JPH02102735A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH02102735A
JPH02102735A JP63255466A JP25546688A JPH02102735A JP H02102735 A JPH02102735 A JP H02102735A JP 63255466 A JP63255466 A JP 63255466A JP 25546688 A JP25546688 A JP 25546688A JP H02102735 A JPH02102735 A JP H02102735A
Authority
JP
Japan
Prior art keywords
catalyst
coprecipitate
exhaust gas
slurry
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63255466A
Other languages
Japanese (ja)
Inventor
Hisanori Itou
寿記 伊藤
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63255466A priority Critical patent/JPH02102735A/en
Publication of JPH02102735A publication Critical patent/JPH02102735A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilize noble metals and to obtain durable high activity catalyst for purification of exhaust gas by incorporating Pd-Nd multiple oxide and Rh-La multiple oxide into an alumina coated layer on a fireproof carrier. CONSTITUTION:A proper reagent such as ammonium carbonate is added to a soln. contg. a easily soluble Pd compd. such as palladium nitrate and a easily soluble Nd compd. such as neodymium nitrate to form a Pd-Nd coprecipitate. An Rh-La coprecipitate is similarly formed. The coprecipitates are added to an alumina slurry and a fireproof carrier is coated with the slurry, dried and calcined to obtain a catalyst. Since the mixed state of Pd and Nd and that of Rh and La are very satisfactory and the growth of Pd and Rh grains is inhibited, the noble metals are effectively utilized without waste and the activity and durability of the catalyst are enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排気ガス浄化用触媒、更に詳しくは触媒成分と
してPd (パラジウム)及びRh (ロジウム)を含
む排気ガス浄化用触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying catalyst containing Pd (palladium) and Rh (rhodium) as catalyst components.

【従来の技術〕[Conventional technology]

自動車等の内燃機関から排出される排気ガス中に含有さ
れる有害物質のうち、主なものは炭化水素(HC) 、
−酸化炭素(CO)及び窒素酸化物 (NOx)の三成
分である。この三成分を一度に浄化処理できる触媒を三
元触媒と呼んでいる。
Among the harmful substances contained in the exhaust gas emitted from internal combustion engines such as automobiles, the main ones are hydrocarbons (HC),
- Three components: carbon oxide (CO) and nitrogen oxide (NOx). A catalyst that can purify these three components at once is called a three-way catalyst.

三元触媒においては触媒成分として貴金属が使用されて
おり、例えばpt (白金)やPdはIC及びCOの酸
化に有効であり、又、RhはNOxの還元に有効である
。それ故、三元触媒としては(pt又はPd) /Rh
系触媒が用いられているが、近年、ptよりも資源量及
び価格の点で有利なPdを用いたPd/ Rh系触媒を
用いる試みがなされている。
In three-way catalysts, noble metals are used as catalyst components, such as pt (platinum) and Pd, which are effective in oxidizing IC and CO, and Rh, which is effective in reducing NOx. Therefore, as a three-way catalyst, (pt or Pd) /Rh
However, in recent years, attempts have been made to use Pd/Rh based catalysts using Pd, which is more advantageous than PT in terms of resource quantity and price.

上記触媒において、Pdは還元性雰囲気で粒成長し易く
、それ自体の表面積を減少させて活性を低下させる傾向
がある。又、PdはRhの表面を覆ったり、これと合金
化し易く、触媒活性や耐久性の点で問題がある。
In the above catalyst, Pd tends to grow grains in a reducing atmosphere, reducing its own surface area and decreasing its activity. Furthermore, Pd tends to cover the surface of Rh or form an alloy with it, which poses problems in terms of catalytic activity and durability.

とのPd/ Rh系触媒における粒成長(シリンダ)を
抑制した触媒として、アルミナ等からなる触媒担体上に
触媒成分としてPd、 Rhに加えNd(ネオジウム)
及び/又は Sm (サマリウム)を担持せしめてなる
排気ガス浄化用触媒が特開昭62−57651号公報に
開示されている。該触媒ではNdやSmがPdと複合酸
化物を作ることによりPdの粒成長を抑制するとされて
いる。
As a catalyst that suppresses grain growth (cylinder) in a Pd/Rh based catalyst, Nd (neodymium) is added as a catalyst component to a catalyst carrier made of alumina etc. in addition to Pd and Rh.
and/or An exhaust gas purifying catalyst on which Sm (samarium) is supported is disclosed in JP-A-62-57651. In this catalyst, Nd and Sm are said to suppress the grain growth of Pd by forming a composite oxide with Pd.

しかし、この特開昭60−114341号公報記載の排
気ガス浄化用触媒は、アルミナなどからなる触媒担体に
Nd及び/又はSmを添加し、その後Pd及びRhを担
持するものであるため、NdやSmのところにPdを全
て担持できず、他のところに担持されたPdは粒成長し
易い。
However, in the exhaust gas purifying catalyst described in JP-A-60-114341, Nd and/or Sm are added to a catalyst carrier made of alumina or the like, and then Pd and Rh are supported. Not all Pd can be supported on Sm, and Pd supported on other parts tends to grow grains.

本発明者らはこの点について鋭意研究を重ねた結果、最
近になってRhにはNdやS11よりもLa(ランタン
)の方が効果が大きいこと並びにNd2O3(酸化ネオ
ジウム)及びLa1es (酸化ランタン)がそれぞれ
Pd及びRhの粒成長を抑制することを見い出し、この
知見に基づく新たな触媒を特願昭63−102294号
にて提案している。
As a result of extensive research by the present inventors on this point, we have recently found that La (lanthanum) has a greater effect on Rh than Nd or S11, and that Nd2O3 (neodymium oxide) and La1es (lanthanum oxide) It was discovered that Pd and Rh each inhibit grain growth, and based on this knowledge, a new catalyst was proposed in Japanese Patent Application No. 102294/1983.

該触媒はいわばPd/ Rh系触媒の製造方法を工夫す
ることによりPdやRhの粒成長を更に良く抑制するよ
うにしたもので、予めPdを担持させたNd!O3粉末
と予めRhを担持させたLateaとを加えてアルミス
ラリーを調製し、それを担体にコートし、乾燥、焼成す
ることにより製造される触媒である。
This catalyst, so to speak, is a product in which the grain growth of Pd and Rh is further suppressed by devising a manufacturing method for a Pd/Rh based catalyst, and Nd! This catalyst is produced by adding O3 powder and Latea on which Rh has been previously supported to prepare an aluminum slurry, coating the slurry on a carrier, drying, and firing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところでアルミナ担体にNd、 Smを添加し、その後
Pd、 Rhを担持させる前記従来の触媒では、Nd、
 Smがアルミナと結び付き易い性質を有しているため
、PdはNd、 Smに結び付きにくいという問題があ
り、そして予めPdをNdJsに、 RhをLatea
に担持させて製造される上記提案の触媒においても同様
の問題が残されていた。即ち、PdやRhは全て複合酸
化物となり得ず、Nd、 LaによるPd、 Rhの粒
成長抑制能力が十分に発揮されないという問題があった
By the way, in the conventional catalyst in which Nd and Sm are added to an alumina carrier and then Pd and Rh are supported, Nd,
Since Sm has the property of easily bonding with alumina, there is a problem that Pd is difficult to bond with Nd and Sm.
Similar problems remain in the above-mentioned proposed catalyst which is produced by supporting the catalyst. That is, Pd and Rh cannot all form composite oxides, and there is a problem in that the ability of Nd and La to suppress grain growth of Pd and Rh is not sufficiently exhibited.

本発明は上記問題を解決する目的でなされたものであり
、その解決しようとする課題は、資源的に少なく高価な
Pd、 Rh等の貴金属を有効に使用し、今まで以上に
活性及び耐久性を向上させた排気ガス浄化用触媒を提供
することである。
The present invention was made for the purpose of solving the above-mentioned problem, and the problem to be solved is to effectively use precious metals such as Pd and Rh, which are scarce in terms of resources and expensive, to make them more active and durable than ever before. An object of the present invention is to provide a catalyst for purifying exhaust gas with improved performance.

[課題を解決するための手段] そのための本発明の排気ガス浄化用触媒は、Pd−Nd
共沈物から生じたPd−Nd複合酸化物とRh−La共
沈物から生じたRh−La複合酸化物が耐火性担体上の
アルミナコート層に含まれていることを特徴とする。
[Means for Solving the Problems] To achieve this, the exhaust gas purifying catalyst of the present invention comprises Pd-Nd
It is characterized in that a Pd-Nd composite oxide produced from a coprecipitate and a Rh-La composite oxide produced from a Rh-La coprecipitate are contained in an alumina coat layer on a refractory carrier.

ここでPd・Nd共沈物とは、易溶性のPd化合物とN
d化合物を溶かした溶解液に適当な試薬を加えることに
よりPd及びNdが共に不溶性化合物となって沈殿した
ものを意味する。Rh−La共沈物についても同様であ
る。
Here, the Pd/Nd coprecipitate refers to easily soluble Pd compound and N
d refers to a compound in which both Pd and Nd become insoluble compounds and precipitate by adding an appropriate reagent to a solution containing the compound. The same applies to the Rh-La coprecipitate.

本発明の触媒は、例えば硝酸ネオジウムと硝酸パラジウ
ムの混合溶液に炭酸アンモニウム等の炭酸塩を加えて得
られるNdg (cosl sとPd (OH1,から
なるPd−Nd共沈物と、例えば同様にして得られるL
at(COa) sとRh (OH)、からなるLa−
Rh共沈物をアルミナスラリーに加え、それを耐火性担
体にコートし、乾燥・焼成することにより製造すること
ができる。
The catalyst of the present invention can be obtained by adding a carbonate such as ammonium carbonate to a mixed solution of neodymium nitrate and palladium nitrate, and a Pd-Nd coprecipitate consisting of Ndg (cosl s) and Pd (OH1), for example. Obtained L
La- consisting of at(COa)s and Rh(OH)
It can be produced by adding Rh coprecipitate to alumina slurry, coating it on a refractory carrier, drying and firing.

耐火性担体の材質は例えばコーディエライト、ムライト
、アルミナ、耐熱性金属等であってよい。その大きさや
形状は特に限定されない、形状としては例えばペレット
状又はハニカム状のモノリス担体等であってよい、コー
ディエライト質モノリス担体を用いるのが好ましい、な
お、前記スラリー中には他の成分例えば助触媒成分など
を加えてもよい。
The material of the refractory carrier may be, for example, cordierite, mullite, alumina, heat-resistant metal, or the like. The size and shape are not particularly limited, and the shape may be, for example, a pellet-like or honeycomb-like monolith support. It is preferable to use a cordierite monolith support. Note that the slurry may contain other components such as A promoter component etc. may be added.

〔作 用〕[For production]

Pd−Nd共沈物およびRh−La共沈物はそれぞれ混
合溶液から作られるため、PdとNdの並びにRhとL
aの混合状態が非常に良く (より分子的レベルに近い
混合となり)、アルミナスラリーに加え混練してもそれ
らの混合物は細かい塊としてそれぞれ混ざる。このスラ
リーを担体にコートし焼成すると、PdとNd並びにR
hとLaは混合状態がよいために共に容易に複合酸化物
に変る。こうしてPd及びRhの粒成長がそれぞれNd
及びLaにより有効に抑制される。
Pd-Nd coprecipitate and Rh-La coprecipitate are each made from a mixed solution, so Pd and Nd as well as Rh and L
The mixing state of a is very good (the mixture is closer to the molecular level), and even when added to the alumina slurry and kneaded, the mixture mixes as fine lumps. When this slurry is coated on a carrier and fired, Pd, Nd and R
Since h and La are in a good mixing state, both can be easily converted into a composite oxide. In this way, the grain growth of Pd and Rh is
and La.

【実施例〕【Example〕

以下の実施例及び比較例において本発明を更に詳細に説
明する。なお、本発明は下記実施例に限定されるもので
はない。
The present invention will be explained in further detail in the following Examples and Comparative Examples. Note that the present invention is not limited to the following examples.

硝酸ネオジウム438gと、Pd重量でlOgに相当す
る量の硝酸パラジウムを純水3βに溶かし、混合溶液A
を調製した0次に炭酸アンモニウム200gを純水ao
o gに溶かした水溶液を、上記混合溶液Aに徐々に加
えていき、Ndヨ(CO,)、やPd (OH) z等
からなる難水溶性化合物の混合物Cを調製した。
438g of neodymium nitrate and palladium nitrate in an amount equivalent to 1Og in Pd weight were dissolved in pure water 3β to form a mixed solution A.
Add 200g of prepared ammonium carbonate to pure water ao
An aqueous solution dissolved in 0 g was gradually added to the above mixed solution A to prepare a mixture C of poorly water-soluble compounds consisting of Nd(CO,), Pd(OH), and the like.

一方、硝酸ランタン870 gと、Rh重量で1g相当
する量の硝酸ロジウムを純水3εに溶かし、混合溶液B
を作り、これに上記と同様にして炭酸アンモニウム水溶
液を加え、 Lag (GO31xやRh (OHM、
等からなる難水溶性化合物の混合物りを調製した。
On the other hand, dissolve 870 g of lanthanum nitrate and rhodium nitrate in an amount equivalent to 1 g in terms of Rh weight in pure water 3ε, and mix solution B.
To this, add ammonium carbonate aqueous solution in the same manner as above, and add Lag (GO31x, Rh (OHM,
A mixture of poorly water-soluble compounds was prepared.

別に、活性アルミナ粉末870g、硝酸アルミニウム水
溶液(40wt%)  260g及び純水780gを混
練したものを作り、これに上記混合物C及びDを加え撹
拌し、スラリー■を調製した。
Separately, 870 g of activated alumina powder, 260 g of aluminum nitrate aqueous solution (40 wt%) and 780 g of pure water were kneaded, and the above mixtures C and D were added and stirred to prepare slurry (2).

このスラリー■にコーディエライト製モノリス担体用基
材(φ107 X L 78)を1分間浸漬した後、引
き上げて余分な水分を飛ばし、 100℃で1時間乾燥
後、700℃で2時間焼成し、85gコートした。この
ようにして、Pd−Nd共沈物とRh−La共沈物を用
いて製造された触媒Iを得た。
A cordierite monolith carrier base material (φ107 XL 78) was immersed in this slurry ■ for 1 minute, then pulled out to remove excess moisture, dried at 100°C for 1 hour, and then fired at 700°C for 2 hours. 85g was coated. In this way, Catalyst I manufactured using a Pd-Nd coprecipitate and a Rh-La coprecipitate was obtained.

比較例1 活性アルミナ粉末1000 g、硝酸アルミニウム水溶
液(40wt%)  300g、純水900 gを混合
し、撹拌してスラリーIIを調製した。このスラリー1
1にコーディエライト質モノリス担体(φ 107X 
78L )を1分間浸漬した後、引き上げて余分な水分
を吹きとばし、 100℃で1時間乾燥後、700℃で
2時間焼成し60gコートした。続いて、純水621.
8gに硝酸ランタン757.8 g及び硝酸ネオジウム
767、1 gを溶かした混合溶液に上記コートした担
体を浸漬し、弓き上げ、余分な水分を吹きとばし、10
0℃で1時間乾燥した後、700℃で2時間焼成した。
Comparative Example 1 1000 g of activated alumina powder, 300 g of aluminum nitrate aqueous solution (40 wt%), and 900 g of pure water were mixed and stirred to prepare slurry II. This slurry 1
Cordierite monolith carrier (φ 107X
78L) was immersed for 1 minute, then pulled out, excess moisture was blown off, dried at 100°C for 1 hour, and then baked at 700°C for 2 hours to coat 60g. Next, pure water 621.
The above-coated carrier was immersed in a mixed solution of 757.8 g of lanthanum nitrate and 767.1 g of neodymium nitrate dissolved in 8 g, bowed, and the excess moisture was blown off.
After drying at 0°C for 1 hour, it was fired at 700°C for 2 hours.

次いで、この担体を硝酸パラジウム水溶液に撹拌しなが
ら2時間浸漬した後、引き上げ乾燥した。更に、この担
体を硝酸ロジウム水溶液に攪拌しながら1時間浸漬した
後、引き上げ乾燥した。
Next, this carrier was immersed in an aqueous palladium nitrate solution for 2 hours while stirring, and then taken up and dried. Further, this carrier was immersed in an aqueous rhodium nitrate solution for 1 hour while stirring, and then taken up and dried.

このようにして、Nd、 La、 Pd及びRhを触媒
成分として担持している触媒IIを得た。
In this way, catalyst II supporting Nd, La, Pd, and Rh as catalyst components was obtained.

実施例及び比較例より得られた各触媒の成分含有量を第
1表に示す。
Table 1 shows the component contents of each catalyst obtained in Examples and Comparative Examples.

第1表 比(A/F) 14.6、空間速度(SV) 6000
0 Hr−及び触媒床温度800℃で200時間運転し
た。
Table 1 Ratio (A/F) 14.6, Space velocity (SV) 6000
It was operated for 200 hours at 0 Hr- and a catalyst bed temperature of 800°C.

浄化性能については、空燃比14.6のエンジン排気ガ
スを模したモデル排気ガスを用い、5v=85QOOH
r−’として触媒を通過させ、Co、 IC及びNOx
の浄化率を測定した。
Regarding the purification performance, we used a model exhaust gas that imitated engine exhaust gas with an air-fuel ratio of 14.6, and 5v = 85QOOH.
pass through the catalyst as r-', Co, IC and NOx
The purification rate was measured.

測定の結果得られたGO,HC及びNOxの浄化率を第
2表に示す。
Table 2 shows the purification rates of GO, HC, and NOx obtained as a result of the measurement.

第2表 〈耐久試験〉 これら2種の触媒に対し、以下の方法により耐久試験を
実施し、浄化性能を評価した。
Table 2 (Durability Test) A durability test was conducted on these two types of catalysts using the following method to evaluate their purification performance.

耐久試験は、6気筒2800ccエンジン(5M−G)
の排気系に触媒を設置する方法で、空燃次に各触媒1.
IIにおけるPd及びRhの平均粒子径をX線回折によ
り測定した。その結果を第3表に示す。
Durability test was conducted using a 6-cylinder 2800cc engine (5M-G)
In this method, a catalyst is installed in the exhaust system of the air/fuel mixture, and then each catalyst 1.
The average particle diameters of Pd and Rh in II were measured by X-ray diffraction. The results are shown in Table 3.

第3表 に良好に形成されている。そのためPd及びRhの粒成
長が抑制され、それらの貴金属を無駄なく有利に利用で
きるとともに、触媒活性及び耐久性が向上した。又、P
dとRhが分離されるので、PdがRhの表面を覆って
その触媒性能を低下させるという悪い相互作用もみられ
ない。
It is well formed in Table 3. Therefore, the grain growth of Pd and Rh was suppressed, and these precious metals could be used advantageously without waste, and the catalytic activity and durability were improved. Also, P
Since d and Rh are separated, there is no adverse interaction in which Pd covers the surface of Rh and reduces its catalytic performance.

第2表から明らかな如く、本実施例に係る触媒Iは、比
較例に係る触媒IIよりも耐久試験後の活性が一段と優
れている。これはF’d、 Rhの粒成長抑制効果の違
いであることが第3表から認められた。
As is clear from Table 2, Catalyst I according to this example has a much better activity after the durability test than Catalyst II according to Comparative Example. It was recognized from Table 3 that this was due to the difference in the grain growth inhibiting effects of F'd and Rh.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の排気ガス浄化用触媒は、Pd−N
d共沈物とRh−La共沈物を用いて製造される触媒で
あるためPdとNdの、並びにRhとLaの混合状態が
非常に良く、焼成によってPd−Nd複合酸化物及びR
b−La複合酸化物が今まで以上時 許 出 願 人 トヨタ自動車株式会社 (ばか2名)
As mentioned above, the exhaust gas purifying catalyst of the present invention is made of Pd-N
Since the catalyst is manufactured using a d coprecipitate and a Rh-La coprecipitate, the mixing state of Pd and Nd and Rh and La is very good, and when fired, Pd-Nd composite oxide and R
b-La composite oxide is available now more than ever Applicant Toyota Motor Corporation (two idiots)

Claims (1)

【特許請求の範囲】[Claims] Pd・Nd共沈物から生じたPd・Nd複合酸化物とR
h・La共沈物から生じたRh・La複合酸化物が耐火
性担体上のアルミナコート層に含まれていることを特徴
とする排気ガス浄化用触媒。
Pd/Nd composite oxide generated from Pd/Nd coprecipitate and R
An exhaust gas purifying catalyst characterized in that a Rh/La composite oxide produced from an h/La coprecipitate is contained in an alumina coat layer on a refractory carrier.
JP63255466A 1988-10-11 1988-10-11 Catalyst for purification of exhaust gas Pending JPH02102735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255466A JPH02102735A (en) 1988-10-11 1988-10-11 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255466A JPH02102735A (en) 1988-10-11 1988-10-11 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH02102735A true JPH02102735A (en) 1990-04-16

Family

ID=17279157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255466A Pending JPH02102735A (en) 1988-10-11 1988-10-11 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH02102735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11137999A (en) * 1997-11-12 1999-05-25 Jisedai Haigas Shokubai Kenkyusho:Kk Purification catalyst for waste gas and its production
US10830710B2 (en) 2019-02-19 2020-11-10 Toshiba Memory Corporation Method and device for inspecting a semiconductor device
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11137999A (en) * 1997-11-12 1999-05-25 Jisedai Haigas Shokubai Kenkyusho:Kk Purification catalyst for waste gas and its production
US10906816B2 (en) 2016-07-29 2021-02-02 Sumitomo Chemical Company, Limited Alumina and method for producing automotive catalyst using same
US10830710B2 (en) 2019-02-19 2020-11-10 Toshiba Memory Corporation Method and device for inspecting a semiconductor device

Similar Documents

Publication Publication Date Title
JP6246192B2 (en) Three-way catalyst system
JPH10501737A (en) Layered catalyst composite
JPH09500570A (en) Layered catalyst composite
JPH0653229B2 (en) Exhaust gas purification catalyst
JP2003126694A (en) Catalyst for cleaning exhaust gas
JP4778682B2 (en) Catalyst composition for suppressing hydrogen sulfide
US5202300A (en) Catalyst for purification of exhaust gas
JPS59127649A (en) Catalyst for purifying exhaust gas
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPH0768176A (en) Catalyst for purification of exhaust gas from diesel engine
JPH11285644A (en) Production of catalyst
JPH06378A (en) Catalyst for purification of exhaust gas
JP4275801B2 (en) Exhaust gas purification catalyst
JPH02102735A (en) Catalyst for purification of exhaust gas
JPH1076159A (en) Exhaust gas purification catalyst and its production
JPH0451864Y2 (en)
JPH0472577B2 (en)
JPH04180835A (en) Production of catalyst for purifying exhaust gas
US20230070493A1 (en) Twc catalysts for gasoline engine exhaust gas treatments
JPH06190282A (en) Catalyst for purification of exhaust gas
JPH01123636A (en) Production of catalyst for purifying exhaust gas
JPH05285391A (en) Catalyst for purification of exhaust gas
JPH02191548A (en) Catalyst for purification of exhaust gas
JPH06190246A (en) Exhaust gas purifying device for automobile
JP2672996B2 (en) Method for producing platinum-palladium-rhodium catalyst for exhaust gas purification