際して形成される着色染料は填剤粒子の周囲に
これを被覆する形で存在する方が顔料効果によつ
て濃度が向上すると言われているが、本発明に用
いる非晶質シリカは記録層への分散粒径、即ち二
次粒径が微細でしかも均斉であるので、着色染料
が填剤を被覆する形で存在し易くなり、画像濃度
の向上がもたらされるものと思われる。 本発明に用いる非晶質シリカは、当然のことと
してX−線回折学的に非晶質であり、また湿式法
シリカの属性として、一般に3乃至7重量%の灼
熱減量(1000℃×2時間)を有する。また、この
非晶質シリカは濃厚な金属塩中で製造されること
に関連して、この塩類の微量を夾雑として含有し
ている。 本発明に用いる微粒子非晶質シリカは、上述し
た粒子構造及び特性に関連して、感熱紙用填剤と
して用いたとき、幾つかの付加的利点をもたら
す。先ず、このシリカは指間でこすると、タルク
に似たスベスベした感じがあり、摺擦すると、摺
擦面に沿つてよく展延されるという性質がある。
事実、この微粉シリカを含有する塗布面は、優れ
た滑り性を有しており、ブロツキング傾向を顕著
に減少させ、積載されたシートの一枚ずつの給紙
性を顕著に向上させ、更に記録ヘツドやペンの走
行性をも顕著に向上させ得るという利点がある。
また、この微粉シリカを紙基質等に塗布したとき
にも塗布面全体にわたつて一様に展延されるとい
う特性がある。このため、本発明の微粉シリカの
塗布面は、他のシリカ系填剤を用いた場合に比し
て極めて平滑性に優れている。更に、この微粉シ
リカは公知の微粉シリカに比して隠ぺい力も大で
あり、例えば、塗布面の目や色を隠ぺいし、また
塗布面を白色なものとするという作用効果もあ
る。 本発明に用いる微粒子非晶質シリカは、これに
限定されるものではないが、濃厚な金属塩溶液中
で、ケイ酸アルカリと酸とを、ゾル状のシリカが
形成されることなく直接シリカの微細ゲル粒子の
析出するような条件で反応させることにより製造
される。 この製造方法は、ケイ酸アルカリ溶液を酸で中
和するという点では、通常の湿式法シリカの製造
法と共通しているが、この中和を濃厚な金属塩中
で行うこと、特に同時注加法により中和を行うこ
と、及びこの中和によりシリカのラゾル粒子を形
成させることなく、直ちにシリカの微粒子ゲルを
生成させることが特異な点である。 即ち、通常の湿式法シリカの製造法では、一般
にケイ酸アルカリの水溶液に酸を添加して、無定
形シリカを製造するが、この反応の状況を観察す
ると、添加初期には、反応混合物は透明乃至はパ
ール状であり、次第に反応混合液が粘稠となつ
て、添加中期からシリカの沈澱が生成し始める。
このことは、湿式法では中和により一旦シリカの
ゾル粒子が生成し、このゾル粒子が凝集して非晶
質シリカ粒子となることを物語つている。また、
中和によるシリカ粒子も、初期はアルカリ性で中
和の進行に伴なつて酸性側に移行することから、
生成する非晶質シリカの沈澱の性状は、反応初期
と中期とではかなり異なつたものとなる傾向がみ
られる。 これに対して、この方法においては、濃厚な金
属塩溶液中でケイ酸アルカリ水溶液と酸との中和
が行われることから、塩類の強力な凝固、析出作
用により、中和反応から、直接に、即ちシリカの
ゾル粒子を経由することなく、シリカの微粒子ゲ
ルが生成するという特徴がある。このため、従来
湿式法シリカは粒径10乃至20mμのゾル状粒子の
凝集体であるのに対して、本発明に用いる微粉シ
リカは、一次粒径が30mμ以上、特に40乃至90mμ
の一次粒子から成るという特徴を有し、しかも前
述した塩類の凝固析出作用の存在下にゲル粒子が
生成することから、この微粉非晶質シリカは従来
の非晶質シリカに比して著しく小さい比表面積、
即ち10乃至70m2/gの比表面積を有するものと認
められる。 更に、この方法によれば、同時注加法を採用す
ることにより、反応の初期から終期迄、一定の
PH、即ち5乃至9のPH条件下で中和反応が行わ
れ、生成する非晶質シリカの性状、特に粒度が均
斉であるという利点も得られるものである。 この場合、塩類の濃厚水溶液は、ケイ酸アルカ
リや酸の添加初期から高い濃度を有することが重
要である。即ち、ケイ酸アルカリと酸との反応に
より、アルカリ金属塩が当然副生するが、反応系
中に最初からアルカリ金属塩が高濃度で含有され
ていない場合には、生成する非晶質シリカは、一
次粒径が微細であるが、二次粒径が粗大なものと
なり、更に比表面積も大きなものとある傾向が認
められる。 金属塩の濃度は、種類によつても相違するが、
一般的に言つて、中和反応開始時点において、5
%以上、特に10乃至20%の濃度を有するのがよ
い。即ち、塩類濃度が上記範囲よりも低い場合に
は、二次粒径や比表面積が本発明で規定範囲より
も大きくなる傾向があり、一方濃度をあまり高く
しても格別の利点はなく、かえつて経済的に不利
となる。 金属塩としては、無機酸乃至は有機酸のアルカ
リ金属塩やアルカリ土類金属塩、例えば塩化ナト
リウム、硝酸ナトリウム、硫酸ナトリウム、亜硫
酸ナトリウム、炭酸ナトリウム、リン酸ナトリウ
ム、塩化カリウム、酢酸ナトリウム、メタンスル
ホン酸ナトリウム、塩化カルシウム、塩化マグネ
シウム、硫酸マグネシウム等の単独または2種以
上の組合せが使用される。これらの各種の塩の内
でも、一塩基性酸の塩は、前述した諸特性を有す
るシリカを得るための塩濃度の許容範囲が広く、
一方二塩基性酸の塩では塩濃度の許容範囲が比較
的狭いものとなり易い。しかしながら、食塩と芒
硝との組合せのように、両者の混合物の系では塩
濃度の許容範囲が広くなることが認められる。経
済的でしかも本発明の目的に有利な塩は、食塩、
芒硝或いはこれらの組合せである。 ケイ酸アルカリとしては、任意のケイ酸アルカ
リ、例えば式 M2O・nSiO2 式中、Mはアルカリ金属であり、nは1乃至
3.8の数である、 のケイ酸アルカリの水溶液を用い得る。経済的見
地からは、nの数が3.0乃至3.4の範囲にある所謂
3号ケイ酸ソーダを用いることが望ましい。反応
に用いるケイ酸アルカリの濃度は、特に制限はな
いが、一般にSiO2として10乃至25%の濃度で用
いるのが操作上有利である。 酸としては、種々の無機酸や有機酸が使用され
るが、経済的見地からは、硫酸、塩酸、硝酸、リ
ン酸等の鉱酸を用いるのがよい。均質な反応を行
うためには、これらの酸は、稀釈水溶液の形で用
いるのがよく、一般に5乃至20%の濃度で用いる
のがよい。 中和反応の温度は、室温でも加温下でもよい
が、一般には50乃至100℃の加温下に両者の反応
を急速に行わせるのがよい。ケイ酸アルカリと酸
とを濃厚水溶液中に同時注加して反応させる際、
これら3者が急速にしかも一様に混合されること
が重要であり、このため急速撹拌乃至は剪断撹拌
下に同時注加を行う。この反応は、バツチ式にも
連続式にも行うことができる。例えば前述の場合
には、濃厚塩溶液を反応槽に入れ、この反応槽に
両原料を同時注加する。或いは反応槽と予備混合
槽との間に液を循環させ、予備混合槽中に両原料
を同時注加する。また、後者の場合には、多段式
反応槽や塔式反応槽を用いて連続反応を行うこと
ができる。 シリカの製造に際して、反応終了時におけるス
ラリー中のSiO2濃度が1乃至10%となるように
中和反応を行わせるのがよい。即ち、この濃度が
上記範囲よりも低いときには、操作や装置の点で
不利であり、一方この濃度が上記範囲よりも高い
と、2次粒子が粗大なものとなる傾向がある。微
粒子非晶質シリカの析出は、同時注加混合により
極めて短時間の内に完了するが、析出後約30分乃
至10時間にわたつて熟成を行うことが望ましい場
合もある。 反応後のスラリーは、過等の固−液分離によ
り、非晶質シリカを母液から分離し、必要により
水洗、乾燥して製品とする。一方分離した母液
は、必要により異種塩類の分離、濃縮乃至は稀釈
による濃度調整等の操作を行なつた後、反応系に
循環し、再び使用する。 本発明の非晶質シリカ填剤は、それ自体公知の
感熱記録層組成物中に、固形分基準で10乃至60重
量%、特に20乃至40重量%の量で含有させること
ができる。 この組成物において、呈色剤であるロイコ色素
としては、トリフエニルメタン系ロイコ色素、フ
ルオラン系ロイコ色素、スピロピラン系ロイコ色
素、ローダミンラクタム系ロイコ色素、オーラミ
ン系ロイコ色素、フエノチアジン系ロイコ色素等
のこの種の感熱記録紙に使用されているロイコ色
素は全て、単独或いは2種以上の組合せで使用さ
れる。 また、発色剤であるフエノール類としては、ビ
スフエノールA、ビスフエノールF、2,6−ジ
オキシ安息香酸等の常温で且つ熱溶融性のフエノ
ール類は全て使用される。 更に、バインダーとしては任意の水溶性樹脂バ
インダー、例えば澱粉、シアノメチル化澱粉、カ
ルボキシメチル澱粉、エチルセルロース、カルボ
キシメチルセルロース、ヒドロキシエチルセルロ
ース、ポリビニルアルコール、水溶性アクリル樹
脂、ビニルメチルエーテル共重合体、アルギン酸
ソーダ等が使用される。 更にまた、増感剤として各種ワツクス類、例え
ば脂肪酸、脂肪酸アミド、カルナバワツクス、ポ
リエチレンワツクス等や、地発色防止のためにア
ルカノールアミン等の有機塩基を配合することが
できる。 感熱記録層の形成に際しては、ロイコ色素のバ
インダー溶液への分散液と、フエノール類のバイ
ンダー溶液分散液とを調製し、これら両分散液
を、紙、合成紙等の基質に塗布するが、本発明の
非晶質シリカ填剤は、予めフエノール類の分散液
中に混合しておくこともでき、また、別個に非晶
質シリカ填剤のバインダー溶液への分散液を調製
し、これを前述したロイコ色素分散液及びフエノ
ール類分散液と混合して記録層の形成に用いるこ
とができる。 本発明を次の例で説明する。 実施例 1 85℃に加熱した15%塩化リチウム溶液17.8中
に、3号ケイ酸ソーダ溶液(Na2O約7%、SiO2
約22%)3.6と10%塩酸約3.6を反応液のPHが
6〜8を保つように60分で同時注加した。生成沈
澱物を過により分離し、30の温水にて洗浄し
た。得られたケーキを130℃の乾燥器にて乾燥し
たのち、卓上型サンプルミル(東京アトマイザー
製TAMS−1型)で粉砕し、表1に示した物性
を有する微粉シリカを得た。 かくして得られた微粉シリカを下記組成からな
る感熱記録層形成液〔A〕液2部、〔B〕液10部、
〔C〕液6部にたいして1部になるように加えよ
く混合した。〔A〕、〔B〕、〔C〕液は下記成分か
らなる混合液をボールミルを用いて48時間粉砕分
散したものである。 〔A〕液組成 クリスタルバイオレツトラクトン 1重量部 5%ヒドロキシエチルセルロース 5 〃 水 3 〃 〔B〕液組成 ビスフエノールA 1重量部 5%ヒドロキシエチルセルロース 5 〃 水 3 〃 〔C〕液組成 ステアリン酸アミド 1重量部 5%ヒドロキシエチルセルロース 5 〃 水 3 〃 上記感熱記録層形成液を坪量64m2/gの市販上
質紙上に乾燥重量が6〜7g/m2となるように塗
布し、室温で乾燥した。 かくして得られた感熱記録紙について、(イ)地汚
れ濃度(地発色濃度)、(ロ)加熱発色画像濃度、(ハ)
感熱記録層保持性、(ニ)感熱記録層耐摩耗性につい
て下記に示した方法により測定した。結果を表1
に示した。 (イ) 地汚れ濃度 塗付後72時間経た感熱記録層形成液塗付紙の
地汚れ濃度を富士フイルム(株)製標準濃度計
FSD−103型でVフイルターを用いて測定し、
これを肉眼観察により下記のような評価基準を
得た。
The present invention relates to a filler for heat-sensitive recording paper, and more particularly to a filler for heat-sensitive recording paper made of fine particle amorphous silica having novel properties. Traditionally, thermal recording paper uses thermal heads, thermal pens, infrared lamps, lasers, etc. as heat sources and is used in facsimiles, printers, data communications, computer terminals, measuring instruments, ticket vending machines, copying machines, etc. It is widely known that a recording layer is provided on a support, in which a binder contains a coloring agent such as a leuco dye and a coloring agent such as a phenol that develops color by contacting the coloring agent with heat. It is used. A problem with this thermal recording paper is that when the recording head, etc. is brought into contact with the recording layer and thermal recording is performed, components in the recording layer melt and stick to the recording head, etc., resulting in deposits and sticking. It's summery. In order to solve this problem, various fillers have been blended into the recording layer.
For example, it has been known for a long time to incorporate calcium carbonate, kaolin, talc, various clays, alumina, titanium dioxide, etc., and even recently,
Hydrous aluminum silicate mineral (JP-A-56-72992
(Japanese Patent Publication No. 57-19035), amorphous synthetic aluminum silicate (Japanese Patent Publication No. 57-19035), wollastonite or calcium silicate (Japanese Patent Publication No. 57-41995), alkaline earth metal salts (Japanese Patent Publication No. 57-41995) It has been proposed to incorporate aluminum hydroxide (Japanese Unexamined Patent Publication No. 57-14093), etc. It seems very strange that these proposals do not include incorporating amorphous silica as a filler, but this is because amorphous silica generally has surface activity, and leuco dyes and phenols. This seems to be because it provides an active surface for the reaction with and promotes the reaction of both, which tends to cause so-called ground coloring. Conventionally, fine powder amorphous silica has been known as amorphous silica produced by a wet process or amorphous silica produced by a gas phase process (dry process), and these are used for various purposes depending on their characteristics. There is. Wet process silica is produced by neutralizing an aqueous alkali silicate solution, such as water glass, with mineral acid, etc., but in this method, a silicic acid sol is first produced, and the sol particles aggregate to form a gel. A type of precipitate is formed. For this reason, fine powder amorphous silica produced by the wet method has a primary particle size of 10 to 20
Although the particles are in the millimicron range, there is a tendency for many of these fine particles to aggregate and make the secondary particle size considerably coarse. This wet process silica is relatively porous and has high surface activity, with a specific surface area of 200m 2 /
Those larger than 800m 2 /g reach the level of 800m 2 /g. On the other hand, vapor-phase silica is produced by hydrolyzing silicon tetrachloride in an oxyhydrogen flame, but its primary particle size is still in the fine range of 10 to 20 millimeters, and its surface activity is quite low. However, the specific surface area is still generally in the range of 100 m 2 /g or more. When using such amorphous silica as a filler for thermal recording paper, there are many problems that must be solved. The first problem is the background coloring of the recording layer itself. With relatively highly active silica such as wet-process silica, the recording layer is colored in a unique hue before recording, resulting in a clear image. Moreover, after recording, the background becomes colored during storage, reducing the storage stability and lifespan of the recorded material. Second, most amorphous silicas have abrasive properties, and may obstruct the smooth relative movement between various recording heads or recording pens, etc. and paper, that is, scan. There is a problem that the recording head and the recording layer themselves are easily worn out. Thirdly, from the standpoint of preventing residue adhesion, the amorphous silica used must have a certain degree of oil absorption, that is, be bulky.
On the other hand, there is a conflicting demand that the surface activity must be minimized to prevent background coloration. Therefore, the object of the present invention is to suppress background discoloration,
An object of the present invention is to provide an amorphous silica-based filler for heat-sensitive recording paper that has excellent lubricity and is also excellent in the ability to prevent adhesion of residue. Another object of the present invention is to provide an amorphous silica-based heat-sensitive recording paper material which is capable of significantly suppressing background coloration, has excellent background whiteness, and can form high-density images during heat-sensitive recording. to provide the agent. According to the present invention, the secondary particle size distribution is such that 90% or more of the total particle diameter is 4 microns or less when measured by centrifugal sedimentation method, and the secondary particle size is 10 to 100 m 2 /g.
A filler for thermal recording paper is also provided, which is characterized in that it consists of fine-grain amorphous silica having a BET specific surface area and a bulk density of 0.14 to 0.30 g/cc. As detailed below, the present invention provides that when an alkali silicate and an acid are reacted under specific conditions in a concentrated metal salt solution, a fine-grained amorphous silica having the above-mentioned combination of properties is obtained; This is based on the new knowledge that when this material is used as a filler for thermal recording paper, significant advantages can be obtained in terms of preventing background coloration, improving slipperiness, preventing residue adhesion, and improving image density. . First, the amorphous silica used in the present invention has a
100 m 2 /g, especially 30 to 70 m 2 /g, most preferably 40
A distinguishing feature is that it has a relatively small BET specific surface area of between 60 m 2 /g. That is, as described above, amorphous silica is essentially surface active and tends to promote the reaction between leuco dyes and phenols.According to the present invention, amorphous silica By suppressing the specific surface area of The reaction between phenols and leuco pigments in the process is suppressed to a low level, and background color development (background staining) is significantly suppressed. Wet-processed amorphous silica has such a small specific surface area, which is extremely unique.This means that when an aqueous alkali silicate solution is neutralized with an acid, silica gel is directly formed without generating silica sol particles. It can be produced by precipitating fine particles. The amorphous silica used in the present invention has a relatively small specific surface area of 20 millimicrons or more, especially 40 to 90 millimicrons, as measured using an electron microscope in relation to the small specific surface area mentioned above and its unique manufacturing method. It has a large number average primary particle size. Generally BET
Specific surface area (m 2 /g) and primary particle size (millimicrons)
Generally speaking, it is known that the following formula S A = 2700/D holds true, where S A is the BET specific surface area and D is the primary particle size. It will be understood that the amorphous silica used in the invention has a considerably larger primary particle size than known amorphous silica. Next, the amorphous silica used in the present invention is JIS-
It is also a notable feature that it has a bulk density of 0.14 to 0.30 g/cc, in particular 0.16 to 0.26 g/cc, as measured by the K6220 method. In other words, this bulk density is closely related to both the prevention of dust adhesion and the abrasion resistance of the recording layer, and when this bulk density is more than the above range, the oil absorption amount of amorphous silica decreases. As a result, the recording layer tends to be less effective in preventing debris adhesion, and the recording head in contact with the recording layer tends to wear out. On the other hand, if this bulk density is smaller than the above range, the recording layer itself tends to be abrasive. It tends to increase and cause powder falling, peeling, etc. On the contrary,
According to the present invention, by selecting the bulk density within the above-mentioned range, it is possible to prevent debris from adhering to the recording head and the like, while also preventing wear of the recording layer, the recording head, and the like. The bulk density of the amorphous silica used in the present invention is considerably higher than that of dry process silica, which is in the range of 0.04 to 0.06 g/cc, and is also higher than that of wet process silica. corresponds to a large one. The amorphous silica according to the present invention has a bulk density of 100 to 200 c.c./100 g, particularly 120 to 200 c.c./100 g, as measured by the method of JIS-K5101.
Shows oil absorption of 180c.c./100g. Furthermore, the amorphous silica used in the present invention has a particle size of 4μ or less when measured by centrifugal sedimentation, and 90% of the total
It has a particle size distribution of secondary particles of not less than % by weight, and more preferably the median diameter of the secondary particles is in the range of 0.2 to 1 μ. As mentioned above, this amorphous silica has a fairly large primary particle size, but the degree of aggregation is small, and the secondary particles are extremely fine and have a relatively uniform particle size. becomes. The secondary particle size of amorphous silica is closely related to the image density formed by thermal recording, and as shown in the example below, the finer the secondary particle size, the more dense the recorded image tends to be. There is. That is, it is said that the density of the colored dye formed during thermal recording is improved by the pigment effect when it is present in the form of a coating around the filler particles, but the amorphous silica used in the present invention Since the particle size dispersed in the recording layer, that is, the secondary particle size is fine and uniform, the colored dye is likely to exist in a form covering the filler, and it is thought that the image density is improved. The amorphous silica used in the present invention is, as a matter of course, amorphous in terms of X-ray diffraction, and as an attribute of wet silica, it generally loses on ignition (1000°C x 2 hours) of 3 to 7% by weight. ). Furthermore, since this amorphous silica is manufactured in a concentrated metal salt, it contains a trace amount of this salt as a contaminant. The particulate amorphous silica used in the present invention provides several additional advantages when used as a thermal paper filler in connection with the particle structure and properties described above. First, when rubbed between the fingers, this silica has a smooth feel similar to talc, and when rubbed, it spreads well along the rubbed surface.
In fact, the coated surface containing this finely divided silica has excellent slip properties, which significantly reduces blocking tendency, significantly improves the ability to feed each stacked sheet one by one, and further improves recording performance. It has the advantage that the running properties of the head and pen can also be significantly improved.
Furthermore, when this fine powder silica is applied to a paper substrate or the like, it has the characteristic that it is uniformly spread over the entire coated surface. Therefore, the surface coated with the fine powder silica of the present invention has extremely smoothness compared to cases where other silica-based fillers are used. Furthermore, this fine powder silica has a greater hiding power than known fine powder silica, and has the effect of, for example, hiding the grain and color of the coated surface and making the coated surface white. The fine-particle amorphous silica used in the present invention is not limited to this, but the silica is directly treated with an alkali silicate and an acid in a concentrated metal salt solution without forming a sol-like silica. It is produced by reacting under conditions that allow the precipitation of fine gel particles. This manufacturing method is similar to the normal wet method silica manufacturing method in that the alkaline silicate solution is neutralized with acid, but this neutralization is performed in a concentrated metal salt, and in particular, simultaneous injection is required. The unique feature is that the neutralization is carried out by an additive method and that this neutralization immediately produces a microparticle gel of silica without forming silica lasol particles. In other words, in the normal wet method for producing silica, amorphous silica is produced by adding an acid to an aqueous solution of alkali silicate, but when observing the situation of this reaction, it is found that at the initial stage of addition, the reaction mixture is transparent. The reaction mixture gradually becomes viscous, and silica precipitates begin to form in the middle of the addition.
This indicates that in the wet method, silica sol particles are once generated by neutralization, and these sol particles aggregate to become amorphous silica particles. Also,
The silica particles produced by neutralization are initially alkaline and shift to the acidic side as the neutralization progresses.
The properties of the amorphous silica precipitate produced tend to be quite different between the early and middle stages of the reaction. On the other hand, in this method, since the aqueous alkali silicate solution and acid are neutralized in a concentrated metal salt solution, the strong coagulation and precipitation effects of the salts cause direct interference from the neutralization reaction. That is, it has the characteristic that a fine particle gel of silica is generated without passing through silica sol particles. Therefore, whereas conventional wet-process silica is an aggregate of sol-like particles with a particle size of 10 to 20 mμ, the fine powder silica used in the present invention has a primary particle size of 30 mμ or more, particularly 40 to 90 mμ.
This fine powder amorphous silica is significantly smaller than conventional amorphous silica because it is characterized by being composed of primary particles, and gel particles are generated in the presence of the coagulation-precipitation effect of salts mentioned above. Specific surface area,
That is, it is recognized to have a specific surface area of 10 to 70 m 2 /g. Furthermore, according to this method, by adopting the simultaneous injection method, a constant flow rate is maintained from the initial stage to the final stage of the reaction.
The neutralization reaction is carried out under pH conditions of 5 to 9, and the resulting amorphous silica has the advantage that its properties, particularly the particle size, are uniform. In this case, it is important that the concentrated aqueous salt solution has a high concentration from the beginning of the addition of the alkali silicate or acid. That is, the reaction between alkali silicate and acid naturally produces an alkali metal salt as a by-product, but if the reaction system does not contain a high concentration of alkali metal salt from the beginning, the amorphous silica produced will be Although the primary particle size is fine, there is a tendency that the secondary particle size is coarse and the specific surface area is also large. The concentration of metal salts varies depending on the type, but
Generally speaking, at the start of the neutralization reaction, 5
% or more, particularly 10 to 20%. That is, when the salt concentration is lower than the above range, the secondary particle size and specific surface area tend to become larger than the range specified in the present invention, while there is no particular advantage even if the concentration is too high, and instead Therefore, it becomes economically disadvantageous. Examples of metal salts include alkali metal salts and alkaline earth metal salts of inorganic or organic acids, such as sodium chloride, sodium nitrate, sodium sulfate, sodium sulfite, sodium carbonate, sodium phosphate, potassium chloride, sodium acetate, and methanesulfone. Sodium chloride, calcium chloride, magnesium chloride, magnesium sulfate, etc. may be used alone or in combination of two or more. Among these various salts, monobasic acid salts have a wide permissible range of salt concentration in order to obtain silica having the above-mentioned properties.
On the other hand, for salts of dibasic acids, the allowable range of salt concentration tends to be relatively narrow. However, it is recognized that in a system of a mixture of the two, such as a combination of common salt and Glauber's salt, the permissible range of salt concentration becomes wider. Salts that are economical and advantageous for the purposes of the present invention include common salt,
Glauber's salt or a combination of these. The alkali silicate may be any alkali silicate, such as the formula M2O.nSiO2 , where M is an alkali metal and n is 1 to 1.
An aqueous solution of an alkali silicate with a number of 3.8 may be used. From an economic standpoint, it is desirable to use so-called No. 3 sodium silicate in which the number n is in the range of 3.0 to 3.4. The concentration of alkali silicate used in the reaction is not particularly limited, but it is generally advantageous for operation to use it at a concentration of 10 to 25% as SiO 2 . Various inorganic acids and organic acids can be used as the acid, but from an economic standpoint, mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid are preferably used. In order to carry out a homogeneous reaction, these acids are preferably used in the form of dilute aqueous solutions, generally at concentrations of 5 to 20%. The temperature of the neutralization reaction may be at room temperature or under heating, but it is generally preferable to carry out both reactions rapidly under heating at 50 to 100°C. When alkali silicate and acid are simultaneously added into a concentrated aqueous solution and reacted,
It is important that these three components are mixed rapidly and uniformly, and for this reason, simultaneous injection is carried out under rapid stirring or shear stirring. This reaction can be carried out either batchwise or continuously. For example, in the case described above, a concentrated salt solution is placed in a reaction tank, and both raw materials are simultaneously poured into the reaction tank. Alternatively, the liquid is circulated between the reaction tank and the premixing tank, and both raw materials are simultaneously injected into the premixing tank. In the latter case, continuous reaction can be carried out using a multi-stage reaction tank or a column-type reaction tank. When producing silica, it is preferable to conduct a neutralization reaction so that the SiO 2 concentration in the slurry at the end of the reaction is 1 to 10%. That is, when this concentration is lower than the above range, there is a disadvantage in terms of operation and equipment, while when this concentration is higher than the above range, the secondary particles tend to become coarse. Although the precipitation of fine-particle amorphous silica is completed within a very short time by simultaneous injection and mixing, it may be desirable to carry out aging for about 30 minutes to 10 hours after precipitation. After the reaction, the slurry is subjected to solid-liquid separation to separate the amorphous silica from the mother liquor, and if necessary, it is washed with water and dried to obtain a product. On the other hand, the separated mother liquor is subjected to operations such as separation of different salts and concentration adjustment by concentration or dilution, if necessary, and then circulated to the reaction system and used again. The amorphous silica filler of the present invention can be contained in heat-sensitive recording layer compositions known per se in an amount of 10 to 60% by weight, particularly 20 to 40% by weight, based on solid content. In this composition, the leuco dyes that are coloring agents include triphenylmethane leuco dyes, fluoran leuco dyes, spiropyran leuco dyes, rhodamine lactam leuco dyes, auramine leuco dyes, and phenothiazine leuco dyes. All of the leuco dyes used in thermal recording paper are used alone or in combination of two or more. Further, as the phenols that are color formers, all phenols that are heat-meltable at room temperature such as bisphenol A, bisphenol F, and 2,6-dioxybenzoic acid are used. Further, as the binder, any water-soluble resin binder such as starch, cyanomethylated starch, carboxymethyl starch, ethyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, water-soluble acrylic resin, vinyl methyl ether copolymer, sodium alginate, etc. can be used. used. Furthermore, various waxes such as fatty acids, fatty acid amides, carnauba waxes, polyethylene waxes, etc., and organic bases such as alkanolamines to prevent ground coloring may be added as sensitizers. When forming a heat-sensitive recording layer, a dispersion of leuco dye in a binder solution and a dispersion of phenols in a binder solution are prepared, and both dispersions are applied to a substrate such as paper or synthetic paper. The amorphous silica filler of the invention can be mixed in advance into a dispersion of phenols, or a dispersion of the amorphous silica filler in a binder solution can be prepared separately, and this can be mixed in the above-mentioned manner. It can be used to form a recording layer by mixing with a leuco dye dispersion liquid and a phenol dispersion liquid. The invention is illustrated by the following example. Example 1 A No. 3 sodium silicate solution (approximately 7% Na 2 O, SiO 2
(approximately 22%) 3.6 and 10% hydrochloric acid (approximately 3.6) were simultaneously added over 60 minutes to maintain the pH of the reaction solution between 6 and 8. The resulting precipitate was separated by filtration and washed with 30 g of warm water. The resulting cake was dried in a dryer at 130°C, and then ground in a tabletop sample mill (TAMS-1 model, manufactured by Tokyo Atomizer) to obtain finely powdered silica having the physical properties shown in Table 1. The thus obtained fine powder silica was mixed with a heat-sensitive recording layer forming liquid having the following composition: 2 parts of liquid [A], 10 parts of liquid [B],
[C] Added 1 part to 6 parts of liquid and mixed well. Solutions [A], [B], and [C] are obtained by pulverizing and dispersing a liquid mixture consisting of the following components using a ball mill for 48 hours. [A] Liquid composition Crystal Violet Lactone 1 part by weight 5% hydroxyethyl cellulose 5 Water 3 [B] Liquid composition Bisphenol A 1 part by weight 5% hydroxyethyl cellulose 5 Water 3 [C] Liquid composition Stearic acid amide 1 Parts by Weight: 5% Hydroxyethyl Cellulose 5 Water 3 The above heat-sensitive recording layer forming liquid was coated on a commercially available high-quality paper with a basis weight of 64 m 2 /g to a dry weight of 6 to 7 g/m 2 and dried at room temperature. Regarding the thermal recording paper thus obtained, (a) background stain density (background color density), (b) heating color image density, and (c)
The heat-sensitive recording layer retention and (d) heat-sensitive recording layer abrasion resistance were measured by the methods shown below. Table 1 shows the results.
It was shown to. (b) Background stain density The background stain density of the paper coated with the heat-sensitive recording layer forming liquid 72 hours after application was measured using a standard densitometer manufactured by Fujifilm Corporation.
Measured using a V filter with FSD-103 type,
The following evaluation criteria were obtained by visual observation.

【表】【table】

【表】 (ロ) 加熱発色画像濃度 感熱記録紙としての発色性能を確認するた
め、塗付紙の裏面から155℃にセツトしたサー
マルプレートを5秒間押しつけて得られた加熱
発色画像濃度を標準濃度計FSD−103型で測定
し、これと肉眼観察により下記のような評価基
準を得た。
[Table] (B) Heating color image density In order to check the coloring performance as a thermal recording paper, a thermal plate set at 155℃ was pressed against the back side of the coated paper for 5 seconds, and the heat color image density obtained was determined as the standard density. Measurements were made using FSD-103 model, and the following evaluation criteria were obtained based on this and naked eye observation.

【表】 (ハ) 感熱記録層保持性 定性分析用No.2紙を下方に置き、感熱記録
層塗付紙の塗付面を重ね合せて、塗付面の裏側
より155℃にセツトしたサーマルプレートを1
分間押しつけ、定性紙上に移行した感熱記録
層成分の付着状態を観察し、併せて感熱フアク
シミリ装置HIFAX−3000を使用し、サーマル
ヘツドへのカス付着の傾向を観密し、総合的に
感熱記録層保持性を下記の基準で評価した。
[Table] (c) Heat-sensitive recording layer retention Place No. 2 paper for qualitative analysis below, overlap the coated side of the paper coated with the heat-sensitive recording layer, and set the temperature to 155℃ from the back side of the coated side. 1 plate
The adhesion state of the heat-sensitive recording layer components transferred onto the qualitative paper was observed by pressing the heat-sensitive recording layer for several minutes, and a heat-sensitive facsimile machine HIFAX-3000 was also used to closely monitor the tendency of residue adhesion to the thermal head. Retention property was evaluated based on the following criteria.

【表】 (ニ) 感熱記録層耐摩耗性 感熱記録層塗付紙の裏面から155℃にセツト
したサーマルプレートを5秒間押しつけて得ら
れた画像を有する感熱記録紙を、東洋精機製作
所製ロータリーアプレツサーの試料保持台に均
一に貼りつけ、摩耗輪CS−10、荷重250gの条
件で回転させ、感熱記録層がなくなり、下地の
被塗付紙が認められるまでの回転数を測定し、
下記の評価基準を得た。誰測定値については5
回転毎に回転をとめ、摩耗状態を観察したの
で、5回転きざみの回転数で表示した。
[Table] (d) Abrasion resistance of heat-sensitive recording layer Heat-sensitive recording paper with an image obtained by pressing a thermal plate set at 155°C for 5 seconds from the back side of the paper coated with heat-sensitive recording layer was placed on a rotary appresa manufactured by Toyo Seiki Seisakusho. Attach it evenly to the sample holding table of TSUSA, rotate it under the conditions of abrasion wheel CS-10 and a load of 250 g, and measure the number of rotations until the heat-sensitive recording layer disappears and the coated paper on the base is visible.
The following evaluation criteria were obtained. 5 for anyone measurements
Since the rotation was stopped after each rotation and the state of wear was observed, the rotation speed was expressed in 5 rotation increments.

【表】 実施例および比較例の粉体物性測定方法は下記
のとおりである。 (1) BET比表面積〔S.A〕 各粉体の比表面積は窒素ガスの吸着によるい
わゆるBET法に従つて測定した。詳しくは次
の文献を参照すること。 S.Brunauer、P.H.Emmett、E.Teller、J.
Am.Chem.Soc、Vol.60、309(1938) なお、本明細書における比表面積の測定はあ
らかじめ150℃になるまで乾燥したものを0.5〜
0.6g秤量びんにとり、150℃の恒温乾燥器中で
1時間乾燥し、直ちに重量を精秤する。この試
料を吸着試料管に入れ200℃に加熱し、吸着試
料管内の真空度が10-4mmHgに到達するまで脱
気し、放冷後約−196℃の液体窒素中に吸着試
料管を入れ、 pN2/po=0.05〜0.30 (pN2:窒素ガス圧力、po=測定時の大気圧) の間で4〜5点N2ガスの吸着量を測定する。
そして死容積を差し引いたN2ガスの吸着量を
0℃、1気圧の吸着量に変換しBET式に代入
して、Vm〔c.c./g〕(試料面に単分子層を形成
するに必要な窒素ガス吸着量を示す)を求め
る。比表面積S.A=4.35×Vm〔m2/g〕 (2) 見掛比重 JIS K6220ゴム配合剤試験方法の鉄シリンダ
ー法にて測定する。供試料は1gとする。 (3) 吸油量 JIS K5101顔料試験方法にて測定する。供試
料は0.5gとする。 (4) 二次粒子径・粒度分布 遠心沈降法を原理とするミクロン・フオー
ト・サイザーーSKN−1000型(セイシン企業
製)で測定する。試料の分散はセイシン企業製
SK−DISPERSER(超音波分散機)を使つて5
分間行なう。得られる粒度分布より4μ以下の
累積重量パーセント及びメジアン2次粒子径
(50%累積点)を求める。 (5) 一次粒子径 日本電子製電子顕微鏡JEM−T6S型等によ
つて撮影した直接倍率5千〜2万倍の写真を5
万倍〜20万倍に引き伸し、千個以上の粒子につ
いて定方向径を測定し、算術平均径として表わ
す。 実施例 2 85℃に加熱した15%塩化ストロンチウム溶液
18.6中に、3号ケイ酸ソーダ溶液(Na2O約7
%、SiO2約22%)3.2と14%硫酸約3.2を反応
液のPHが6〜8を保つように120分で同時注加し
た。 生成沈澱物を過により分離し、30の温水に
て洗浄した。得られたケーキを130℃の乾燥器に
て乾燥したのち、卓上型サンプルミル(東京アト
マイザー製TAMS−1型)で粉砕し、表1に示
した物性を有する微粉シリカを得た。 かくして得られた微粉シリカを用い、実施例1
と全く同様の方法で感熱記録紙を得た。また実施
例1と全く同様に地汚れ濃、加熱発色画像濃度、
感熱記録層保持性、感熱記録層耐摩耗性について
測定、評価を行なつた。 結果を表1に示した。 実施例 3 85℃に加熱した10%塩化ナトリウム溶液9と
10%硫酸ナトリウム溶液9を混合した溶液中
に、3号ケイ酸ソーダ溶液(Na2O約7%、
SiO222%)3.6と14%硫酸約3.6を反応液のPH
が6〜8を保つように60分で同時注加した。 生成沈澱物を過により分離し、30の温水に
て洗浄した。得られたケーキを130℃の乾燥器に
て乾燥したのち、卓上型サンプルミル(東京アト
マイザー製TAMS−1型)で粉砕し、表1に示
した物性を有する微粉シリカを得た。 かくして得られた微物シリカを用い、実施例1
と全く同様の方法で感熱記録紙を得た。また実施
例1と全く同様に地汚れ濃度、加熱発色画像濃
度、感熱記録層保持性、感熱記録層耐摩耗性につ
いて測定、評価を行なつた。 結果を表1に示した。 実施例 4 85℃に加熱した10%塩化リチウム溶液9と硫
酸ナトリウム溶液9を混合した溶液中に、3号
ケイ酸ソーダ溶液(Na2O約7%、SiO2約22%)
3.6と10%塩酸約3.6を反応液のPHが6〜8を
保つように120分で同時注加した。 生成沈澱物を過により分離し、30の温水に
て洗浄した。得られたケーキを130℃の乾燥器に
て乾燥したのち、卓上型サンプルミル(東京アト
マイザー製TAMS−1型)で粉砕し、表1に示
した物性を有する微粉シリカを得た。 かくして得られた微粉シリカを用い、実施例1
と全く同様の方法で感熱記録紙を得た。また実施
例1と全く同様に地汚れ濃度、加熱発色画像濃
度、感熱記録層保持性、感熱記録層耐摩耗性につ
いて測定、評価を行なつた。 結果を表1に示した。 実施例 5 85℃に加熱した7%塩化ストロンチウム18.6
中に、3号ケイ酸ソーダ(Na2O約7%、SiO2
22%)3.2と10%塩酸約3.2を反応液のPHが6
〜8を保つように60分で同時注加した。 生成沈澱物を過により分離し、30の温水に
て洗浄した。得られたケーキを130℃の乾燥器に
て乾燥したのち、卓上型サンプルミル(東京アト
マイザー製TAMS−1型)で粉砕し、表1に示
した物性を有する微粉シリカを得た。 かくして得られた微粉シリカを用い、実施例1
と全く同様の方法で感熱記録紙を得た。また実施
例1と全く同様に地汚れ濃度、加熱発色画像濃
度、感熱記録層保持性、感熱記録層耐摩耗性につ
いて測定、評価を行なつた。 結果を表1に示した。 比較例 1 85℃に加熱した熱水17.8中に、3号ケイ酸ソ
ーダ溶液(Na2O約7%、SiO2約22%)3.6と14
%硫酸約3.6を反応液のPHが6〜8を保つよう
に120分で同時注加した。 生成沈澱物を過により分離し、30の温水に
て洗浄した。得られたケーキを130℃の乾燥器に
て乾燥したのち、卓上型サンプルミル(東京アト
マイザー製TAMS−1型)で粉砕し、表1に示
した物性を有する微粉シリカを得た。 かくして得られた微粉シリカを用い、実施例1
と全く同様の方法で感熱記録紙を得た。また実施
例1と全く同様に地汚れ濃度、加熱発色画像濃
度、感熱記録層保持性、感熱記録層耐摩耗性につ
いて測定、評価を行なつた。 結果を表1に示した。 比較例 2 3号ケイ酸ソーダ溶液(Na2O約16%、SiO2
5%)20Kgに塩化ナトリウム1.2Kgを溶解させ、
85℃に加熱した。その加熱塩化ナトリウム含有3
号ケイ酸ソーダ溶液に、7.5%塩酸約5を60分
で反応終了PHが約5になるまで滴下した。 生成沈澱物を過により分離し、30の温水に
て洗浄した。得られたケーキを130℃の乾燥器に
て乾燥したのち、卓上型サンプルミル(東京アト
マイザー製TAMS−1型)で粉砕し、表1に示
した物性を有する微粉シリカを得た。 かくして得られた微粉シリカを用い、実施例1
と全く同様の方法で感熱記録紙を得た。また実施
例1と全く同様に地汚れ濃度、加熱発色画像濃
度、感熱記録層保持性、感熱記録層耐摩耗性につ
いて測定、評価を行なつた。 結果を表1に示した。 比較例 3〜6 比較例3としてセライト219(米国Jhons
Manville社製珪藻土微粉末)、比較例4としてサ
イロイド244(富士デヴイソン化学製微粉シリカ)、
比較例5としてミズカシルP−73(水沢化学製微
粉シリカ)、比較例6としてウルトラジルVN3
(***Degyssa社製ホワイト・カーボン)の粉末
物性を表1に示した。 上記比較例の粉末を用い、各々実施例1と全く
同様の方法で感熱記録紙を得た。また実施例1と
全く同様に地汚れ濃度、加熱発色画像濃度、感熱
記録層保持性、感熱記録層耐摩耗性について測
定、評価を行なつた。 結果を表1に示した。
[Table] The methods for measuring powder physical properties in Examples and Comparative Examples are as follows. (1) BET specific surface area [SA] The specific surface area of each powder was measured according to the so-called BET method using nitrogen gas adsorption. For details, please refer to the following literature. S. Brunauer, PHEmmett, E. Teller, J.
Am.Chem.Soc, Vol. 60, 309 (1938) In this specification, the specific surface area is measured by drying it to 150°C in advance.
Pour into a 0.6g weighing bottle, dry for 1 hour in a constant temperature dryer at 150°C, and immediately weigh accurately. This sample was placed in an adsorption sample tube and heated to 200℃, degassed until the degree of vacuum within the adsorption sample tube reached 10 -4 mmHg, and after cooling, the adsorption sample tube was placed in liquid nitrogen at approximately -196℃. , pN 2 /po = 0.05 to 0.30 (pN 2 : nitrogen gas pressure, po = atmospheric pressure at the time of measurement) The amount of N 2 gas adsorbed is measured at 4 to 5 points.
Then, the amount of N2 gas adsorbed after subtracting the dead volume is converted to the amount of adsorption at 0°C and 1 atm, and substituted into the BET equation to obtain Vm [cc/g] (the amount required to form a monomolecular layer on the sample surface). (indicates the amount of nitrogen gas adsorbed). Specific surface area SA = 4.35 x Vm [m 2 /g] (2) Apparent specific gravity Measured by the iron cylinder method of JIS K6220 rubber compound test method. The test sample is 1 g. (3) Oil absorption amount Measured using JIS K5101 pigment test method. The sample shall be 0.5g. (4) Secondary particle size/particle size distribution Measured using a micron photo sizer model SKN-1000 (manufactured by Seishin Enterprises), which is based on the centrifugal sedimentation method. Sample dispersion is made by Seishin Enterprises.
Using SK-DISPERSER (ultrasonic dispersion machine) 5
Do this for minutes. From the resulting particle size distribution, determine the cumulative weight percentage of 4μ or less and the median secondary particle diameter (50% cumulative point). (5) Primary particle size 5 photographs taken with a direct magnification of 5,000 to 20,000 times using a JEOL electron microscope model JEM-T6S, etc.
Stretch it 10,000 to 200,000 times, measure the directional diameter of more than 1,000 particles, and express it as the arithmetic mean diameter. Example 2 15% strontium chloride solution heated to 85°C
18.6, add No. 3 sodium silicate solution (Na 2 O approx.
%, SiO 2 (approximately 22%) and approximately 3.2% of 14% sulfuric acid were simultaneously added over 120 minutes to maintain the pH of the reaction solution between 6 and 8. The resulting precipitate was separated by filtration and washed with 30 g of warm water. The resulting cake was dried in a dryer at 130°C, and then ground in a tabletop sample mill (TAMS-1 model, manufactured by Tokyo Atomizer) to obtain finely powdered silica having the physical properties shown in Table 1. Using the thus obtained fine powder silica, Example 1
A thermosensitive recording paper was obtained in exactly the same manner. In addition, in exactly the same manner as in Example 1, the background stain density, heat coloring image density,
The heat-sensitive recording layer retention properties and heat-sensitive recording layer abrasion resistance were measured and evaluated. The results are shown in Table 1. Example 3 10% sodium chloride solution 9 heated to 85°C
Add No. 3 sodium silicate solution (about 7% Na 2 O,
PH of the reaction solution: SiO2 (22%) 3.6 and 14% sulfuric acid approximately 3.6
They were simultaneously injected at 60 minutes to maintain a range of 6 to 8. The resulting precipitate was separated by filtration and washed with 30 g of warm water. The resulting cake was dried in a dryer at 130°C, and then ground in a tabletop sample mill (TAMS-1 model, manufactured by Tokyo Atomizer) to obtain finely powdered silica having the physical properties shown in Table 1. Using the microscopic silica thus obtained, Example 1
A thermosensitive recording paper was obtained in exactly the same manner. Further, in exactly the same manner as in Example 1, measurements and evaluations were carried out regarding the background stain density, thermally colored image density, heat-sensitive recording layer retention, and heat-sensitive recording layer abrasion resistance. The results are shown in Table 1. Example 4 No. 3 sodium silicate solution (about 7% Na 2 O, about 22% SiO 2 ) was added to a solution of a mixture of 10% lithium chloride solution 9 and sodium sulfate solution 9 heated to 85°C.
3.6 and 10% hydrochloric acid were simultaneously added over 120 minutes to maintain the pH of the reaction solution between 6 and 8. The resulting precipitate was separated by filtration and washed with 30 g of warm water. The resulting cake was dried in a dryer at 130°C, and then ground in a tabletop sample mill (TAMS-1 model, manufactured by Tokyo Atomizer) to obtain finely powdered silica having the physical properties shown in Table 1. Using the thus obtained fine powder silica, Example 1
A thermosensitive recording paper was obtained in exactly the same manner. Further, in exactly the same manner as in Example 1, measurements and evaluations were carried out regarding the background stain density, thermally colored image density, heat-sensitive recording layer retention, and heat-sensitive recording layer abrasion resistance. The results are shown in Table 1. Example 5 7% Strontium Chloride 18.6 heated to 85°C
Inside, No. 3 sodium silicate (about 7% Na 2 O, about 2 SiO 2
22%) 3.2 and 10% hydrochloric acid about 3.2 until the pH of the reaction solution is 6.
Simultaneous injections were made at 60 minutes to maintain a concentration of ~8. The resulting precipitate was separated by filtration and washed with 30 g of warm water. The resulting cake was dried in a dryer at 130°C, and then ground in a tabletop sample mill (TAMS-1 model, manufactured by Tokyo Atomizer) to obtain finely powdered silica having the physical properties shown in Table 1. Using the thus obtained fine powder silica, Example 1
A thermosensitive recording paper was obtained in exactly the same manner. Further, in exactly the same manner as in Example 1, measurements and evaluations were carried out regarding the background stain density, thermally colored image density, heat-sensitive recording layer retention, and heat-sensitive recording layer abrasion resistance. The results are shown in Table 1. Comparative Example 1 No. 3 sodium silicate solution (about 7% Na 2 O, about 22% SiO 2 ) 3.6 and 14 in hot water heated to 85°C
About 3.6% sulfuric acid was simultaneously added over 120 minutes to maintain the pH of the reaction solution between 6 and 8. The resulting precipitate was separated by filtration and washed with 30 g of warm water. The resulting cake was dried in a dryer at 130°C, and then ground in a tabletop sample mill (TAMS-1 model, manufactured by Tokyo Atomizer) to obtain finely powdered silica having the physical properties shown in Table 1. Using the thus obtained fine powder silica, Example 1
A thermosensitive recording paper was obtained in exactly the same manner. Further, in exactly the same manner as in Example 1, measurements and evaluations were carried out regarding the background stain density, thermally colored image density, heat-sensitive recording layer retention, and heat-sensitive recording layer abrasion resistance. The results are shown in Table 1. Comparative Example 2 1.2 kg of sodium chloride was dissolved in 20 kg of No. 3 sodium silicate solution (about 16% Na 2 O, about 5% SiO 2 ),
Heated to 85°C. Its heating sodium chloride content 3
About 5% of 7.5% hydrochloric acid was added dropwise to the sodium silicate solution over 60 minutes until the pH at the end of the reaction reached about 5. The resulting precipitate was separated by filtration and washed with 30 g of warm water. The resulting cake was dried in a dryer at 130°C, and then ground in a tabletop sample mill (TAMS-1 model, manufactured by Tokyo Atomizer) to obtain finely powdered silica having the physical properties shown in Table 1. Using the thus obtained fine powder silica, Example 1
A thermosensitive recording paper was obtained in exactly the same manner. Further, in exactly the same manner as in Example 1, measurements and evaluations were carried out regarding the background stain density, thermally colored image density, heat-sensitive recording layer retention, and heat-sensitive recording layer abrasion resistance. The results are shown in Table 1. Comparative Examples 3 to 6 As Comparative Example 3, Celite 219 (US Jhons
Diatomaceous earth fine powder manufactured by Manville), Thyroid 244 (Fuji Davison Chemical fine powder silica) as Comparative Example 4,
Comparative Example 5 is Mizukasil P-73 (Mizusawa Chemical fine powder silica), Comparative Example 6 is Ultrasil VN 3
Table 1 shows the powder properties of (white carbon manufactured by Degyssa, West Germany). Thermosensitive recording paper was obtained in exactly the same manner as in Example 1 using the powders of the above comparative examples. Further, in exactly the same manner as in Example 1, measurements and evaluations were carried out regarding the background stain density, thermally colored image density, heat-sensitive recording layer retention, and heat-sensitive recording layer abrasion resistance. The results are shown in Table 1.

【表】【table】

【表】 上述したように本発明の実施例により得た微粉
シリカを感熱紙に使用することにより、地汚れが
少なく、かつ発色画像濃度が高く、しかもサーマ
ルヘツドへのカス付着防止や、ステイツキングの
防止に有効と認められる感熱記録層を有する感熱
紙が得られることが理解される。
[Table] As mentioned above, by using the fine powder silica obtained according to the examples of the present invention in thermal paper, there is less background smudge and the density of the colored image is high. It is understood that a thermal paper having a thermal recording layer that is recognized to be effective in preventing the above can be obtained.

Claims (1)

【特許請求の範囲】 1 遠心沈降法で測定して4μ以下の粒度のもの
が全体の90重量%以上となる二次粒径の粒度分布
を有し且つ10乃至100m2/gのBET比表面積及び
0.14乃至0.30g/c.c.の嵩密度を有する微粒子非晶
質シリカから成ることを特徴とする感熱記録紙用
填剤。 2 前記非晶質シリカが湿式法非晶質シリカであ
る特許請求の範囲第1項記載の填剤。 3 前記非晶質シリカは電子顕微鏡で測定して30
ミリミクロン以上の数平均粒径を有するものであ
る特許請求の範囲第1項記載の填剤。 4 前記非晶質シリカは100乃至200c.c./100gの
吸油量を有するものである特許請求の範囲第1項
記載の填剤。 5 前記非晶質シリカは0.2乃至1ミクロンのメ
ジアン2次粒子径を有する特許請求の範囲第1項
記載の填剤。
[Scope of Claims] 1. Having a secondary particle size distribution in which particles with a particle size of 4 μ or less account for 90% by weight or more of the total as measured by centrifugal sedimentation, and a BET specific surface area of 10 to 100 m 2 /g. as well as
A filler for heat-sensitive recording paper, characterized in that it consists of fine particle amorphous silica having a bulk density of 0.14 to 0.30 g/cc. 2. The filler according to claim 1, wherein the amorphous silica is wet-processed amorphous silica. 3 The amorphous silica was measured with an electron microscope and had a
The filler according to claim 1, which has a number average particle diameter of millimicrons or more. 4. The filler according to claim 1, wherein the amorphous silica has an oil absorption of 100 to 200 c.c./100 g. 5. The filler according to claim 1, wherein the amorphous silica has a median secondary particle size of 0.2 to 1 micron.
JP57132201A 1982-07-30 1982-07-30 Filler for heat sensitive recording paper Granted JPS5922794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57132201A JPS5922794A (en) 1982-07-30 1982-07-30 Filler for heat sensitive recording paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57132201A JPS5922794A (en) 1982-07-30 1982-07-30 Filler for heat sensitive recording paper

Publications (2)

Publication Number Publication Date
JPS5922794A JPS5922794A (en) 1984-02-06
JPH021030B2 true JPH021030B2 (en) 1990-01-10

Family

ID=15075753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57132201A Granted JPS5922794A (en) 1982-07-30 1982-07-30 Filler for heat sensitive recording paper

Country Status (1)

Country Link
JP (1) JPS5922794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266397A (en) * 1991-03-15 1993-11-30 Mizusawa Industrial Chemicals, Ltd. Amorphous silica-type filler

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926445A (en) * 1982-08-02 1984-02-10 三信工業株式会社 Tank
JPS5926292A (en) * 1982-08-05 1984-02-10 Mitsubishi Paper Mills Ltd High-sensitivity heat-sensitive paper
JPS6144683A (en) * 1984-08-10 1986-03-04 Honshu Paper Co Ltd Thermosensitive recording body
JPH074966B2 (en) * 1985-03-15 1995-01-25 株式会社リコー Thermal recording material
JPS6379724A (en) * 1986-09-20 1988-04-09 Mitsubishi Heavy Ind Ltd Aqueous solution of lithium bromide having anticorrosive property
JP3018338B2 (en) * 1987-12-26 2000-03-13 日産化学工業株式会社 Filler for thermosensitive recording paper and method for producing the same
DE69231047T2 (en) * 1991-02-25 2000-12-21 Canon Kk Use of a film laminate to take a color toner image and method of making a fixed color toner image
DE602005017664D1 (en) 2004-12-27 2009-12-24 Oji Paper Co HEAT-SENSITIVE RECORDING MATERIAL
EP2325389B1 (en) * 2009-11-12 2016-08-10 bene_fit systems GmbH & Co. KG Coating material for fibrous compounds
JP7316177B2 (en) * 2019-10-03 2023-07-27 東ソー・シリカ株式会社 Hydrous silicic acid slurry and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266397A (en) * 1991-03-15 1993-11-30 Mizusawa Industrial Chemicals, Ltd. Amorphous silica-type filler
US5418043A (en) * 1991-03-15 1995-05-23 Mizusawa Industrial Chemicals, Ltd. Amorphous silica filler

Also Published As

Publication number Publication date
JPS5922794A (en) 1984-02-06

Similar Documents

Publication Publication Date Title
JPH021030B2 (en)
JPH0460434B2 (en)
US4544604A (en) Heat-sensitive recording paper and filler therefor
JP3018338B2 (en) Filler for thermosensitive recording paper and method for producing the same
JPH0460435B2 (en)
JPH028912B2 (en)
JP2563027B2 (en) Novel silicas, their production and their use as fillers, especially in paper
CN1318300C (en) Inorganic oxide
US5401568A (en) Coated fillers having silicic acid for heat-sensitive recording materials
JP4373110B2 (en) Method for producing wet method amorphous silica
ES2281632T3 (en) COMPOSITION OF COVERING THAT INCLUDES COLOID SILICON AND BRIGHT RECORDING SHEETS, INK JET, PREPARED WITH SUCH COMPOSITION.
EP0156576B1 (en) Methods of producing paper containing pigments
JP2718578B2 (en) Filler for thermal recording paper
JP3098841B2 (en) Filler for thermal recording paper
JP4590179B2 (en) Amorphous silica
JPH0442807A (en) Amorphous silica-based agent
JPS6186284A (en) Filler for thermal recording paper
JP3122208B2 (en) Aqueous developer and process for producing the same
KR810001911B1 (en) Thermally responsive record material
EP0552065A1 (en) A silica filler for a heat sensitive recording paper
JPH0564953A (en) Filler for ink jet recording paper
JPH07108769B2 (en) Novel aluminosilicate-based pigments, a process for their production and their use especially as fillers for paper
JP4341320B2 (en) Coated paper for printing and method for producing the same
JPH1129310A (en) Material for heat-sensitive recording paper and heat-sensitive recording paper
JPS6112986A (en) Coupler for leuco dye