JPH02101184A - Water-electrolysis ozonizer - Google Patents

Water-electrolysis ozonizer

Info

Publication number
JPH02101184A
JPH02101184A JP63251424A JP25142488A JPH02101184A JP H02101184 A JPH02101184 A JP H02101184A JP 63251424 A JP63251424 A JP 63251424A JP 25142488 A JP25142488 A JP 25142488A JP H02101184 A JPH02101184 A JP H02101184A
Authority
JP
Japan
Prior art keywords
cell
hydrogen
electrode
water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63251424A
Other languages
Japanese (ja)
Inventor
Junichi Kawamura
河村 淳一
Hisashi Kudo
工藤 寿士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63251424A priority Critical patent/JPH02101184A/en
Publication of JPH02101184A publication Critical patent/JPH02101184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To safely treat by-product H2 by supplying by-product H2 to one surface of the gas-diffusion electrode on both surfaces of an ion-exchange membrane and air to the other surface respectively, and electrochemically oxidizing the H2. CONSTITUTION:Water is supplied from the supplying port 11 of the ozone generating cell 1 having an ion-exchange resin membrane 3 provided with a catalytic electrode on both surfaces, and gaseous ozone is discharged from an outlet 12. In this case, gaseous H2 is by-produced on the cathode side of the cell 1. In a hydrogen treating cell 2, the gas-diffusion electrodes 15 and 16 are integrally bonded to both surfaces of the ion-exchange resin membrane 14, the negative and positive-electrode current collectors 17 and 18 permeable to a fluid and consisting of an expandable metal are provided on both surfaces, negative and positive-electrode plates 19 and 20 are further furnished on the rear surface and short-circuited on the outside. The by-product gaseous H2 and air are respectively introduced from the inlets 22 and 23 of the cell 2, H2 is consumed by the negative electrode, a part of the O2 in air is consumed by the positive electrode to generate water, and the water is discharged from an outlet 24 along with excess air.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はイオン交換樹脂膜を用いた水電解式オゾン発生
機に関するもので、陽極側から高濃度のオゾンを得ると
共に、陰極側から副生される不要な水素を安全に処理す
る場合に特に有効である。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a water electrolysis type ozone generator using an ion exchange resin membrane, in which highly concentrated ozone is obtained from the anode side and as a by-product from the cathode side. This is particularly effective when safely disposing of unnecessary hydrogen.

従来の技術 オゾンは、その脱臭・脱色・殺菌効果などを利用して上
下水道や工場排水の水処理、各種食品の殺菌、あるいは
空気の清浄化など、極めて広範囲に利用されている。
BACKGROUND OF THE INVENTION Ozone is used in an extremely wide range of applications, such as water treatment of water and sewage systems and factory wastewater, sterilization of various foods, and air purification, due to its deodorizing, decolorizing, and sterilizing effects.

オゾンの製造法としては放電式がよく知られている。こ
の場合、原料として空気を用いると生成オゾン濃度が低
く(1,vo1%以下)、また、不要な窒素酸化物が生
成するし、酸素を用いるとオゾン濃度は高くなるが、高
価な酸素源か必要となる。
A discharge method is well known as a method for producing ozone. In this case, if air is used as a raw material, the ozone concentration produced will be low (below 1, VO 1%) and unnecessary nitrogen oxides will be produced, and if oxygen is used, the ozone concentration will be high, but it is an expensive oxygen source. It becomes necessary.

いずれの原料でも電極金属のタストが不純物としてオゾ
ン中に混入してくる。
In either raw material, electrode metal tasts are mixed into the ozone as impurities.

他の製造法としては水の電気分解による方法か知られて
おり(例えばPeter C,Foller、 Che
rlesW、Tobias、 J、[1ectroch
etn、SOC,、Vol 129.No、3506(
1982) ) 、放電式に比べると極めて高濃度・高
純度のオゾンが得られる。水電解式でオゾンを製造する
場合には、−船釣にイオン交換樹脂膜を固体電解質とし
、この膜の両側に電極を配置し、数■の直流電圧を印加
する。
Other known production methods include water electrolysis (e.g., Peter C., Foller, Che.
rlesW, Tobias, J, [1ectroch
etn, SOC,, Vol 129. No, 3506 (
(1982) ), compared to the discharge method, extremely high concentration and purity of ozone can be obtained. When producing ozone by water electrolysis, an ion exchange resin membrane is used as a solid electrolyte, electrodes are placed on both sides of the membrane, and a DC voltage of several micrometers is applied.

電気化学反応としては、陽極では 3H20−+  Oa −1−68” +6eの反応と 2H20−02+48”−1−4e の反応が同時に進行してオゾンと酸素の混合基体が得ら
れる。
As for the electrochemical reaction, the reaction of 3H20-+Oa-1-68''+6e and the reaction of 2H20-02+48''-1-4e proceed simultaneously at the anode to obtain a mixed substrate of ozone and oxygen.

陽極で生成した水素イオンは固体電解質としてのイオン
交換樹脂膜内を容易に移動する性質かあるから陰極側に
到達し、次に示す反応 6H++6e−−+  3H2 (又は4H” +4e−−2H2) によって水素に還元される。
Hydrogen ions generated at the anode have the property of easily moving within the ion exchange resin membrane as a solid electrolyte, so they reach the cathode side, and the following reaction 6H++6e−−+ 3H2 (or 4H” +4e−−2H2) Reduced to hydrogen.

発明か解決しようとする問題点 この様に、従来の水電解式によるオゾン発生機では酸素
を含んだオゾンが得られるが、一方では不要かつ危険な
水素が副生される。オゾンを脱臭・脱色・殺菌等の手段
に有効に利用しようとする場合、副生される水素を適当
に処理する必要かある。その方法としては、従来、単に
燃やすだけの燃焼法があるか、次のような欠点を持って
いた。
Problems to be Solved by the Invention As described above, the conventional water electrolysis type ozone generator produces ozone containing oxygen, but on the other hand, unnecessary and dangerous hydrogen is produced as a by-product. If ozone is to be used effectively for deodorization, decolorization, sterilization, etc., it is necessary to appropriately treat the hydrogen produced as a by-product. Conventionally, methods for doing so include the combustion method, which simply involves burning, or has the following drawbacks.

すなわち、水電解式オゾン発生機を停止後、再度運転を
開始する度に水素カスに点火する必要があり、爆発性気
体である水素への点火は極めて危険な作業てあった。し
かも使用中は常時燃えているから金側な発熱源となり、
周囲の環境も悪くなるし、付近に引火性の物質が存在す
るような場所での運転は不可能であった。
That is, after stopping the water electrolysis type ozone generator, it is necessary to ignite the hydrogen scum each time the operation is restarted, and igniting hydrogen, which is an explosive gas, is an extremely dangerous operation. Moreover, it is constantly burning during use, so it becomes a major source of heat generation.
The surrounding environment would also deteriorate, and it was impossible to operate in areas where flammable substances were present nearby.

もう一つの水素を処理する方法としては、外部より火炎
を接しないで酸化させる接触酸化法がある。これは活性
アルミナなどの担体上に白金やパラジウムなどを担持さ
せた酸化触媒を使用し、酸素の存在下で低温で酸化させ
る方法であり、比較的低濃度の可燃性ガスの酸化に適し
ている。従って、前述の水電解式によって生成される1
00%の水素を処理するには、適量の酸素又は空気を混
合する必要がある。この場合、混合カス中の水素濃度が
高ずき°ると触媒温度が過熱しすぎて寿命が短くなるか
ら、水素と酸素又は空気の混合比率は最適値に保持する
必要があり、その制御は難しいばかりでなく、多量の触
媒を必要とするため、装置か大形化するという欠点を持
っていた。
Another method for treating hydrogen is a catalytic oxidation method in which oxidation is performed without exposing it to external flame. This method uses an oxidation catalyst in which platinum, palladium, etc. are supported on a carrier such as activated alumina, and oxidizes at low temperatures in the presence of oxygen, and is suitable for oxidizing combustible gases at relatively low concentrations. . Therefore, the 1 produced by the water electrolysis method described above
To process 0.00% hydrogen, it is necessary to mix in an appropriate amount of oxygen or air. In this case, if the hydrogen concentration in the mixed sludge increases, the catalyst temperature will become too hot and the life will be shortened, so the mixing ratio of hydrogen and oxygen or air must be kept at an optimal value, and its control is Not only is it difficult, but it also requires a large amount of catalyst, which has the disadvantage of increasing the size of the equipment.

問題点を解決するための手段 本発明では水電解時に副生される水素を安全かつ確実に
処理できるオゾン発生機を拵供するために、従来の燃焼
法や接触酸化法とは異なった手法、すなわち、電気化学
的手段を採用する。その概略はイオン交換樹脂膜の両表
面に、−船釣にカス拡散電極と呼ばれる電極を形成し、
その片面に水電解によって副生された水素を供給し、も
う一方の面に空気を供給し、膜両面のガス拡散電極を短
絡あるいは適当な抵抗を介して接続して、副生水素を電
気化学的に酸化させ、水に変える方法によって安全に処
理するものである。
Means for Solving the Problems In the present invention, in order to provide an ozone generator that can safely and reliably treat hydrogen by-produced during water electrolysis, a method different from conventional combustion methods and catalytic oxidation methods, namely , employing electrochemical means. The outline of this method is to form electrodes called scum diffusion electrodes on both surfaces of an ion exchange resin membrane.
Hydrogen by-produced by water electrolysis is supplied to one side of the membrane, air is supplied to the other side, and the gas diffusion electrodes on both sides of the membrane are connected through a short circuit or an appropriate resistance, and the by-product hydrogen is electrochemically It can be safely disposed of by oxidizing it and converting it into water.

作用 副生水素を電気化学的に処理する目的で使用する水素処
理セルは、イオン交換樹脂膜と、その両面に一体形成さ
れたカス拡散電極とで構成される。
A hydrogen treatment cell used for the purpose of electrochemically treating by-product hydrogen is composed of an ion exchange resin membrane and scum diffusion electrodes integrally formed on both sides of the membrane.

ガス拡散電極の形成方法の一例としては、白金やパラジ
ウムなどの触媒金属粉末をカーホン粉末に混合担持させ
、この混合粉末にポリ4フツ化エチレンの水懸濁液、い
わゆるテフロンデイスパージョン等の結着剤を加えて粘
着性のペースト状もしくは液状の混合物とし、これをイ
オン交換樹脂膜表面上に塗布、吹付け、あるいはヒート
プレス等によって膜状に接合させる。テフロンデイスパ
ージョン中の溶剤は加熱・蒸発等の後処理によって揮散
するので、イオン交換樹脂膜表面には非揮発性の触媒金
属・カーボン粉末・テフロン微粒子などが多孔性混合物
質として残留し、これが有効なカス拡散電極として機能
することになる。
An example of a method for forming a gas diffusion electrode is to mix and support catalyst metal powder such as platinum or palladium on carphone powder, and add aqueous suspension of polytetrafluoroethylene, so-called Teflon dispersion, etc. to this mixed powder. An adhesive is added to form a sticky paste or liquid mixture, and this is bonded into a membrane by coating, spraying, heat pressing, etc. on the surface of the ion exchange resin membrane. Since the solvent in the Teflon dispersion evaporates during post-treatments such as heating and evaporation, non-volatile catalyst metals, carbon powder, Teflon fine particles, etc. remain as a porous mixture on the surface of the ion exchange resin membrane. It functions as an effective dregs diffusion electrode.

このように、イオン交換樹脂膜の両表面に形成された一
対のカス拡散電極を外部で短絡又は適当な抵抗を介して
接続しておき、いわゆる燃料電池と同様の電気化学セル
を構成しておく。片側のカス拡散電極に副生水素を供給
すると、次に示す反応 2H2−−4H+ +4e によって、水素はガス拡散電極とイオン交換樹脂膜との
界面で酸化されて水素イオンとなる。もう一方側のカス
拡散電極に酸素又は空気を供給すると、前記水素イオン
は同体電解質としての機能を有するイオン交換樹脂膜の
内部を容易に移動して、次に示す反応 4H”十02 +4 e−→2H20 によって酸化され、水を生成する。
In this way, a pair of sludge diffusion electrodes formed on both surfaces of the ion exchange resin membrane are connected externally via a short circuit or an appropriate resistance to form an electrochemical cell similar to a so-called fuel cell. . When by-product hydrogen is supplied to one side of the gas diffusion electrode, hydrogen is oxidized to hydrogen ions at the interface between the gas diffusion electrode and the ion exchange resin membrane by the following reaction 2H2−4H+ +4e. When oxygen or air is supplied to the other side of the scum diffusion electrode, the hydrogen ions easily move inside the ion exchange resin membrane that functions as an isoelectrolyte, resulting in the following reaction 4H"102 +4 e- → Oxidized by 2H20 to produce water.

以上の如く、水素処理セルでは水素供給側が負極、酸素
供給側が正極となるような電池が構成され、処理された
水素の電気化学当量に相当する短絡電流が正極から負極
に流れることになる。一方、水素処理セルの大きさはオ
ゾン発生セルと同じか、若干大きい程度ですむので、装
置の小形化に貢献する。まな、上記説明で明らかなよう
に、水素は自動的に酸化処理されるので保守も不要であ
る。
As described above, the hydrogen treatment cell is configured such that the hydrogen supply side is the negative electrode and the oxygen supply side is the positive electrode, and a short circuit current corresponding to the electrochemical equivalent of the treated hydrogen flows from the positive electrode to the negative electrode. On the other hand, the size of the hydrogen treatment cell is the same as or slightly larger than the ozone generation cell, which contributes to miniaturization of the device. As is clear from the above explanation, since hydrogen is automatically oxidized, no maintenance is required.

実施例 次に、本発明の水電解式オゾン発生機の一実施例を主要
構成部を示す概略断面図に従って説明する。
Embodiment Next, an embodiment of the water electrolysis type ozone generator of the present invention will be described with reference to a schematic sectional view showing the main components.

1は水電解式によるオゾン発生セル、2は水素処理セル
である。
Reference numeral 1 indicates an ozone generation cell based on a water electrolysis type, and reference numeral 2 indicates a hydrogen treatment cell.

オゾン発生セル】は以下に示ず構成部分よりなる。3は
寸法が32IIl四方の正方形のパーフルオロカーボン
スルホン酸樹脂よりなるイオン交換樹脂膜(デュポン社
製、商品名ナフィオン117)である。該膜の片面には
陽極となる二酸化鉛電極4が、もう一方の面には陰極と
なる白金電極5か一体に接合されている。二酸化1))
@極4と白金電極5の両表面には流体の通過が可能な多
孔性の陽極給電体6と陰極給電体7を設け、さらに、そ
の背面に陽極板8と陰極板9を配置して全体をセル容器
10内に収納する。陽極側の水の供給口11から水を供
給し、陽陰極板8,9間に数■の直流電圧を印加すると
、陽極4からは酸素と目的とするオゾンとの混合ガスか
発生し、オゾンカス出口12から導出される。一方、陰
極5からは水素が発生し、水素出口13から導出される
The ozone generating cell consists of the following components. 3 is an ion exchange resin membrane (manufactured by DuPont, trade name: Nafion 117) made of perfluorocarbon sulfonic acid resin and having a square size of 32IIl on each side. A lead dioxide electrode 4 serving as an anode is integrally bonded to one side of the membrane, and a platinum electrode 5 serving as a cathode is integrally bonded to the other side. Dioxide 1))
A porous anode power supply body 6 and a cathode power supply body 7 through which fluid can pass are provided on both surfaces of the @ electrode 4 and platinum electrode 5, and an anode plate 8 and a cathode plate 9 are placed on the back of the porous anode power supply body 6 and cathode power supply body 7, respectively. is stored in the cell container 10. When water is supplied from the water supply port 11 on the anode side and a DC voltage of several square meters is applied between the anode and cathode plates 8 and 9, a mixed gas of oxygen and the target ozone is generated from the anode 4, and ozone scum is generated. It is led out from the outlet 12. On the other hand, hydrogen is generated from the cathode 5 and led out from the hydrogen outlet 13.

次に、水素処理セル2は以下に示す構成部分よりなる。Next, the hydrogen treatment cell 2 consists of the following components.

14は寸法が70Ill111四方の正方形のパーフル
オロカーボンスルホン酸樹脂よりなるイオン交換樹脂膜
(ナフィオン117)である。該膜の両面にはカス拡散
電極15.16を膜状に形成する。この方法は、先ず、
30%(重量比)のテフロン黴粒子を結着剤として含有
する水懸濁液を10倍量の水で希釈して全量II!とし
、これに白金触媒粉末3gとカーホン粉末30gを加え
て混合分散液を作成し、この液を前記膜の両面に吹付は
後、水を蒸発させてカス拡散電極を膜状に形成せしめる
Reference numeral 14 denotes an ion exchange resin membrane (Nafion 117) made of perfluorocarbon sulfonic acid resin and having a size of 70 Ill 111 squares. Scatter diffusion electrodes 15 and 16 are formed in the form of a film on both sides of the film. This method first
An aqueous suspension containing 30% (by weight) Teflon mold particles as a binder was diluted with 10 times the amount of water to make the total volume II! 3 g of platinum catalyst powder and 30 g of carphone powder are added to this to prepare a mixed dispersion liquid, and this liquid is sprayed onto both sides of the membrane, and then the water is evaporated to form a scum diffusion electrode in the form of a membrane.

ガス拡散電極15,1.6の両表面には、流体か容易に
通過するiaを有したエキスバンドメタルからなる負極
集電体17と正極集電体18を設け、さらにその背面に
負極板19と正極板20を配置して全体をセル容器21
内に収納する。負極側の水素人口22は前記オゾン発生
セルlの水素出口13とつながっており、水素が供給さ
れる。一方、正極側の空気供給口23がら空気を供給す
ると、前述の電気化学反応式に示すごとく、負極では水
素か消費され、正極では空気中の酸素が一部消費されて
水が生成する。この水は余剰空気と共に4JF出1〕2
4から排出される。
On both surfaces of the gas diffusion electrodes 15, 1.6, a negative electrode current collector 17 and a positive electrode current collector 18 made of expanded metal having an ia through which fluid can easily pass are provided, and furthermore, a negative electrode plate 19 is provided on the back surface thereof. and the positive electrode plate 20 and the entire cell container 21
Store inside. The hydrogen port 22 on the negative electrode side is connected to the hydrogen outlet 13 of the ozone generating cell 1, and hydrogen is supplied thereto. On the other hand, when air is supplied through the air supply port 23 on the positive electrode side, hydrogen is consumed at the negative electrode, and some oxygen in the air is consumed at the positive electrode, producing water, as shown in the electrochemical reaction equation described above. This water along with excess air comes out 4JF1]2
It is discharged from 4.

本発明の水電解式オゾン発生機のオゾン発生上ル1の陽
陰極板8,9間にIOAの電流を流して電解したところ
、カスの取出口12からはloVol%の高濃度オゾン
を含む酸素カス(90Vo1%)が得られ、水素処理セ
ル2の正負極板1.9.20間には同じく10Aの短絡
電流か流れ、副生水素カスの全量か完全に処理されてい
ることが確認された。
When a current of IOA was passed between the anode and cathode plates 8 and 9 of the ozone generation upper part 1 of the water electrolysis type ozone generator of the present invention for electrolysis, oxygen scum containing high concentration ozone of loVol% was released from the scum outlet 12. (90 Vo1%) was obtained, and a short circuit current of 10 A also flowed between the positive and negative electrode plates 1, 9, and 20 of hydrogen treatment cell 2, confirming that all by-product hydrogen scum was completely treated. .

発明の効果 本発明の水電解式オゾン発生機から発生するオゾンは従
来の放電式に比べて高純度で、かつ極めて濃度が高い。
Effects of the Invention Ozone generated from the water electrolysis type ozone generator of the present invention has higher purity and extremely high concentration than the conventional discharge type ozone generator.

そのため、オゾン発生機か大幅に小形・軽量化され、装
置の製造コストも安くなる。
As a result, the ozone generator can be made much smaller and lighter, and the manufacturing cost of the device will also be lower.

さらに、本発明のオゾン発生機では、副生されろ水素は
一切外部に放出することはなく、発生後、直ちに系内で
電気化学的に処理するため、付近に火災が存在する場所
においても安全に操業することができる。また、水素の
処理量は短絡電流値から容易に知ることが可能なため、
水素処理セルの性能・封合を把握しながら水素を完全か
つ確実に処理することもできる。
Furthermore, in the ozone generator of the present invention, by-produced hydrogen is not released to the outside at all, and is treated electrochemically within the system immediately after generation, so it is safe even in places where there is a fire nearby. can be operated. In addition, since the amount of hydrogen processed can be easily determined from the short circuit current value,
It is also possible to process hydrogen completely and reliably while understanding the performance and sealing of the hydrogen processing cell.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の水電解式オゾン発生機の一例を示す主要部
分の概略断面図である。 1・・・・・・オゾン発生セル 2・・・・・・水素処理セル 15.16・・・・・・ガス拡散電極 23・・・・・・空気供給口 24・・・・・・空気と水の排出口 i二 オゾン悟午tル 3、+4  ’、  イオンタ粘1仲寸O旨ハ涜(12
:  オソ゛ンプ′°ス虎D 2−3二 〕;;ミミ≦;テ(、俣2煕;1[:こ0ミ
 ;21C素幻理セlし 15、 +4 :、 ’77”7払叡拘22:  21
c本人口 2%:鍮へと・−排土D
The figure is a schematic cross-sectional view of the main parts of an example of the water electrolysis type ozone generator of the present invention. 1...Ozone generation cell 2...Hydrogen processing cell 15.16...Gas diffusion electrode 23...Air supply port 24...Air and water outlet i2 ozone gogo t3, +4',
:Osimp's Tora D 2-32〕;;Mimi≦;TE(、Mata2煕;1[:ko0mi;21C elemental logic set 15, +4:、'77''7 expulsion 22: 21
c Population 2%: To brass - earth removal D

Claims (1)

【特許請求の範囲】[Claims] イオン交換樹脂膜の両面に触媒電極を配し、水を供給し
ながら陽陰両電極間に直流電圧を印加してオゾンを発生
させる第1のセルと、イオン交換樹脂膜の両面にガス拡
散電極を一体に接合して正負両電極を外部短絡した水素
を処理する第2のセルとを有し、第2のセルの正極側に
空気を供給しながら、第1のセルの陰極側で発生した水
素を第2のセルの負極側に導入して、第2のセル内で電
気化学反応によって水素を酸化処理するようにしたこと
を特徴とする水電解式オゾン発生機。
The first cell has catalyst electrodes on both sides of the ion exchange resin membrane and generates ozone by applying DC voltage between the positive and negative electrodes while supplying water, and gas diffusion electrodes on both sides of the ion exchange resin membrane. and a second cell that processes hydrogen with both positive and negative electrodes connected together and externally shorted.While supplying air to the positive electrode side of the second cell, hydrogen generated on the cathode side of the first cell A water electrolysis type ozone generator characterized in that hydrogen is introduced into the negative electrode side of a second cell, and the hydrogen is oxidized by an electrochemical reaction within the second cell.
JP63251424A 1988-10-05 1988-10-05 Water-electrolysis ozonizer Pending JPH02101184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63251424A JPH02101184A (en) 1988-10-05 1988-10-05 Water-electrolysis ozonizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63251424A JPH02101184A (en) 1988-10-05 1988-10-05 Water-electrolysis ozonizer

Publications (1)

Publication Number Publication Date
JPH02101184A true JPH02101184A (en) 1990-04-12

Family

ID=17222642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63251424A Pending JPH02101184A (en) 1988-10-05 1988-10-05 Water-electrolysis ozonizer

Country Status (1)

Country Link
JP (1) JPH02101184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365886A (en) * 1991-06-12 1992-12-17 Japan Steel Works Ltd:The Method and device for separating hydrogen from water electrolyzing ozonizer
JP2008189969A (en) * 2007-02-02 2008-08-21 Nikka Micron Kk Ozone water producing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120891A (en) * 1973-03-22 1974-11-19
JPS5145557A (en) * 1974-10-17 1976-04-19 Sokkisha Idosentaiichino jidohyoteishisutemu

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120891A (en) * 1973-03-22 1974-11-19
JPS5145557A (en) * 1974-10-17 1976-04-19 Sokkisha Idosentaiichino jidohyoteishisutemu

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365886A (en) * 1991-06-12 1992-12-17 Japan Steel Works Ltd:The Method and device for separating hydrogen from water electrolyzing ozonizer
JP2008189969A (en) * 2007-02-02 2008-08-21 Nikka Micron Kk Ozone water producing apparatus

Similar Documents

Publication Publication Date Title
US7201782B2 (en) Gas generation system
JP2008006336A (en) Water cleaning system
CN106169632A (en) Visible light photocatalysis fuel cell based on membrane electrode and preparation method thereof
US5180502A (en) Electrolytic ozonizer and method of decomposing ozone-containing waste gas using said ozonizer
JP2001097894A (en) Reduction apparatus for carbon dioxide gas
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
JPH02101184A (en) Water-electrolysis ozonizer
CN103880121B (en) Water treatment system and method
CN111232921B (en) Method and device for preparing hydrogen and sulfur by decomposing hydrogen sulfide with assistance of flow battery
JP2009106884A (en) Water treatment and gas treatment apparatus
US3337369A (en) Non-porous diffusion membrane fuel cell
JP2020186460A (en) Electrolyte film-electrode joint body, electrochemical device using the same, and hydrogen generation system using them
JP3432136B2 (en) Ozone and hydrogen generation method and generator
JPH022825A (en) Electrolytic ozonizer having waste gas decomposing function and method for decomposing waste gas with the same ozonizer
JP3581011B2 (en) Electrochemical reactor
JPH11302887A (en) Ozone water production device
JP2002037606A (en) Method for material conversion using photocatalyst
JPS63237363A (en) Methanol fuel cell
JPH01148327A (en) Dehumidifier
JP2004149848A (en) Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device
JPS6223021Y2 (en)
JPH02221390A (en) Method and equipment for electrolyzing water
EP4074663A1 (en) Hydrogen-based fuel cell decentralized drinking water production device
JPH04131759A (en) Method and device for detecting ozone concentration
JP2001212440A (en) Ozonized water producer