JPH0198967A - Evaluating method for flow analysis in die forming of molten material - Google Patents

Evaluating method for flow analysis in die forming of molten material

Info

Publication number
JPH0198967A
JPH0198967A JP62254772A JP25477287A JPH0198967A JP H0198967 A JPH0198967 A JP H0198967A JP 62254772 A JP62254772 A JP 62254772A JP 25477287 A JP25477287 A JP 25477287A JP H0198967 A JPH0198967 A JP H0198967A
Authority
JP
Japan
Prior art keywords
molten material
mold
temperature
material pressure
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62254772A
Other languages
Japanese (ja)
Other versions
JPH0469853B2 (en
Inventor
Susumu Harada
進 原田
Shigeru Fujita
滋 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP62254772A priority Critical patent/JPH0198967A/en
Priority to DE3830571A priority patent/DE3830571A1/en
Priority to KR1019880015438A priority patent/KR970000927B1/en
Publication of JPH0198967A publication Critical patent/JPH0198967A/en
Priority to US07/595,770 priority patent/US5097431A/en
Publication of JPH0469853B2 publication Critical patent/JPH0469853B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To evaluate and decide correct maximum molten material pressure and a range of a die temperature by deriving as a function in which the die temperature is a variable with regard to the maximum molten material pressure in an evaluation object part of each element which has been brought to minute division of a formed part shape model, by a result of arithmetic operation of a molten material pressure distribution against a variation of the die temperature. CONSTITUTION:An analysis is executed by giving plural die temperature with regard to one or two or more molten material temperature conditions, respectively. By a result of arithmetic operation of a molten material pressure distribution, the maximum molten material pressure in an evaluation object part of each element against the die temperature is derived at every molten material temperature condition. From a data of the maximum molten material pressure Pn, Pn+1 corresponding to die temperatures Tn, Tn+1 of two adjacent points, deviations DELTATn(=Tn+1-Tn) and DELTAPn(=Pn+1-Pn) and a ratio of deviations DELTAPn/DELTATn are derived, and it is repeated successively. Subsequently, an increase gradient DELTASn(=DELTAPn+1/DELTATn+1-DELTAPn/DELTATn) of the deviation ratio is derived, and a die temperature Tn of a point in which its positive and negative are reversed is calculated. Next, a function of the maximum molten material pressure in which the temperature TB is a boundary and the die temperature is a variable is shown as two different functions Pmel=f1(T), Psol=f2(T).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、樹脂等の溶融材料を金型成形するに際し、
高品質の成形品を得るための溶融材料の最適成形条件を
評価判定する方法に係り、特に所要の溶融材料温度での
適正な最大溶融材料圧力と金型温度の範囲を判定する評
価方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method for molding a molten material such as a resin with a mold.
The present invention relates to a method of evaluating and determining optimal molding conditions for a molten material to obtain a high-quality molded product, and particularly relates to an evaluation method of determining an appropriate maximum molten material pressure and mold temperature range at a required molten material temperature.

〔従来の技術〕[Conventional technology]

従来、樹脂材料による射出成形において金型内の樹脂流
動解析(シミュレーション)を行う場合、第2図に示す
ように、成形品の形状モデルを微小要素に分割して、有
限要素法、境界要素法、差分法、FAN法等の数値解析
法を用いて、流体の運動方程式、連続の式およびエネル
ギーの式などを演算する方法が一般に利用されている。
Conventionally, when performing resin flow analysis (simulation) in a mold in injection molding using resin materials, as shown in Figure 2, the shape model of the molded product is divided into minute elements, and the finite element method and boundary element method are used. , the finite difference method, the FAN method, and other numerical analysis methods are generally used to calculate the equation of motion, continuity equation, energy equation, etc. of a fluid.

このような金型内での樹脂流動解析方法では、使用する
樹脂の選択と、成形機の運転条件として樹脂温度、金型
温度、充填速度を入力して演算することにより、樹脂の
充填の進行状況(詩間)を示す充填パターン(第3図参
照)、圧力分布く第4図参照)、湿度分布(第5図参照
)等がそれぞれ所要の計算によって求められる。
In this method of analyzing resin flow in a mold, the progress of resin filling is determined by selecting the resin to be used and inputting and calculating the resin temperature, mold temperature, and filling speed as the operating conditions of the molding machine. The filling pattern (see Fig. 3), pressure distribution (see Fig. 4), humidity distribution (see Fig. 5), etc., which indicate the situation (vertical space), etc., are determined by the required calculations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前述した従来の樹脂流動解析方法では、
入力条件が適正であったかどうか、さらにもっと適正な
入力条件はないのか、あるいは幾つかの入力条件のうち
どの条件が最良か等を判定する手段が知られておらず、
従って演算結果の適否の判定は解析結果と実際の成形と
の対比を繰返すことにより得られた経験的ノウハウに頼
らざるを得なかった。
However, in the conventional resin flow analysis method described above,
There is no known means of determining whether the input conditions were appropriate, whether there are even more appropriate input conditions, or which of several input conditions is the best.
Therefore, the determination of the suitability of the calculation results had to rely on empirical know-how obtained by repeatedly comparing the analysis results with actual molding.

このように、従来の金型内での樹脂流動解析方法は、使
用する樹脂に対して経験的に得られている樹脂温度、金
型温度、充填速度等を入力して、成形品の形状(製品肉
厚、ゲートの位置や個数、ランナの寸法等)の適否を判
定することを主な目的として使用され、成形条件の適否
の評価については試みられていない。
In this way, the conventional resin flow analysis method in a mold inputs the resin temperature, mold temperature, filling speed, etc. that have been empirically obtained for the resin used, and calculates the shape of the molded product ( It is mainly used for the purpose of determining the suitability of product wall thickness, the position and number of gates, the dimensions of runners, etc., and does not attempt to evaluate the suitability of molding conditions.

しかるに、このような金型内での樹脂流動解析方法は、
樹脂成形品の設計が完成した段階で、金型を製作する前
にプログラム上での演算により成形の可否、難易を判定
し、その成形品を生産するために要求される条件を求め
ることを目的とするものであり、金型形状に関する適否
(製品肉厚、ゲートの位置や個数、ゲートやランナ寸法
等)を判定するだけでなく、適正成形条件範囲や最適成
形条件の算出を行い、最終的には成形機の運転条件を全
て決定することが望まれている。
However, this method of analyzing resin flow inside a mold is
At the stage when the design of a resin molded product is completed, and before manufacturing the mold, the purpose is to determine the feasibility and difficulty of molding through calculations on the program, and to determine the conditions required to produce the molded product. In addition to determining the suitability of the mold shape (product wall thickness, gate position and number, gate and runner dimensions, etc.), it also calculates the appropriate molding condition range and optimal molding conditions, and It is desired to determine all the operating conditions of the molding machine.

従って、本発明の目的は、所要の成形金型に対する溶融
材料の流動解析のため、所要の溶融材料温度に対する適
正な最大溶融材料圧力と金型温度のV!囲を判定する溶
融材料の金型成形における流動解析の評価方法を提供す
るにある。
Therefore, an object of the present invention is to analyze the flow of molten material for a required molding die by determining the appropriate maximum molten material pressure and mold temperature V for the required molten material temperature. An object of the present invention is to provide an evaluation method for flow analysis in mold forming of molten material to determine the flow rate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る溶融材料の金型成形における流動解析の評
価方法は、 成形品形状モデルを微小要素に分割し、有限要素法、境
界要素法、差分法、FAN法等を含む数値解析法を使用
して金型内の溶融材料の流動解析を行うシステムにおい
て、1または2以上の溶融材料温度条件についてそれぞ
れ複数の金型温度を与えて解析を行い、 得られた溶融材料圧力分布の演算結果により各溶融材料
温度条件毎に各金型温度に対する各要素の評価対象部に
おける最大溶融材料圧力を求め、 隣接する2点の金型温度Tn 、Tn+1とこれに対応
する最大溶融材料圧力Pn 、 Pn+1のデータから
それぞれ偏差△Tn  (−Tn+1−Tn)およびΔ
Pn  (−Pn+1−Pn )と偏差の比△Pn/Δ
Tnとを求めてこれを順次繰返し、 これらの偏差の比の増加勾配△Sn  (=ΔPn+1
/ΔT n+1−ΔPn/ΔTn)を順次求めて、該増
加勾配ΔSnの正負が逆転する点の金型温度T8を算出
し、 算出された金型温度TBを境界として金型温度を変数と
する最大溶融材料圧力の関数を2つの異なる関数Pme
l =f1 (T)。
The evaluation method for flow analysis in mold forming of molten materials according to the present invention involves dividing the molded product shape model into minute elements and using numerical analysis methods including the finite element method, boundary element method, finite difference method, FAN method, etc. In a system that analyzes the flow of molten material in a mold, analysis is performed by giving multiple mold temperatures for one or more molten material temperature conditions, and based on the calculation results of the molten material pressure distribution obtained. For each molten material temperature condition, find the maximum molten material pressure in the evaluation target part of each element for each mold temperature, and calculate the two adjacent mold temperatures Tn, Tn+1 and the corresponding maximum molten material pressures Pn, Pn+1. Deviations △Tn (-Tn+1-Tn) and Δ from the data, respectively.
Ratio of Pn (-Pn+1-Pn) and deviation △Pn/Δ
Find Tn and repeat this step by step to find the increasing slope of the ratio of these deviations ΔSn (=ΔPn+1
/ΔTn+1−ΔPn/ΔTn), calculate the mold temperature T8 at the point where the positive/negative of the increasing slope ΔSn is reversed, and calculate the maximum temperature T8 with the mold temperature as a variable with the calculated mold temperature TB as the boundary. The function of the molten material pressure can be expressed as two different functions Pme
l = f1 (T).

Psol =f2 (T>として表わすことを特徴とす
る。
It is characterized in that it is expressed as Psol = f2 (T>).

前記の評価方法において、前記2つの異なる関数Pme
l =f1(T)、 Psol =f2(T)をディス
プレイ装置にグラフィック表示して所定の溶融材料温度
での適正な溶融材料圧力と金型温度の変動範囲を評価判
定することができる。
In the above evaluation method, the two different functions Pme
By graphically displaying l = f1 (T) and Psol = f2 (T) on a display device, it is possible to evaluate and determine the appropriate range of variation of the melting material pressure and mold temperature at a predetermined melting material temperature.

また、前記金型湿度を変数とした最大溶融材料圧力の2
つの異なる関数Pmel=f1(T)、Psol =f
2 (T)のいずれか一方の微分値dPmel/dTま
たはdPsol/dTに限界値を与え、前記関数を評価
して適正な溶融材料圧力と金型温度の変動範囲を判定す
ることができる。
In addition, the maximum melting material pressure with the mold humidity as a variable
two different functions Pmel=f1(T), Psol=f
By giving a limit value to the differential value dPmel/dT or dPsol/dT of either one of 2 (T) and evaluating the function, it is possible to determine an appropriate variation range of molten material pressure and mold temperature.

〔作用〕[Effect]

本発明に係る溶融材料の金型成形における流動解析の評
価方法によれば、金型温度の変化に対する溶融材料圧力
分布の演算結果により、成形品形状モデルの微小分割さ
れた各要素の評価対象部における最大溶融材料圧力につ
き金型温度を変数とした関数として求め、これら関数を
ディスプレイ装置にグラフィック表示して、適正な最大
溶融材料圧力と金型温度の範囲を評価判定することがで
きる。
According to the evaluation method of flow analysis in mold forming of molten material according to the present invention, the evaluation target part of each finely divided element of the molded product shape model is calculated based on the calculation result of the molten material pressure distribution with respect to the change in mold temperature. By determining the maximum molten material pressure at , as a function with the mold temperature as a variable, and displaying these functions graphically on a display device, it is possible to evaluate and determine the appropriate range of maximum molten material pressure and mold temperature.

この場合、充填完了時の溶融材料に対するメルト領域と
ソリッド領域の境界を定める金型温度を算出して、前記
関数をそれぞれの領域に対し異なる関数で表わしたり、
前記関数の微分値に限界値を与えることにより、金型温
度変動時の最大溶融材料圧力の安定性を考慮した適正な
溶融材料温度と金型温度の範囲の判定を行うことができ
る。
In this case, the mold temperature that defines the boundary between the melt region and the solid region for the molten material at the time of filling completion is calculated, and the function is expressed as a different function for each region,
By giving a limit value to the differential value of the function, it is possible to determine an appropriate range of molten material temperature and mold temperature, taking into consideration the stability of the maximum molten material pressure when the mold temperature fluctuates.

なお、−膜内に溶融材料として例えば樹脂材料の金型成
形における流動解析の判定基準として、次のような成形
条件の設定が必要とされている。
Note that the following molding conditions must be set as criteria for flow analysis in molding a resin material as a molten material within a membrane.

(1)充填時間は短い方がよい。(1) The shorter the filling time, the better.

(2)充填圧力は低い方がよい。(2) The lower the filling pressure, the better.

(3)樹脂温度は低い方がよい。(3) The lower the resin temperature, the better.

(4)金型温度は低い方がよい。(4) The lower the mold temperature, the better.

すなわち、充填工程では、高温の溶融樹脂が低温の金型
へ充填されるので、充填中に樹脂が冷却されて温度が低
下し、粘度が増加し一  8 − て流動性が低下していく。このため、充填速度が遅いと
、圧力伝達が不十分となり、金型キャビティ末端付近で
流動により生じた表面の凹凸が金型キャビティ表面と密
着できずに70−マークとして残ってしまったり、冷却
過程での収縮を補足できずにヒケを発生させたり、樹脂
流が合流するウェルド部の再融名が不十分となり、ウェ
ルドラインが発生したり、ウェルド部の強度不足が生じ
る等成形上の不良が発生し易くなる。
That is, in the filling process, high-temperature molten resin is filled into a low-temperature mold, so the resin is cooled during filling, the temperature decreases, the viscosity increases, and the fluidity decreases. For this reason, if the filling speed is slow, pressure transmission will be insufficient, and the unevenness of the surface caused by the flow near the end of the mold cavity will not be in close contact with the mold cavity surface and will remain as a 70-mark, or during the cooling process. This can lead to molding defects such as sink marks due to failure to compensate for shrinkage, insufficient remelting of the weld area where the resin flows merge, resulting in weld lines, and insufficient strength in the weld area. It is more likely to occur.

そこで、できるだけ短時間に充填を完了させることが望
ましいが、充填速度を速くし過ぎると流動中の剪断発熱
による樹脂の局部的な加熱による劣化や、それに伴って
含有されている揮発分が気化して成形品表面に形成され
るシルバーストリーク、金型キャビティ内の残存空気を
樹脂流が封じ込んで断熱圧縮することによるガスヤケ、
断面積が急激に拡大する部分で充分流路が満たされずに
帯状流が形成されてこれが折畳まれて生じるジエツテイ
ンク等の不良現象が発生する。
Therefore, it is desirable to complete the filling in as short a time as possible, but if the filling speed is too high, the resin may deteriorate due to local heating due to shear heat generation during flow, and the volatile content may vaporize as a result. silver streaks that form on the surface of the molded product, gas burns caused by the resin flow trapping residual air in the mold cavity and adiabatic compression,
At the portion where the cross-sectional area rapidly expands, the flow path is not sufficiently filled and a band-like flow is formed, which is folded and causes defects such as jet ink.

従って、これらの成形不良を発生させずに、できるだけ
短時間に充填を完了させる手段として、金型キャビティ
内の流路断面積の変化に応じて、充填速度を多段にプロ
グラムし、金型的流動速度が速くなり過ぎるところが生
じないよう設定する制御が、−膜内に適用される。
Therefore, as a means to complete filling in the shortest possible time without causing these molding defects, the filling speed is programmed in multiple stages according to changes in the cross-sectional area of the flow path in the mold cavity, and the mold-like flow is controlled. Controls are applied within the membrane to ensure that there are no points where the velocity becomes too high.

また、充填圧力は、充填を行う際にある粘度の溶融樹脂
を、ある温度の金型にある充填速度で充填した時の負荷
抵抗として生ずるもので、充填を行う射出シリンダの油
圧で表示されたり、金型内で実測する溶融樹脂圧力で表
示されたりする。すなわち、この充填圧力は、充填のし
易さを表わすパラメータであり、これが低いことは容易
に充填可能であることを示し、望ましい状態である。そ
して、連続成形においては、充填圧力の値が毎ショット
安定していることが、変動の少ない安定した品質の成形
が行われていることを示す。
In addition, filling pressure is generated as a load resistance when molten resin of a certain viscosity is filled into a mold at a certain temperature at a certain filling speed, and is expressed by the oil pressure of the injection cylinder performing filling. , it may be displayed as the molten resin pressure actually measured inside the mold. That is, this filling pressure is a parameter representing ease of filling, and a low pressure indicates that filling is easy, which is a desirable state. In continuous molding, the fact that the filling pressure value is stable every shot indicates that molding of stable quality with little variation is being performed.

さらに、樹脂温度と金型温度は、共に樹脂の流動し易さ
を表わす見掛粘度に関係する成形条件であり、両者共高
い方が見掛粘度が低くなり充填はし易くなる。一方、充
填完了後、成形品を冷却して金型より取出すという射出
成形のサイクル動作を考癒すると、これらの温度が高い
ことは成形サイクルを遅延させることになる。
Further, both the resin temperature and the mold temperature are molding conditions related to the apparent viscosity, which indicates the ease of resin flow, and the higher both are, the lower the apparent viscosity is, and the easier it is to fill. On the other hand, if we consider the injection molding cycle operation in which the molded product is cooled and taken out from the mold after filling is completed, these high temperatures will delay the molding cycle.

従って、溶融樹脂粘度があるレベルに押えられ、充填圧
力の大きさもその安定性も満足できれば、これら樹脂と
金型の温度条件は、できるだけ低い方がよいことになる
Therefore, as long as the viscosity of the molten resin can be kept to a certain level and the filling pressure and its stability can be satisfied, the temperature conditions of the resin and the mold should be as low as possible.

〔実施例〕〔Example〕

次に、本発明に係る溶融材料の金型成形における流動解
析の評価方法の実施例につき、添付図面を参照しながら
以下詳細に説明する。
Next, an example of the evaluation method for flow analysis in mold molding of molten material according to the present invention will be described in detail below with reference to the accompanying drawings.

本発明において、所定の成形品の形状モデルについて金
型内の樹脂流動解析を行う手順は、従来のシミュレーシ
コン法と同じである。
In the present invention, the procedure for analyzing the resin flow within a mold for a shape model of a predetermined molded product is the same as the conventional simulation method.

すなわち、第2図に示すように、金型内の樹脂  11
 − 脂流動解析を行うため、成形品の形状モデルの要素分割
を行い(図示例では三角形要素を用いているが、四角形
要素を用いる場合もある)、有限要素法を適用する。こ
の成形品の形状モデルに対し、ゲートGの位置と個数を
設定し、必要に応じてランチを設()ることにより流動
解析のための金型側形状の設定を完了する。ここで、使
用する樹脂を選定して樹脂物性データを入力した後、樹
脂温度、金型温度、充填速度等の成形条件を入力して解
析に移行する。ここまでの手順は、従来の金型内の樹脂
流動解析と同様である(第3図乃至第5図参照)。
That is, as shown in FIG. 2, the resin 11 in the mold
- In order to perform fat flow analysis, the shape model of the molded product is divided into elements (triangular elements are used in the illustrated example, but quadrilateral elements may also be used) and the finite element method is applied. The position and number of gates G are set for the shape model of the molded product, and launches are set as necessary to complete the setting of the mold side shape for flow analysis. Here, after selecting the resin to be used and inputting resin physical property data, inputting molding conditions such as resin temperature, mold temperature, and filling speed, the process moves to analysis. The procedure up to this point is similar to the conventional resin flow analysis in a mold (see FIGS. 3 to 5).

次に、本実施例においては、樹脂湿度を220℃、26
0℃の2種類選定し、それぞれの樹脂温度毎に金型温度
を10℃〜240℃の範囲で変化させた複数の成形条件
を設定し、順次解析演算を行う。この結果得られた充填
完了時の樹脂圧力分布データを用いて、前記形状モデル
の各要素の最大樹脂圧力を取出し、その金型温度におけ
るデータとする。この手順を繰返して求めたデータをグ
ラフ化すれば、樹脂温度をパラメータとし、金型温度を
横軸にしかつ最大樹脂圧力を縦軸として第1図に示すよ
うな特性曲線図が得られる。
Next, in this example, the resin humidity was set at 220°C and 26°C.
Two types of 0°C are selected, a plurality of molding conditions are set in which the mold temperature is varied in the range of 10°C to 240°C for each resin temperature, and analytical calculations are sequentially performed. Using the resulting resin pressure distribution data at the time of completion of filling, the maximum resin pressure of each element of the shape model is extracted and used as data at that mold temperature. If the data obtained by repeating this procedure is graphed, a characteristic curve diagram as shown in FIG. 1 will be obtained, with the resin temperature as a parameter, the mold temperature as the horizontal axis, and the maximum resin pressure as the vertical axis.

そこで、第1図に示す特性曲線に基づいて、それぞれ隣
接する2点の金型温度と、これに対応する最大樹脂圧力
を求める。例えば、隣接する金型温度をTn、Tn+1
とし、これに対応する最大樹脂圧力をPn 、Pn+1
とする。
Therefore, based on the characteristic curve shown in FIG. 1, the mold temperatures at two adjacent points and the corresponding maximum resin pressures are determined. For example, if the temperature of the adjacent mold is Tn, Tn+1
and the corresponding maximum resin pressure is Pn, Pn+1
shall be.

これらのデータから金型温度の偏差へTnおよび最大樹
脂圧力の偏差ΔPnを次式により求める。
From these data, the mold temperature deviation Tn and the maximum resin pressure deviation ΔPn are determined by the following equations.

ΔTn =Tn+1−Tn   ・(1)ΔPn = 
Pn+1− Pn   ・(2)そして、前記式(1)
、(2)の結果から、最大樹脂圧力の偏差ΔPnと金型
温度の偏差ΔTnおよびこれら偏差の比ΔPn/ΔTn
を求める。
ΔTn = Tn+1−Tn ・(1) ΔPn =
Pn+1− Pn ・(2) and the above formula (1)
, from the results of (2), the maximum resin pressure deviation ΔPn, the mold temperature deviation ΔTn, and the ratio of these deviations ΔPn/ΔTn
seek.

同様にして、次の隣接する金型温度 (ln+1 、 ln+2 )と、これに対応する最大
樹脂圧力(Pn+1 、 Pn+2 )とのデータから
、金型温度の偏差△Tn+1および最大樹脂圧力の偏差
ΔP n+1を求めると共にこれら偏差の比ΔPn+1
/ΔTn+1を順次求める。
Similarly, from the data of the next adjacent mold temperatures (ln+1, ln+2) and the corresponding maximum resin pressures (Pn+1, Pn+2), the mold temperature deviation ΔTn+1 and the maximum resin pressure deviation ΔP n+1 and the ratio of these deviations ΔPn+1
/ΔTn+1 are sequentially determined.

このようにして、これらの演算結果から前記偏差の比の
増加勾配ΔSnを次式により求める。
In this way, from these calculation results, the increase gradient ΔSn of the ratio of the deviations is determined by the following equation.

ΔSn−ΔPn+1/△Tn+1 一ΔPn/ΔTn  ・・・(3) 以下、同様に前記式(3)に基づく演算を行って、前記
勾配Δ3nの正負が逆転する点の金型温度T8を算出す
る。この金型温度T8は、溶融樹脂材料の金型への充填
完了時における非流動層の生成状況と関連するものであ
る。すなわち、金型湿度TBより高温側は非流動層の生
成が少ないメルト領域となり、また金型温度T8より低
温側は非流動層の生成が多いソリッド領域となる。
ΔSn−ΔPn+1/ΔTn+1 −ΔPn/ΔTn (3) Similarly, calculations based on the above formula (3) are performed to calculate the mold temperature T8 at the point where the polarity of the gradient Δ3n is reversed. This mold temperature T8 is related to the state of formation of a non-fluidized layer when the filling of the molten resin material into the mold is completed. That is, the temperature side higher than the mold humidity TB becomes a melt region where less non-fluidized layers are generated, and the temperature side lower than the mold temperature T8 becomes a solid region where many non-fluidized layers are generated.

ところで、第1図に示す特性曲線を式化すれば、次式が
得られる。
By the way, if the characteristic curve shown in FIG. 1 is expressed as an equation, the following equation can be obtained.

Pn=f(T)     ・・・(4)従って、前記式
(4)で示される特性曲線は、前述した金型温度T6を
境界として、それぞれメルト領域およびソリッド領域に
属する2つの異なる関数として、次式により表わすこと
ができる。
Pn=f(T) (4) Therefore, the characteristic curve shown by the above formula (4) has two different functions belonging to the melt region and solid region, respectively, with the aforementioned mold temperature T6 as the boundary. It can be expressed by the following equation.

Pmel =f1(旬      −(5)但し:T>
TB Psol = f2 (T)      ・・・(6)
但し:T<TB このようにして、本発明によれば、所定の溶融材料温度
での適正な溶融材料圧力と金型温度の変動範囲を、メル
ト領域とソリッド領域に分けて評価判定を行うことがで
きる。例えば、一般の成形ではメルト領域を除外して評
価ずればよく、またホットランナのような完全な溶融部
においてはソリッド領域を除外・して評価することがで
きる。
Pmel = f1 (season - (5) where: T>
TB Psol = f2 (T) ... (6)
However: T<TB In this way, according to the present invention, the range of variation of the appropriate melt material pressure and mold temperature at a predetermined melt material temperature can be evaluated and determined by dividing it into the melt region and the solid region. Can be done. For example, in general molding, the melt region can be excluded from evaluation, and in completely melted parts such as hot runners, the solid region can be excluded from evaluation.

また、前記式(5)、(6)でそれぞれ示される関数の
金型温度Tの微分値dPmel/dTおよびdPsol
/dTは、金型温度が変動した場合の充填完了時におけ
る樹脂圧力変動の安定性を示す。従って、この値は小さ
い方が望ましい。
In addition, the differential values dPmel/dT and dPsol of the mold temperature T of the functions shown in the above equations (5) and (6), respectively, are
/dT indicates the stability of resin pressure fluctuation at the time of completion of filling when the mold temperature fluctuates. Therefore, it is desirable that this value be smaller.

しかるに、第1図に示されるように、金型温度を変数と
する最大樹脂圧力の前記式(5)。
However, as shown in FIG. 1, the formula (5) for the maximum resin pressure takes the mold temperature as a variable.

(6)に基づく関数Pmel =f1(T) 、 Ps
ol=f2(T)の曲線の形状は、使用する樹脂の物性
と、成形品の形状によってその傾向が様々に変るもので
あるため、前記各微分値dPIIlel /dT、 d
Psol /dTの限界値を絶対値として与えた評価基
準の作成は困難であるが、金型温度によりどのように最
大樹脂圧力が変化していくか、またメルト領域とソリッ
ド領域がどのように分けられるかの傾向を把握すること
が、より適正な成形条件を求めるのに重要である。
Function Pmel = f1(T), Ps based on (6)
The shape of the curve ol=f2(T) varies depending on the physical properties of the resin used and the shape of the molded product, so the above-mentioned differential values dPIIel /dT, d
Although it is difficult to create an evaluation standard that gives the limit value of Psol / dT as an absolute value, it is important to understand how the maximum resin pressure changes depending on the mold temperature and how the melt region and solid region are divided. It is important to understand the tendency of molding conditions in order to find more appropriate molding conditions.

従って、第1図に示すグラフを液晶、 CRT、プラズマ、ELなどのディスプレイ装置にグラ
フィック表示することが、適正条件の判定に有効である
。また、第1図に示すグラフをディスプレイ装置にグラ
フィック表示することにより、前述したメルト領域とソ
リッド領域の境界を示す金型温度T8や。
Therefore, graphically displaying the graph shown in FIG. 1 on a display device such as a liquid crystal, CRT, plasma, or EL is effective in determining appropriate conditions. Also, by graphically displaying the graph shown in FIG. 1 on a display device, the mold temperature T8 indicating the boundary between the melt region and the solid region described above can be determined.

d Pmel / d T、 d Psol /d T
の変化の傾向が把握できると共にこれら関数を数式化し
て求めておけば、前記dPmel/dT。
d Pmel / d T, d Psol / d T
If you can grasp the tendency of change in dPmel/dT and calculate these functions mathematically, you can obtain the above dPmel/dT.

dPsol/dTに限界値を与えて、対話式操作により
ディスプレイ装置の表示上で適正範囲を限定していくこ
とができる。
By giving a limit value to dPsol/dT, it is possible to limit the appropriate range on the display device through interactive operation.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らかなように、本発明によれば、
樹脂温度と金型温度につき溶融樹脂粘度を所定レベルに
保持し得ると共に、金型温度の変動に対し最大樹脂圧力
の安定性が満足できる適正な条件下に樹脂温度と金型温
度の範囲を容易に判定することができる。
As is clear from the embodiments described above, according to the present invention,
It is possible to maintain the molten resin viscosity at a predetermined level with respect to resin temperature and mold temperature, and to easily adjust the range of resin temperature and mold temperature under appropriate conditions that satisfy the stability of maximum resin pressure against fluctuations in mold temperature. can be determined.

従って、本発明によれば、成形品形状モデルに関する樹
脂の流動解析に際し、高品質の成形品を得るための成形
条件を簡単なグラフィック表示で容易に判定することが
できると共に、この判定結果に基づいて各種の適正な成
形条件の選択を行うことができ、溶融樹脂の金型成形プ
ログラムの作成に資する効果は極めて大きい。
Therefore, according to the present invention, when performing resin flow analysis on a molded product shape model, molding conditions for obtaining a high-quality molded product can be easily determined using a simple graphical display, and based on the determination results. Various appropriate molding conditions can be selected using the method, which has an extremely large effect in contributing to the creation of a mold molding program for molten resin.

なお、前述した実施例においては、溶融樹脂の金型成形
における流動解析の評価方法について説明したが、本発
明はこの実施例に限定されることなく、樹脂以外の溶融
材料の金型成形、例えばダイカストマシンへの応用も可
能であり、その他本発明の精神を逸脱しない範囲内にお
いて種々の設計変更をなし得ることは勿論である。
In addition, in the above-mentioned example, the evaluation method of flow analysis in mold molding of molten resin was explained, but the present invention is not limited to this example, and can be applied to mold molding of molten materials other than resin, e.g. It goes without saying that the present invention can also be applied to a die-casting machine, and that various other design changes can be made without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

IT1図は本発明に係るm融材料の金型成形における流
動解析の評価方法を実流するための樹脂材料温度をパラ
メータとする金型温度に対する最大樹脂圧力特性曲線図
、第2図は成形品形状モデルを3次元の微小要素に分割
した状態のグラフィック表示図、第3図は第2図に示す
形状モデルにおける充填パターンの等時間線図、第4図
は第2図に示す形状モデルにおける充填パターンの等圧
力線図、第5図は第2図に示す形状モデルにおける充填
パターンの等温度線図である。
Figure IT1 is a maximum resin pressure characteristic curve diagram with respect to mold temperature, with the resin material temperature as a parameter, for implementing the evaluation method of flow analysis in mold molding of m-molten materials according to the present invention, and Figure 2 is a curve diagram of the maximum resin pressure characteristic curve with respect to mold temperature. A graphical representation of the shape model divided into three-dimensional minute elements, Figure 3 is an isochron diagram of the filling pattern in the shape model shown in Figure 2, and Figure 4 shows the filling pattern in the shape model shown in Figure 2. Iso-pressure diagram of the pattern, FIG. 5 is an iso-temperature diagram of the filling pattern in the shape model shown in FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)成形品形状モデルを微小要素に分割し、有限要素
法、境界要素法、差分法、FAN法等を含む数値解析法
を使用して金型内の溶融材料の流動解析を行うシステム
において、 1または2以上の溶融材料湿度条件につい てそれぞれ複数の金型温度を与えて解析を行い、 得られた溶融材料圧力分布の演算結果によ り各溶融材料温度条件毎に各金型温度に対する各要素の
評価対象部における最大溶融材料圧力を求め、 隣接する2点の金型温度Tn、Tn+1とこれに対応す
る最大溶融材料圧力Pn、Pn+1のデータからそれぞ
れ偏差ΔTn(=Tn+1−Tn)およびΔPn(=P
n+1−Pn)と偏差の比ΔPn/ΔTnとを求めてこ
れを順次繰返し、 これらの偏差の比の増加勾配△Sn(= ΔPn+1/ΔTn+1−ΔPn/ΔTn)を順次求め
て、該増加勾配ΔSnの正負が逆転する点の金型温度T
_Bを算出し、 算出された金型温度T_Bを境界として金型温度を変数
とする最大溶融材料圧力の関数を2つの異なる関数Pm
el=f_1(T)、Psol=f_2(T)として表
わすことを特徴とする溶融材料の金型成形における流動
解析の評価方法。
(1) In a system that divides a molded product shape model into minute elements and analyzes the flow of molten material in a mold using numerical analysis methods including the finite element method, boundary element method, finite difference method, FAN method, etc. , Perform analysis by giving multiple mold temperatures for one or more molten material humidity conditions, and calculate each element for each mold temperature for each molten material temperature condition based on the calculation results of the molten material pressure distribution obtained. The maximum molten material pressure in the evaluation target part is determined, and the deviations ΔTn (=Tn+1-Tn) and ΔPn (= P
n+1-Pn) and the ratio of deviations ΔPn/ΔTn, and repeat this sequentially to find the increasing gradient ΔSn (= ΔPn+1/ΔTn+1-ΔPn/ΔTn) of the ratio of these deviations, and calculate the increasing gradient ΔSn. Mold temperature T at the point where the positive and negative are reversed
_B is calculated, and the function of the maximum molten material pressure with the calculated mold temperature T_B as a boundary and the mold temperature as a variable is divided into two different functions Pm.
An evaluation method for flow analysis in mold forming of a molten material, characterized in that it is expressed as el=f_1(T) and Psol=f_2(T).
(2)特許請求の範囲第1項記載の溶融材料の金型成形
における流動解析の評価方法において、前記2つの異な
る関数Pmel−f_1(T)、Psol=f_2(T
)をディスプレイ装置にグラフィック表示して所定の溶
融材料温度での適正な溶融材料圧力と金型温度の変動範
囲を評価判定してなる溶融材料の金型成形における流動
解析の評価方法。
(2) In the evaluation method of flow analysis in mold forming of molten material according to claim 1, the two different functions Pmel-f_1(T) and Psol=f_2(T
) is graphically displayed on a display device to evaluate and determine the appropriate molten material pressure and mold temperature variation range at a predetermined molten material temperature.
(3)特許請求の範囲第1項または第2項記載の溶融材
料の金型成形における流動解析の評価方法において、前
記金型温度を変数とした最大溶融材料圧力の2つの異な
る関数Pmel=f_1(T)、Psol=f_2(T
)のいずれか一方の微分値dPmel/dTまたはdP
sol/dTに限界値を与え、前記関数を評価して適正
な溶融材料圧力と金型温度の変動範囲を判定してなる溶
融材料の金型成形における流動解析の評価方法。
(3) In the evaluation method of flow analysis in mold forming of molten material according to claim 1 or 2, two different functions of maximum molten material pressure Pmel=f_1 with the mold temperature as a variable are provided. (T), Psol=f_2(T
) differential value dPmel/dT or dP
An evaluation method for flow analysis in mold molding of molten material, comprising giving a limit value to sol/dT and evaluating the function to determine an appropriate variation range of molten material pressure and mold temperature.
JP62254772A 1987-09-08 1987-10-12 Evaluating method for flow analysis in die forming of molten material Granted JPH0198967A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62254772A JPH0198967A (en) 1987-10-12 1987-10-12 Evaluating method for flow analysis in die forming of molten material
DE3830571A DE3830571A1 (en) 1987-09-08 1988-09-08 Method of calculation for flow analysis in injection moulding
KR1019880015438A KR970000927B1 (en) 1987-09-08 1988-11-23 Evaluation method of flow analysis on molding of a molten material
US07/595,770 US5097431A (en) 1987-09-08 1990-10-10 Evaluation method of flow analysis on molding of a molten material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254772A JPH0198967A (en) 1987-10-12 1987-10-12 Evaluating method for flow analysis in die forming of molten material

Publications (2)

Publication Number Publication Date
JPH0198967A true JPH0198967A (en) 1989-04-17
JPH0469853B2 JPH0469853B2 (en) 1992-11-09

Family

ID=17269671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254772A Granted JPH0198967A (en) 1987-09-08 1987-10-12 Evaluating method for flow analysis in die forming of molten material

Country Status (1)

Country Link
JP (1) JPH0198967A (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAE COMPUTER AIDEDENGINEERING FOR INJECYION MOLDING=1983 *
MOLDFLOW=1985 *

Also Published As

Publication number Publication date
JPH0469853B2 (en) 1992-11-09

Similar Documents

Publication Publication Date Title
KR970000927B1 (en) Evaluation method of flow analysis on molding of a molten material
Lord et al. Mold‐filling studies for the injection molding of thermoplastic materials. Part II: The transient flow of plastic materials in the cavities of injection‐molding dies
JP2004506515A (en) Heat flow simulation for casting / forming process
KR20110129387A (en) Simulation of ejection after mold filling
KR20070091144A (en) Injection molding simulation apparatus and method of injection molding simulation
CN106096215A (en) A kind of sense of reality fluid simulation method relating to conduction of heat and Dynamic Viscosity
CN109822849B (en) Molding system and setting method thereof
JPH0198967A (en) Evaluating method for flow analysis in die forming of molten material
Hua Experimental and numerical investigation of jetting phenomenon in injection molding
JP3618452B2 (en) Setting method of injection speed profile in injection molding machine
KR970000926B1 (en) Molten injection-molding method
JPH04305424A (en) Method for evaluating optimum injection molding condition utilizing flow analysis and injection molding apparatus
JPH0469851B2 (en)
JPH0469852B2 (en)
JP6639899B2 (en) Molded article design support method, molded article design support apparatus, computer software, storage medium
JPH10272663A (en) Optimizing method of molding condition of injection molding machine
JPH0469850B2 (en)
JPH0469849B2 (en)
JP3582930B2 (en) Manufacturing method for injection molded products
JPH0469856B2 (en)
JPH0469857B2 (en)
KR100964492B1 (en) Improving method for mold filling simulation
JPH04201429A (en) Controlling apparatus for injection molding
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine
JP4265268B2 (en) Solidification analysis method for castings

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees