JPH10272663A - Optimizing method of molding condition of injection molding machine - Google Patents

Optimizing method of molding condition of injection molding machine

Info

Publication number
JPH10272663A
JPH10272663A JP26693796A JP26693796A JPH10272663A JP H10272663 A JPH10272663 A JP H10272663A JP 26693796 A JP26693796 A JP 26693796A JP 26693796 A JP26693796 A JP 26693796A JP H10272663 A JPH10272663 A JP H10272663A
Authority
JP
Japan
Prior art keywords
molding
molding conditions
injection
conditions
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26693796A
Other languages
Japanese (ja)
Other versions
JP3412419B2 (en
Inventor
Masahiro Kami
昌弘 紙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP26693796A priority Critical patent/JP3412419B2/en
Publication of JPH10272663A publication Critical patent/JPH10272663A/en
Application granted granted Critical
Publication of JP3412419B2 publication Critical patent/JP3412419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/766Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7686Measuring, controlling or regulating the ejected articles, e.g. weight control

Abstract

PROBLEM TO BE SOLVED: To raise operability and productivity by setting promptly, simply and readily the most suitable molding condition in the actual molding period of time in consideration of environmental variable factors on the basis of confirmed article molding conditions obtained through experience and an analysis of resin flow. SOLUTION: Renewal molding conditions are made in terms of a combination of new storage molding variables having a more wider range through a correction of major molding variables in consideration of variation widths x, y. An operator visually performs the appearance equality inspection of molded articles formed by a renewal molding test, and if nonconforming items exist, the results are inputted in a nonconforming item inputting table called on the CRT display of a control device. In the case where nonconforming items exist on the nonconforming item inputting table, the renewal molding conditions are correction altered by the use of a correction program prepared in advance and a renewal molding test is carried out again. Iterating above-identified work, the renewal molding conditions are brought into a convergence of molding conditions having high possibility for molding conformed articles with respect to even real environmental variations, thus achieving an optimization of molding conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、射出成形機を使用
して溶融した樹脂材料を成形する際、所定の品質を安定
して得るための最適な成形条件を、効率的、かつ、精度
よく設定する射出成形機の成形条件最適化方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optimum molding condition for obtaining a predetermined quality stably when molding a molten resin material using an injection molding machine, efficiently and accurately. The present invention relates to a method for optimizing molding conditions of an injection molding machine to be set.

【0002】[0002]

【従来の技術】従来、溶融樹脂の射出成形においては、
横軸を射出スクリュの位置とし縦軸を射出スクリュの前
進速度とした射出プロファイルや、横軸を時間とし縦軸
を射出圧力とした保圧プロファイルを、あらかじめ過去
の運転実績に基づく経験により設定したうえ、この射出
プロファイルにしたがって高速で金型キャビティ内へ溶
融した樹脂材料を射出充填する充填工程と、保圧プロフ
ァイルにしたがって溶融樹脂の充填後に金型キャビティ
内の樹脂に圧力を加えて成形する保圧工程によって射出
制御され、多くの場合、充填工程は油圧回路の圧力調整
弁を高圧に設定し、射出開始からの経過時間または射出
スクリュの前進位置を基準に速度を複数段に変化させる
ように流量制御弁の開度を時間経過とともに、あるいは
射出スクリュのストローク位置に応じて変化させるよう
に設定し、該流量制御弁の調整により射出シリンダのピ
ストン、すなわち、射出スクリュの射出速度を制御し、
金型キャビティ内の樹脂が空気を巻き込まない程度に高
速で溶融樹脂を金型キャビティ内へ充填するものとし、
溶融樹脂が金型キャビティ内に充填された後は流量制御
弁を比較的小さい開度に固定し、圧力調整弁により油圧
を調整する保圧工程とし、この保圧工程は時間経過に応
じて金型キャビティ内に充填された溶融樹脂に所定の圧
力を加え得るように圧力調整弁の開度を変化させ、金型
キャビティ内で溶融樹脂が冷却されることにより樹脂が
収縮し、製品の形状や寸法がキャビティ形状の寸法に対
して誤差が生じることがないように防止するとともに製
品内部に大きな残留応力が生じないようにしている。
2. Description of the Related Art Conventionally, in injection molding of a molten resin,
An injection profile in which the horizontal axis is the position of the injection screw and the vertical axis is the forward speed of the injection screw, and a holding pressure profile in which the horizontal axis is time and the vertical axis is the injection pressure were set in advance based on experience based on past operation results. In addition, a filling step of injecting and filling the molten resin material into the mold cavity at a high speed according to the injection profile, and a filling step of applying a pressure to the resin in the mold cavity after filling the molten resin according to the holding pressure profile. The injection process is controlled by the pressure process, and in many cases, the filling process sets the pressure control valve of the hydraulic circuit to high pressure, and changes the speed to multiple stages based on the elapsed time from the start of injection or the advance position of the injection screw. The opening of the flow control valve is set to change over time or according to the stroke position of the injection screw. The piston of the injection cylinder by adjusting the valves, i.e., to control the injection speed of the injection screw,
The molten resin is filled into the mold cavity at a high speed so that the resin in the mold cavity does not entrain air.
After the molten resin is filled into the mold cavity, the flow control valve is fixed at a relatively small opening, and the pressure is adjusted by a pressure adjusting valve. The degree of opening of the pressure regulating valve is changed so that a predetermined pressure can be applied to the molten resin filled in the mold cavity, and the resin is contracted by cooling the molten resin in the mold cavity, thereby reducing the shape and shape of the product. The dimension is prevented from causing an error with respect to the dimension of the cavity shape, and a large residual stress is not generated inside the product.

【0003】図9は、溶融樹脂が射出成形機20のスク
リュヘッド前部22よりノズル部4を経由して金型10
a、10bで形成されるキャビティ8へ射出充填される
直前の状態を示しており、この後、射出工程に入り、射
出シリンダ16のヘッド側16aより作動油が射出シリ
ンダ16内へ入りスクリュ1を前進させて、ノズル部4
の溶融樹脂をキャビティ8内へ移送させる。キャビティ
8内に溶融樹脂が充満された後に保圧工程へ入り、樹脂
の冷却固化に伴う収縮分を補充されつつ、スクリュヘッ
ド前部22の樹脂に圧力が加えられる。このような射出
工程と保圧工程にそれぞれどのような樹脂流入速度パタ
ーンや圧力パターンで溶融樹脂を射出充填していくのか
ということに、金型内で成形される樹脂成形品の品質の
良否が依存しており、一般的には、前述したように、例
えば射出工程では、図10に示すように、スクリュ位置
とスクリュ前進速度との関係で設定し、保圧工程では、
図11に示すように、経過時間と保圧力(油圧力または
樹脂圧力)との関係で設定するようにしている。
FIG. 9 shows that a molten resin is supplied from a screw head front part 22 of an injection molding machine 20 via a nozzle part 4 to a mold 10.
a shows a state immediately before injection filling into the cavity 8 formed by the a and 10b. Thereafter, an injection step is started, and hydraulic oil enters the injection cylinder 16 from the head side 16a of the injection cylinder 16, and the screw 1 is removed. Move it forward, nozzle part 4
Is transferred into the cavity 8. After the cavity 8 is filled with the molten resin, the process enters a pressure-holding step, in which pressure is applied to the resin in the screw head front portion 22 while replenishing the shrinkage due to cooling and solidification of the resin. What kind of resin inflow velocity pattern and pressure pattern are used to inject and fill the molten resin in such an injection process and a pressure-holding process depends on the quality of the resin molded product molded in the mold. In general, as described above, for example, in the injection process, as shown in FIG. 10, the setting is made based on the relationship between the screw position and the screw advance speed, and in the pressure holding process,
As shown in FIG. 11, the setting is made based on the relationship between the elapsed time and the holding pressure (oil pressure or resin pressure).

【0004】そして、このような射出速度パターン(射
出プロファイルとも言う)や圧力パターン(保圧プロフ
ァイルとも言う)を決定するに当って、オペレータは良
品を再現性よく安定的に得ることのできる成形条件を把
握しようとして、熟練知識を駆使して種々の成形条件の
色々な組み合わせを実施してトライアル・アンド・エラ
ーにより望ましい結果を得ようとしてきた。また、最近
ではこうした試行錯誤法とともに、コンピュータ技術を
駆使した樹脂の金型内流動解析に関するシミュレーショ
ン法により、望ましい成形条件をある程度の精度で把握
するような試みも実施されつつある。本発明以前の特許
で同様な方法により最適成形条件を求める従来技術とし
ては、例えば、特公平5−13048号が挙げられる。
この特許の方法では、基準となる成形条件を設けずに、
多数の設定条件因子を設定し、それに対し多数の変化水
準を作成して成形テストを行うため成形テストの数は非
常に多くなり、成形品の品質判定も100点満点中85
点というふうに評価も複雑になっていた。また多くの成
形テスト結果から重回帰分析により品質が最高になる成
形条件を出すため、複雑な計算をしなくてはならず実用
には向いていなかった。
[0004] In determining such an injection speed pattern (also referred to as an injection profile) and a pressure pattern (also referred to as a holding pressure profile), an operator is required to obtain molding conditions under which a good product can be stably obtained with good reproducibility. In order to understand the problem, various combinations of various molding conditions have been implemented by making use of expert knowledge to obtain a desired result by trial and error. In addition to these trial and error methods, recently, attempts have been made to grasp desirable molding conditions with a certain degree of accuracy by a simulation method relating to analysis of resin flow in a mold utilizing computer technology. As a prior art for obtaining an optimum molding condition by a similar method in patents before the present invention, Japanese Patent Publication No. Hei 5-13048 can be mentioned.
In the method of this patent, without setting the molding conditions as a reference,
A large number of setting condition factors are set, and a large number of change levels are created to perform a molding test. Therefore, the number of molding tests is extremely large, and the quality judgment of a molded product is 85 out of 100.
Evaluation was complicated as a point. Also, in order to determine the molding conditions that maximize the quality by multiple regression analysis from the results of many molding tests, complicated calculations had to be performed, which was not suitable for practical use.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
ほうほうで決定された良品が射てる成形条件でも、長時
間の生産工程中では環境変化等により成形状態が変わる
ため、度々不良品が成形される。そのため、単に良品が
射てる良品成形条件に止まらず、環境変化に対しても不
良品が出ない最適成形条件を求める必要があった。本発
明以前の特許で同様な方法により最適成形条件を求める
従来技術としては、たとえば、特公平5−13048号
が挙げられる。この方法では、基準となる成形条件を設
けずに、多数の設定条件因子を設定し、それに対し多数
の変化水準を作成して成形テストを行なうため成形テス
トの数は非常に多くなり、成形品の品質判定も100点
満点中85点というふうに評価も複雑になっていた。ま
た、多くの成形テスト結果から重回帰分析により品質が
最高になる成形条件を出すため、複雑な計算をしなくて
はならず実用に向いていなかった。したがって、実操業
中の環境変化に対しても不良項目を出さない最適成形条
件を迅速、かつ、簡便容易に設定できる手順の確立が待
望されていた。本発明では、このような課題を解決し、
実操業において十分満足できる成形品品質を有する成形
品を安泰して得ることの出来る最適成形条件の設定方法
を提供することを目的としている。
However, even under the molding conditions determined by the above method that can be applied to a good product, the molding condition changes due to environmental changes and the like during a long production process, so that defective products are frequently formed. You. Therefore, it is necessary to find not only the good molding conditions under which good products can be shot but also the optimum molding conditions under which no defective products are produced even with environmental changes. As a prior art for obtaining an optimum molding condition by a similar method in a patent before the present invention, Japanese Patent Publication No. Hei 5-13048 can be cited, for example. In this method, a large number of setting condition factors are set without setting standard molding conditions, and a large number of change levels are created to perform a molding test. The evaluation of the quality was also complicated, such as 85 out of 100 points. In addition, multiple regression analysis was used to determine the molding conditions with the highest quality from the results of many molding tests, so that complicated calculations had to be performed, which was not suitable for practical use. Therefore, there has been a long-awaited need to establish a procedure that can quickly, easily, and easily set an optimum molding condition that does not cause a defective item even in an environmental change during actual operation. In the present invention, such a problem is solved,
It is an object of the present invention to provide a method of setting optimum molding conditions that can obtain a molded product having sufficiently satisfactory molded product quality in a practical operation.

【0006】[0006]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明においては、第1の発明では、溶融した樹
脂材料を略密閉状の金型キャビティ内に流動圧入して成
形品を繰り返し生産する射出成形機の成形条件最適化方
法であって、あらかじめ試し打ち成形テストを実施し
て、トライアンドエラーにより成形条件に変更を加えつ
つ射出プロファイルおよび保圧プロファイルからなる良
品成形条件を設定し、この良品成形条件に基づいて再度
試し打ち成形テストを実施するとともに主要成形変数の
測定・監視を行なって、成形中における成形状態の環境
変化に由来する該主要成形変数の変動幅を求め、該変動
幅を考慮して実験計画法を通じて得られた主要成形変数
のあらたな組合せに基づく更新成形条件の複数の更新成
形テストを実施し、該成形テストの結果得られた成形品
の各々についてオペレータの目視による外観品質判定を
行ない、不良項目がある場合にはあらかじめ用意した修
正プログラムを使用して前記更新成形条件を修正して更
新成形テストを繰り返し、不良項目が皆無の場合には、
最終の更新成形条件を最適成形条件として生産工程にお
ける最適成形条件とした。そして、第2の発明では、第
1の発明において、良品成形条件の設定は、あらかじめ
金型キャビティ形状を数学的に定義した金型モデルを作
成し、該金型モデルに溶融樹脂を流した場合の樹脂流動
解析を行なって、射出プロファイルおよび保圧プロファ
イルからなる良品成形条件を算出するようにした。ま
た、第3の発明では、修正プログラムは、オペレータの
目視による外観品質判定項目の各々に、あらかじめ設定
した重み定数を乗算して得られた数値に応じた成形条件
の変更機能を付加したものとした。
In order to solve the above-mentioned problems, according to the first invention, in the first invention, a molten resin material is flow-pressed into a substantially closed mold cavity to form a molded product. This is a method for optimizing the molding conditions of an injection molding machine that is repeatedly manufactured. A trial punching test is performed in advance, and the molding conditions consisting of the injection profile and the holding pressure profile are set while changing the molding conditions by trial and error. Then, based on the non-defective molding conditions, a test punching molding test is performed again and the main molding variables are measured and monitored, and the fluctuation range of the main molding variables resulting from the environmental change of the molding state during molding is obtained. Performing a plurality of renewal molding tests of renewal molding conditions based on a new combination of main molding variables obtained through an experimental design in consideration of the fluctuation range, For each molded product obtained as a result of the molding test, the appearance quality is visually judged by the operator, and if there is a defective item, the update molding condition is corrected by using a correction program prepared in advance to perform the update molding test. Again, if there are no defective items,
The final renewal molding condition was set as the optimal molding condition and the optimal molding condition in the production process. In the second invention, in the first invention, the non-defective molding conditions are set by preparing a mold model in which a mold cavity shape is mathematically defined in advance and flowing molten resin into the mold model. The resin flow analysis was performed to calculate the non-defective molding conditions including the injection profile and the dwelling profile. Further, in the third invention, the correction program has a function of changing a molding condition according to a numerical value obtained by multiplying each of the appearance quality judgment items visually observed by the operator by a weight constant set in advance. did.

【0007】[0007]

【発明の実施の態様】本発明においては、第1の発明で
は、あらかじめ試し打ち成形テストを実施して、トライ
アンドエラーにより成形条件に変更を加えつつ射出プロ
ファイルおよび保圧プロファイルからなる良品成形条件
を設定し、この良品成形条件に基づいて再度試し打ち成
形テストを実施するとともに主要成形変数の測定・監視
を行なって、成形中における成形状態の環境変化に由来
する該主要成形変数の変動幅を求め、該変動幅を考慮し
て実験計画法を通じて得られた主要成形変数のあらたな
組合せに基づく更新成形条件の複数の更新成形テストを
実施し、該成形テストの結果得られた成形品の各々につ
いてオペレータの目視による外観品質判定を行ない、不
良項目がある場合にはあらかじめ用意した修正プログラ
ムを使用して前記更新成形条件を修正して更新成形テス
トを繰り返し、不良項目が皆無の場合には、最終の更新
成形条件を最適成形条件として生産工程における最適成
形条件としたため、あらかじめ試し打ちテストのトライ
アンドエラーによって得た良品成形条件を、再度行なう
試し打ち成形テストの結果得られた成形状態の環境変化
に由来する変動幅を考慮したあらたな主要成形変数の組
合せの更新成形条件からなる更新成形テストを実施し
て、成形品の外観品質判定の不良項目がなくなるまで更
新成形条件を修正するため、環境変化にも十分に耐え、
かつ、外観不良の無い優れた成形品を成形する最適成形
条件が得られ、実操業で安定確実に高品質の成形品を生
産することが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, according to the first invention, a trial molding test is carried out in advance, and a good molding condition consisting of an injection profile and a holding pressure profile is changed while changing the molding condition by trial and error. Is set, and a test punching molding test is performed again based on the non-defective molding conditions, and measurement and monitoring of the main molding variables are performed, and the fluctuation range of the main molding variables resulting from the environmental change of the molding state during molding is determined. A plurality of renewal molding tests of renewal molding conditions based on a new combination of main molding variables obtained through an experimental design method in consideration of the variation range, and each of the molded products obtained as a result of the molding test is performed. The visual quality of the operator is visually evaluated for any item, and if there is a defective item, the correction is made using a correction program prepared in advance. The new molding conditions were modified and the renewal molding test was repeated.If there were no defective items, the final renewal molding conditions were set as the optimal molding conditions and the optimal molding conditions in the production process. A renewed molding test consisting of a new combination of main molding variables was performed, taking into account the fluctuation range resulting from environmental changes in the molding state obtained as a result of the trial punching molding test, which was performed again. In order to correct the updated molding conditions until there are no defective items in the appearance quality judgment of the molded product,
In addition, optimal molding conditions for molding an excellent molded product having no defective appearance can be obtained, and a high-quality molded product can be stably and reliably produced in actual operation.

【0008】また、第2の発明では、初期の良品成形条
件に設定に、オペレータの熟練度や経験に頼らず、あら
かじめ金型キャビティ形状を数学的に定義した金型モデ
ルを作成し、該金型モデルに溶融樹脂を流した場合の樹
脂流動解析を行なうようにしたため、経験に乏しいオペ
レータでも簡便容易に良品成形条件を設定できる。さら
に、第3の発明では、修正プログラムは、オペレータの
目視による外観品質判定項目の各々に、あらかじめ設定
した重み定数を乗算して得られた数値に応じた成形条件
の変更機能を付加したものとしたので、外観品質判定で
不良項目が出た場合に、自動的に成形条件を修正してよ
り改善された最適成形条件にすることが出来るため、好
都合である。
Further, in the second invention, a mold model in which the mold cavity shape is mathematically defined in advance is created without depending on the skill and experience of an operator to set initial molding conditions for a good product. Since the resin flow analysis when the molten resin is flowed into the mold model is performed, even the inexperienced operator can easily and easily set the good molding conditions. Further, in the third invention, the correction program is configured to add a function of changing molding conditions according to a numerical value obtained by multiplying each of the appearance quality judgment items visually observed by the operator by a weight constant set in advance. Therefore, when a defective item is found in the appearance quality determination, the molding conditions can be automatically corrected to make the improved optimal molding conditions, which is convenient.

【0009】[0009]

【実施例】以下図面に基づいて本発明の実施例について
詳細に説明する。図1〜図8は本発明の実施例に係り、
図1は射出成形機の全体構成図、図2は最適成形条件の
設定手順を示すフローチャート、図3は良品成形条件の
説明図であり、図3(a)は充填工程の射出プロファイ
ルを示し、図3(b)は保圧工程の保圧プロファイルを
示す。図4は試し打ちテストにおける環境変化に由来す
る測定結果を示す射出プロファイルおよび保圧プロファ
イルのグラフ、図5は変動幅を考慮したあらたな組合せ
に基づく更新成形テストの説明図で、図5(a)は更新
テストの各々の変動幅の修正要素表を示し、図5(b)
は各々の更新テストの射出、保圧プロファイルを示す。
図6は外観品質判定結果を入力する不良項目入力表の1
例を示すパソコンCRT画面上の表示図、図7は不良項
目の重みマトリックスの1例を表示したパソコンCRT
画面上の表示図、図8は更新成形条件を修正して最適成
形条件を決定する手順を示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 8 relate to an embodiment of the present invention,
1 is an overall configuration diagram of an injection molding machine, FIG. 2 is a flowchart showing a procedure for setting optimum molding conditions, FIG. 3 is an explanatory diagram of non-defective molding conditions, and FIG. FIG. 3B shows a pressure holding profile in the pressure holding step. FIG. 4 is a graph of an injection profile and a dwelling profile showing measurement results derived from environmental changes in the test beating test. FIG. 5 is an explanatory diagram of an update molding test based on a new combination in consideration of a fluctuation range. ) Shows a correction factor table for each variation range of the update test, and FIG.
Shows injection and dwelling profiles of each update test.
FIG. 6 is a defective item input table 1 for inputting the appearance quality judgment result.
FIG. 7 is a display diagram on a personal computer CRT screen showing an example. FIG. 7 is a personal computer CRT displaying one example of a weight matrix of defective items.
FIG. 8 is a view showing a display on the screen, and FIG. 8 is a diagram showing a procedure for determining the optimum molding conditions by correcting the updated molding conditions.

【0010】図1に示すように、射出成形機100の射
出装置20は、スクリュ1が回転自在でかつ前後進自在
に加熱シリンダ3内に挿入されており、加熱シリンダ3
の先端にはノズル4が取付けられている。また、後部に
はスクリュ1を前後進させるピストン14を挿入した射
出シリンダ16が取付けられており、その後方にスクリ
ュ1に回転を与えるスクリュ回転用のスクリュ回転モー
タ5が設けられている。そしてこのスクリュ回転モータ
5へ駆動源として適宜な量の圧油を供給するスクリュモ
ータ用作動用バルブ11cが設けられている。
As shown in FIG. 1, in an injection device 20 of an injection molding machine 100, a screw 1 is inserted into a heating cylinder 3 so as to be rotatable and forward and backward.
A nozzle 4 is attached to the tip of the nozzle. In addition, an injection cylinder 16 in which a piston 14 for moving the screw 1 forward and backward is inserted is mounted at a rear portion, and a screw rotation motor 5 for screw rotation for rotating the screw 1 is provided behind the injection cylinder 16. A screw motor operating valve 11c for supplying an appropriate amount of pressure oil as a drive source to the screw rotation motor 5 is provided.

【0011】射出シリンダ16の油圧室はヘッド側油圧
室16aとロッド側油圧室16bから構成されており、
この油圧室には図示省略した油圧ポンプから作動油が供
給され油圧作動バルブ11で制御される。この油圧作動
バルブ11は、ヘッド側油圧室16aに通じるヘッド側
油圧作動バルブ11aとロッド側油圧室16bに通じる
ロッド側油圧作動バルブ11bから構成されている。ま
た、射出工程中の射出圧力を測定するために射出シリン
ダ16のヘッド側油圧室16aはヘッド側油圧センサ1
3が装着されている。
The hydraulic chamber of the injection cylinder 16 comprises a head-side hydraulic chamber 16a and a rod-side hydraulic chamber 16b.
The hydraulic chamber is supplied with hydraulic oil from a hydraulic pump (not shown) and is controlled by a hydraulic operating valve 11. The hydraulically operated valve 11 includes a head side hydraulically operated valve 11a communicating with the head side hydraulic chamber 16a and a rod side hydraulically operating valve 11b communicating with the rod side hydraulic chamber 16b. The head-side hydraulic chamber 16a of the injection cylinder 16 is used to measure the injection pressure during the injection process.
3 is attached.

【0012】また、符号8はスクリュ1の前後進距離を
測定するスクリュ位置センサであり、速度も計測でき
る。スクリュ1の先端にはチェックシート1aを置いて
スクリュヘッド18が螺着されており、スクリュヘッド
18は先端に向かった略円錐形状で同円錐形状の後側
(図中右側)は段状になって小径になり、この小径部1
8aには軸方向摺動自在なチェックリング2が嵌挿され
ている。
Reference numeral 8 denotes a screw position sensor for measuring the forward / backward traveling distance of the screw 1, which can also measure the speed. A screw head 18 is screwed onto the tip of the screw 1 with a check sheet 1a placed thereon. The screw head 18 has a substantially conical shape toward the tip, and the rear side of the conical shape (the right side in the figure) is stepped. The small diameter part 1
A check ring 2 slidable in the axial direction is fitted into 8a.

【0013】ノズル4内の先端近傍には、射出工程中に
固定金型10aと可動金型10bとで構成される金型1
0内の金型キャビティ8内に充填される溶融樹脂の樹脂
圧力を測定するノズル圧力センサ6aとノズル温度セン
サ6cが配設されている。また、金型キャビティ8とノ
ズル4とを結ぶランナ部7には、金型10内の樹脂圧力
を測定するための金型内圧力センサ6bと金型温度を測
定する金型温度センサ6dが取付けてある。
In the vicinity of the tip inside the nozzle 4, a mold 1 composed of a fixed mold 10a and a movable mold 10b during an injection step.
A nozzle pressure sensor 6a and a nozzle temperature sensor 6c for measuring the resin pressure of the molten resin filled in the mold cavity 8 inside the nozzle cavity 8 are provided. A mold pressure sensor 6b for measuring the resin pressure inside the mold 10 and a mold temperature sensor 6d for measuring the mold temperature are attached to the runner 7 connecting the mold cavity 8 and the nozzle 4. It is.

【0014】この射出装置20にはノズル4の前方に配
設されたノズル圧力センサ6aによる樹脂圧力の測定
値、金型内圧力センサ6bによる樹脂圧力の測定値、射
出シリンダヘッド側油圧センサ13による油圧の測定
値、およびスクリュモータ駆動用油圧センサ15からの
油圧力の測定値、あるいは他のセンサからの測定値を受
信してここで目標値と比較することにより様々な制御指
令を出す射出成形機の制御装置30が設けられている。
In the injection device 20, a measured value of the resin pressure by the nozzle pressure sensor 6a disposed in front of the nozzle 4, a measured value of the resin pressure by the in-mold pressure sensor 6b, Injection molding that receives various measured values of oil pressure and oil pressure from the screw motor driving oil pressure sensor 15 or measured values from other sensors and compares them with target values to issue various control commands. A machine control device 30 is provided.

【0015】なお、本発明の制御対象になる圧力とは、
射出工程におけるノズル4の樹脂圧力、金型キャビティ
8内の樹脂圧力および射出シリンダ16のヘッド側油圧
室16aの油圧のうちどれかを意味する。1回の射出工
程内において複数の圧力を同時に制御するのは不可能で
あると考えられるので、ノズル圧力センサ6a、金型内
圧力センサ6b、およびヘッド側油圧センサ13の3つ
のうち1つだけ装着しておけば良いことになる。なお、
符号12はホッパ、12aは樹脂ペレット、22はスク
リュヘッド前部を示す。
The pressure to be controlled in the present invention is
It means any one of the resin pressure of the nozzle 4, the resin pressure in the mold cavity 8, and the oil pressure of the head side hydraulic chamber 16 a of the injection cylinder 16 in the injection process. Since it is considered impossible to simultaneously control a plurality of pressures in one injection process, only one of the three nozzle pressure sensors 6a, the in-mold pressure sensor 6b, and the head-side oil pressure sensor 13 is used. It will be good if you attach it. In addition,
Reference numeral 12 denotes a hopper, 12a denotes a resin pellet, and 22 denotes a front part of a screw head.

【0016】このように構成された射出成形機100を
用いた本発明の射出成形機の成形条件最適化方法の実施
例について、図2のフローチャートに基づいて説明す
る。図2は、最適成形条件の設定手順を示すフローチャ
ートであり、実操業運転に先立ってまず良品が成形でき
る良品成形条件の設定を行なう。この良品成形条件の設
定は、オペレータが過去の運転実績や経験を頼りに試し
打ちテストを実施しつつ成形結果である成形品を見なが
ら少しずつ修正を加える、いわゆるトライアンドエラー
法により行なう。一方、第2の発明では、このトライア
ンドエラー法によらず、CAEシミュレーション手法を
使用して解析的に良品成形条件の設定を行なう。この方
法は、金型キャビティ形状を数学的に定義した金型モデ
ルを作成し、CAE技術を応用した金型内樹脂流れの流
動解析シミュレーション手法を駆使して解析上の最適成
形条件を算出する。この成形条件は、射出充填工程の射
出プロファイルと保圧工程の保圧プロファイルとから構
成される。図3は、こうして設定された良品成形条件の
射出プロファイル(a)と保圧プロファイル(b)の1
例を示したものである。
An embodiment of the method for optimizing the molding conditions of the injection molding machine of the present invention using the injection molding machine 100 configured as above will be described with reference to the flowchart of FIG. FIG. 2 is a flowchart showing the procedure for setting the optimum molding conditions. Prior to the actual operation, first, the non-defective molding conditions for molding a non-defective product are set. The non-defective molding conditions are set by a so-called try-and-error method, in which the operator performs a trial driving test based on past operation results and experience and makes small corrections while observing the molded product as a molding result. On the other hand, in the second invention, the non-defective molding conditions are set analytically using the CAE simulation method, not based on the try and error method. In this method, a mold model in which a mold cavity shape is mathematically defined is created, and an optimal molding condition in analysis is calculated by making full use of a flow analysis simulation method of resin flow in the mold by applying CAE technology. The molding conditions include an injection profile in the injection filling step and a pressure holding profile in the pressure holding step. FIG. 3 shows one of the injection profile (a) and the dwelling profile (b) of the non-defective molding conditions thus set.
This is an example.

【0017】第2の発明で使用する樹脂流動解析プログ
ラムは、市販されている金型内流動解析プログラム「M
OLD・FLOW プログラム」を使用できる。
The resin flow analysis program used in the second invention is a commercially available mold flow analysis program "M
OLD / FLOW program "can be used.

【0018】次に、このようにして設定された良品成形
条件で、再度、数回または十数回の試し打ちテストを実
施し、成形プロセスにおける環境変化変動幅の測定を行
なう。成形プロセスにおける環境変化要因として考えら
れるものは、たとえば、成形機の周辺温度や湿度、樹脂
温度、樹脂の粘度、樹脂の重合度など樹脂の種類、原料
樹脂におけるリサイクル材の混入率、リサイクル材の種
類(廃材か運転時の余肉材か)、あるいは制御装置がう
ける電気的(電圧変化、電波障害等)、物理的変化(温
度変化、湿度変化等)に起因する外乱(応答送れ、過渡
現象等)による射出速度の変化、保圧圧力の変化等が挙
げられる。
Next, under the non-defective molding conditions set in this way, several or more than ten test hitting tests are performed again to measure the fluctuation width of the environmental change in the molding process. Factors that may be considered as environmental change factors in the molding process include, for example, ambient temperature and humidity of the molding machine, resin temperature, viscosity of the resin, resin type such as the degree of polymerization of the resin, the mixing ratio of the recycled material in the raw material resin, and the ratio of the recycled material. Disturbance (response sending, transient phenomenon) caused by the type (waste material or surplus material during operation), or electrical (voltage change, radio interference, etc.) or physical change (temperature change, humidity change, etc.) received by the control device Etc.), a change in injection speed, a change in holding pressure, and the like.

【0019】図4は、図3の良品成形条件(射出プロフ
ァイルおよび保圧プロファイル)に基づいて試し打ちテ
ストを実施し、環境変化に寄る最大変動幅の測定結果を
示したグラフであり、充填工程、保圧工程においてそれ
ぞれ最大変動幅xと最大変動幅yを求めることができ
る。すなわち、射出速度vについては、最大変動幅x
は、最大変動値a1 と初期設定値a0 との差異であり、
5mm/sとなり、保圧工程の圧力Pについては、最大
変動幅yは、最大変動値b1 と初期設定値b0 との差異
であり、3MPa(メガパスカル)となった例が示され
ている。この試し打ちは複数回行ない、多くのサンプル
値から変動幅を求めてもよい。
FIG. 4 is a graph showing a test result of a test hitting test based on the non-defective molding conditions (injection profile and holding pressure profile) shown in FIG. , The maximum fluctuation width x and the maximum fluctuation width y can be obtained in the pressure holding step. That is, for the injection speed v, the maximum fluctuation width x
Is the difference between the maximum fluctuation value a 1 and the initial setting value a 0 ,
5 mm / s, and for the pressure P in the pressure holding step, the maximum fluctuation width y is the difference between the maximum fluctuation value b 1 and the initial set value b 0, and shows an example in which the pressure P is 3 MPa (megapascal). I have. The test hitting may be performed a plurality of times, and the fluctuation range may be obtained from many sample values.

【0020】次に、これらの変動幅x、yを考慮して公
知の実験計画法の手法により、主要な成形変数(本実施
例の場合には、射出速度vと保圧圧力P)を修正して、
もっと広範な広がりのある、あらたな収容成形変数の組
合せに基づく更新成形条件を作成する。図5は、最大変
動幅x、yを広がりよく配列した組合せ表(a)と、こ
の組合せ表に基づいて作成された更新成形条件の射出プ
ロファイルや保圧プロファイル(b)を示している。そ
して、この更新成形条件に基づく複数(図5の場合は、
4ケース)の更新成形テストを実施し、各々の成形品を
オペレータが外観を観察して目視による外観品質判定を
行ない、不良項目の有無を確認する。
Next, the main molding variables (in the case of the present embodiment, the injection speed v and the holding pressure P) are corrected by a known experimental design method in consideration of the fluctuation ranges x and y. do it,
An updated molding condition based on a new combination of accommodation molding variables with a wider spread is created. FIG. 5 shows a combination table (a) in which the maximum fluctuation widths x and y are arranged in a spreadable manner, and an injection profile and a pressure-holding profile (b) of updated molding conditions created based on this combination table. Then, based on the updated molding conditions, a plurality (in the case of FIG. 5,
An update molding test (4 cases) is performed, and the operator observes the appearance of each molded product, visually judges the appearance quality, and confirms the presence or absence of defective items.

【0021】このようにして、更新成形テストで成形さ
れた成形品の外観品質検査を目視によりオペレータが行
ない、不良項目があれば、たとえば、図6に示すよう
に、制御装置30のCRT画面上に呼び出した不良項目
入力表にその結果を入力する。この不良項目入力表に不
良項目がある場合には、あらかじめ事前に用意された修
正プログラムを使用して、更新成形条件を修正変更した
うえ再度更新成形テストを実行する。以上のような作業
を繰り返して、更新成形条件を現実の環境変化に対して
も良品を成形する可能性がより高い成形条件に収束さ
せ、成形条件の最適化を図る。
In this way, the operator visually inspects the appearance quality of the molded article formed by the update molding test, and if there is a defective item, for example, as shown in FIG. Enter the result in the defective item input table called in the above. If there is a defective item in the defective item input table, the update molding condition is corrected and changed using a correction program prepared in advance, and the update molding test is executed again. By repeating the above-described operations, the renewed molding conditions are made to converge to the molding conditions that are more likely to mold a non-defective product with respect to actual environmental changes, and the molding conditions are optimized.

【0022】上記の修正プログラムでは、たとえば、次
に説明するような方法手順により、更新成形条件の修正
を行なうことができる。図8は、その修正手順の1実施
例を示したもので、図5(b)の4回の更新成形テスト
を実施した結果より最適成形条件を決定する計算方法を
表す。まず、(αバリ)/(α(fill vel))
は、射出速度の変化がバリの発生に対してどの程度影響
を及ぼしているかを数値化する式(数学上の偏微分)
で、q1 、q2 、q3 、q4 は図6における表から決定
され、不良の印が付いている場合には1、付いていない
場合には0となる。この場合、影響度は1/2となっ
た。以下同様に、バリと保圧圧力の影響度やヒケと射出
速度、ヒケと保圧圧力の影響度を求める。(上記のα記
号は、数学上の逆ローの意味で使用した)。次に、これ
らの値により修正係数c1 、c2 を求める際、図7に示
す不良項目の重みマトリックスの数値を利用する。この
マトリックスの数値はあらかじ決めておくもので、不良
と成形変数(充填、保圧)の関係を表し、射出(充填)
はバリに対して3/(3+1)=3/4、ヒケに対して
1/(3+1)=1/4の重みをもっている。先に算出
した影響度と掛け合わせた数値を不良項目毎に足し合わ
すと、図8に示すように、c1 =3/8、c2 =−1/
4が算出される。次に、この修正係数c1 、c2 に、そ
れぞれ図4で求めた最大変動幅5mm/s、3MPaを
掛けると、最終的な最適成形条件を決定するための、充
填工程、保圧工程、それぞれにおける成形条件修正幅D
1 、D2 が求められる。その値は、図8の実施例では、
それぞれ、−1.9mm/s、+0.75MPaとなる
から、この数値より、最適成形条件の射出プロファイル
と保圧プロファイルを描くと、図8の最下部に示したグ
ラフとなる。図8のこのグラフでは、射出速度vは当初
の100mm/sや50mm/sであったものが、9
8.1mm/sや48.1mm/sに修正され、保圧圧
力Pは、当初の50MPaが50.75MPaに修正さ
れたことになる。これが、環境変化要因も考慮され、か
つ、成形品外観品質判定にもパスした、最終の最適成形
条件となる。図8の修正手順は、第3の発明の実施例に
係るものである。
In the above-mentioned correction program, for example, the update molding conditions can be corrected by the following method procedure. FIG. 8 shows one embodiment of the correction procedure, and shows a calculation method for determining the optimum molding conditions based on the results of the four update molding tests shown in FIG. 5B. First, (α burr) / (α (fill vel))
Is a mathematical expression (mathematical partial differential) that shows how the change in injection speed affects the burr generation
Here, q 1 , q 2 , q 3 , and q 4 are determined from the table in FIG. 6, and are 1 when a defect mark is attached and 0 when not. In this case, the degree of influence was halved. In the same manner, the influence of the burr and the holding pressure, the sink and the injection speed, and the influence of the sink and the holding pressure are obtained. (The α symbol above was used in the mathematical inverse row sense). Next, when the correction coefficients c 1 and c 2 are obtained from these values, the values of the weight matrix of the defective items shown in FIG. 7 are used. The values in this matrix are determined in advance, and represent the relationship between defects and molding variables (filling, holding pressure), injection (filling)
Has a weight of 3 / (3 + 1) = 3/4 for burrs and 1 / (3 + 1) = 1/4 for sink marks. When the numerical value multiplied by the influence degree calculated above is added for each defective item, as shown in FIG. 8, c 1 = 3/8 and c 2 = −1 / c.
4 is calculated. Next, when the correction coefficients c 1 and c 2 are respectively multiplied by the maximum fluctuation width of 5 mm / s and 3 MPa obtained in FIG. 4, a filling step, a pressure-holding step, Molding condition correction width D in each case
1, D 2 is required. The value is, in the embodiment of FIG.
Since they are -1.9 mm / s and +0.75 MPa, respectively, drawing the injection profile and the holding pressure profile under the optimum molding conditions from these numerical values results in the graph shown at the bottom of FIG. In this graph of FIG. 8, the injection speed v was initially 100 mm / s or 50 mm / s,
It is corrected to 8.1 mm / s or 48.1 mm / s, and the holding pressure P is corrected from 50 MPa at the beginning to 50.75 MPa. This is the final optimum molding condition that takes into account environmental change factors and also passed the molded article appearance quality judgment. The modification procedure in FIG. 8 relates to the embodiment of the third invention.

【0023】なお、本発明は射出成形機に応用したもの
であるが、金属材料を成形加工するダイカストマシンや
あるいはスクイズキャストマシンに適用してもよいこと
は勿論である。
Although the present invention is applied to an injection molding machine, it goes without saying that the present invention may be applied to a die casting machine or a squeeze cast machine for forming a metal material.

【0024】以上述べたように、本発明においては、あ
らかじめ設定された良品成形条件に基づいて試し打ちテ
ストを行ない、環境変化に由来する変動幅を測定して成
形条件に変更を加え、更新成形テストを実施して成形品
の外観品質判定を行なって、合格した成形条件を最適成
形条件と決定して、実操業を行なうようにしたため、環
境変化要因をも折り込んだ良品を打てる成形条件が迅速
に設定できる。また、この設定作業手順も、最初の良品
成形条件の設定を除いて、ほぼ完全に自動化されたもの
であり、実施が簡便容易である。
As described above, in the present invention, a test hitting test is performed based on preset molding conditions for non-defective products, a fluctuation range due to an environmental change is measured, and the molding conditions are changed. Tests were performed to determine the appearance quality of molded products, and the accepted molding conditions were determined to be the optimal molding conditions, and actual operation was performed. Can be set to Also, this setting operation procedure is almost completely automated except for the setting of the initial non-defective molding conditions, and is easy and easy to implement.

【0025】[0025]

【発明の効果】以上説明したように、本発明の射出成形
機の成形条件最適化方法によれば、経験や樹脂流動解析
で得られた良品成形条件をもとに、環境変化要因を考慮
した実成形時における最適成形条件を、迅速かつ簡便容
易に設定できるため、運転操作性や生産効率、製品歩留
りが向上する。
As described above, according to the method for optimizing molding conditions of an injection molding machine of the present invention, factors for environmental change are considered based on experience and good molding conditions obtained by resin flow analysis. Since the optimum molding conditions at the time of actual molding can be set quickly, simply, and easily, driving operability, production efficiency, and product yield are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る射出成形機の全体構成図
である。
FIG. 1 is an overall configuration diagram of an injection molding machine according to an embodiment of the present invention.

【図2】本発明の実施例に係る最適成形条件の設定手順
を示すフローチャートである。
FIG. 2 is a flowchart showing a procedure for setting optimum molding conditions according to the embodiment of the present invention.

【図3】本発明の実施例に係る良品成形条件の説明図で
ある。
FIG. 3 is an explanatory diagram of non-defective molding conditions according to an example of the present invention.

【図4】本発明の実施例に係る試し打ちテストにおける
環境変化に由来する測定結果を示す射出プロファイルお
よび保圧プロファイルのグラフである。
FIG. 4 is a graph of an injection profile and a holding pressure profile showing measurement results derived from an environmental change in a test shot test according to an example of the present invention.

【図5】本発明の実施例に係る変動幅を考慮したあらた
な組合せに基づく更新成形テストの説明図である。
FIG. 5 is an explanatory diagram of an update molding test based on a new combination in consideration of a fluctuation range according to the embodiment of the present invention.

【図6】本発明の実施例に係る外観品質判定結果を入力
する不良項目入力表の1例を示すパソコンCRT画面上
の表示図である。
FIG. 6 is a display diagram on a personal computer CRT screen showing an example of a defect item input table for inputting appearance quality determination results according to the embodiment of the present invention.

【図7】本発明の実施例に係る不良項目の重みマトリッ
クスの1例を表示したパソコンCRT画面上の表示図で
ある。
FIG. 7 is a display diagram on a personal computer CRT screen displaying an example of a failure item weight matrix according to the embodiment of the present invention.

【図8】本発明の実施例に係る更新成形条件を修正して
最適成形条件を決定する手順を示す説明図である。
FIG. 8 is an explanatory diagram showing a procedure for correcting an update molding condition and determining an optimum molding condition according to the embodiment of the present invention.

【図9】従来の射出成形機の全体構成図である。FIG. 9 is an overall configuration diagram of a conventional injection molding machine.

【図10】従来の射出工程の成形条件の実施例である。FIG. 10 is an example of molding conditions in a conventional injection process.

【図11】従来の保圧工程の成形条件の実施例である。FIG. 11 is an example of molding conditions in a conventional pressure-holding step.

【符号の説明】[Explanation of symbols]

1 スクリュ 2 チェック弁 3 バレル 4 ノズル 5 スクリュ回転モータ 6a ノズル圧力センサ 6b 金型内圧力センサ 6c ノズル温度センサ 6d 金型温度センサ 7 ランナ部 8 金型キャビティ 9 位置センサ 10 金型 10a 固定金型 10b 可動金型 11a ヘッド側油圧作動バルブ 11b ロッド側油圧作動バルブ 12 ホッパ 12a 樹脂ペレット 13 射出シリンダヘッド側油圧センサ 14 ピストン 16 射出シリンダ 16a ヘッド側室 16b ロッド側室 18 スクリュヘッド 18a 小径部 20 射出装置 22 スクリュヘッド前部 30 制御装置 100 射出成形機 v 射出速度 P 保圧圧力 S ストローク値 t 経過時間 a1 最大変動値 a0 初期設定値 b1 最大変動値 b0 初期設定値 x 最大変動幅(射出速度) y 最大変動幅(保圧圧力) c1 修正係数 c2 修正係数 D1 成形条件修正幅 D2 成形条件修正幅DESCRIPTION OF SYMBOLS 1 Screw 2 Check valve 3 Barrel 4 Nozzle 5 Screw rotation motor 6a Nozzle pressure sensor 6b In-mold pressure sensor 6c Nozzle temperature sensor 6d Mold temperature sensor 7 Runner part 8 Mold cavity 9 Position sensor 10 Mold 10a Fixed mold 10b Movable mold 11a Head side hydraulic valve 11b Rod side hydraulic valve 12 Hopper 12a Resin pellet 13 Injection cylinder head side hydraulic sensor 14 Piston 16 Injection cylinder 16a Head side chamber 16b Rod side chamber 18 Screw head 18a Small diameter section 20 Injection device 22 Screw head front 30 controller 100 injection molding machine v injection speed P holding pressure S stroke value t elapsed a 1 maximum variation value a 0 initial set value b 1 maximum variation value b 0 initial set value x the maximum fluctuation width (injection speed) y Maximum fluctuation range ( Pressure pressure) c 1 correction coefficient c 2 correction coefficient D 1 molding condition modifying the width D 2 molding condition modifying width

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融した樹脂材料を略密閉状の金型キャ
ビティ内に流動圧入して成形品を繰り返し生産する射出
成形機の成形条件最適化方法であって、 あらかじめ試し打ち成形テストを実施して、トライアン
ドエラーにより成形条件に変更を加えつつ射出プロファ
イルおよび保圧プロファイルからなる良品成形条件を設
定し、 この良品成形条件に基づいて再度試し打ち成形テストを
実施するとともに主要成形変数の測定・監視を行なっ
て、成形中における成形状態の環境変化に由来する該主
要成形変数の変動幅を求め、 該変動幅を考慮して実験計画法を通じて得られた主要成
形変数のあらたな組合せに基づく更新成形条件の複数の
更新成形テストを実施し、 該成形テストの結果得られた成形品の各々についてオペ
レータの目視による外観品質判定を行ない、不良項目が
ある場合にはあらかじめ用意した修正プログラムを使用
して前記更新成形条件を修正して更新成形テストを繰り
返し、不良項目が皆無の場合には、最終の更新成形条件
を最適成形条件として生産工程における最適成形条件と
した射出成形機の成形条件最適化方法。
1. A method for optimizing molding conditions of an injection molding machine for repeatedly producing a molded product by flowing a molten resin material into a substantially hermetically closed mold cavity by performing a test punching test in advance. Then, while setting the molding conditions by trial and error, the non-defective molding conditions consisting of the injection profile and the holding pressure profile are set. Monitoring is performed to determine the fluctuation range of the main molding variables resulting from the environmental change of the molding state during molding, and the update based on a new combination of the main molding variables obtained through the experimental design method in consideration of the fluctuation range. A plurality of update molding tests of the molding conditions are performed, and for each of the molded products obtained as a result of the molding test, an appearance product visually observed by an operator. Judgment is performed, and if there is a defective item, the above-mentioned update molding condition is corrected using a correction program prepared in advance and the update molding test is repeated, and if there are no defective items, the final update molding condition is optimized. A method for optimizing the molding conditions of an injection molding machine in which the optimal molding conditions in the production process are used as the molding conditions.
【請求項2】 良品成形条件の設定は、あらかじめ金型
キャビティ形状を数学的に定義した金型モデルを作成
し、該金型モデルに溶融樹脂を流した場合の樹脂流動解
析を行なって、射出プロファイルおよび保圧プロファイ
ルからなる良品成形条件を算出するようにした請求項1
記載の射出成形機の成形条件最適化方法。
2. Molding conditions for non-defective products are set by preparing a mold model in which a mold cavity shape is mathematically defined in advance, performing resin flow analysis when a molten resin is poured into the mold model, and performing injection. 2. A non-defective molding condition comprising a profile and a holding pressure profile is calculated.
A method for optimizing molding conditions of the injection molding machine described in the above.
【請求項3】 修正プログラムは、オペレータの目視に
よる外観品質判定項目の各々に、あらかじめ設定した重
み定数を乗算して得られた数値に応じた成形条件の変更
機能を付加したものとした請求項1または請求項2記載
の射出成形機の成形条件最適化方法。
3. The modification program according to claim 1, wherein each appearance quality judgment item visually checked by an operator is provided with a function of changing a molding condition according to a numerical value obtained by multiplying a predetermined weight constant. 3. The method for optimizing molding conditions of an injection molding machine according to claim 1.
JP26693796A 1996-10-08 1996-10-08 Method for optimizing molding conditions of injection molding machine Expired - Fee Related JP3412419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26693796A JP3412419B2 (en) 1996-10-08 1996-10-08 Method for optimizing molding conditions of injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26693796A JP3412419B2 (en) 1996-10-08 1996-10-08 Method for optimizing molding conditions of injection molding machine

Publications (2)

Publication Number Publication Date
JPH10272663A true JPH10272663A (en) 1998-10-13
JP3412419B2 JP3412419B2 (en) 2003-06-03

Family

ID=17437766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26693796A Expired - Fee Related JP3412419B2 (en) 1996-10-08 1996-10-08 Method for optimizing molding conditions of injection molding machine

Country Status (1)

Country Link
JP (1) JP3412419B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043671A1 (en) * 2002-11-08 2004-05-27 Omnova Solutions Inc. Quality assurance method for coated parts
WO2005018909A1 (en) * 2003-08-18 2005-03-03 Kortec, Inc. Automatic process control for a multilayer injection molding apparatus
JP2008074114A (en) * 2007-12-10 2008-04-03 Sumitomo Heavy Ind Ltd Method for controlling injection molding machine
WO2010041483A1 (en) * 2008-10-09 2010-04-15 三菱重工プラスチックテクノロジー株式会社 Injection molding device and injection molding method
JP2011230309A (en) * 2010-04-23 2011-11-17 Sumitomo Heavy Ind Ltd Apparatus and method for calculation of power consumption for injection molding machine
JP2013543804A (en) * 2010-11-16 2013-12-09 エムケイエス インストゥルメンツ, インコーポレイテッド Control of discrete manufacturing process using multivariate model
JP2015024568A (en) * 2013-07-26 2015-02-05 宇部興産機械株式会社 Controlling method for injection filling step of injection molding machine
CN117841319A (en) * 2024-03-07 2024-04-09 南通百扬塑料制品有限公司 Food-grade PET plastic bottle and tank injection molding control system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043671A1 (en) * 2002-11-08 2004-05-27 Omnova Solutions Inc. Quality assurance method for coated parts
WO2005018909A1 (en) * 2003-08-18 2005-03-03 Kortec, Inc. Automatic process control for a multilayer injection molding apparatus
US7517480B2 (en) 2003-08-18 2009-04-14 Kortec, Inc. Automatic process control for a multilayer injection molding apparatus
JP4537441B2 (en) * 2007-12-10 2010-09-01 住友重機械工業株式会社 Control method of injection molding machine
JP2008074114A (en) * 2007-12-10 2008-04-03 Sumitomo Heavy Ind Ltd Method for controlling injection molding machine
US8460586B2 (en) 2008-10-09 2013-06-11 Mitsubishi Heavy Industries Plastics Technology Co., Ltd. Injection molding method and apparatus for controlling a mold temperature and displacement of an injection screw
JPWO2010041483A1 (en) * 2008-10-09 2012-03-08 三菱重工プラスチックテクノロジー株式会社 Injection molding apparatus and injection molding method
JP4969689B2 (en) * 2008-10-09 2012-07-04 三菱重工プラスチックテクノロジー株式会社 Injection molding apparatus and injection molding method
WO2010041483A1 (en) * 2008-10-09 2010-04-15 三菱重工プラスチックテクノロジー株式会社 Injection molding device and injection molding method
JP2011230309A (en) * 2010-04-23 2011-11-17 Sumitomo Heavy Ind Ltd Apparatus and method for calculation of power consumption for injection molding machine
JP2013543804A (en) * 2010-11-16 2013-12-09 エムケイエス インストゥルメンツ, インコーポレイテッド Control of discrete manufacturing process using multivariate model
JP2015024568A (en) * 2013-07-26 2015-02-05 宇部興産機械株式会社 Controlling method for injection filling step of injection molding machine
CN117841319A (en) * 2024-03-07 2024-04-09 南通百扬塑料制品有限公司 Food-grade PET plastic bottle and tank injection molding control system
CN117841319B (en) * 2024-03-07 2024-05-03 南通百扬塑料制品有限公司 Food-grade PET plastic bottle and tank injection molding control system

Also Published As

Publication number Publication date
JP3412419B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
EP1091842B1 (en) Automated molding technology for thermoplastic injection molding
JP3018957B2 (en) Optimal molding condition setting system for injection molding machines
US11766818B2 (en) Systems and approaches for autotuning an injection molding machine
US6258303B1 (en) Apparatus and method of monitoring injection molding operation wherein sprue gate closing point of time is indicated together with displayed parameter waveforms
JP5421980B2 (en) Control device for injection molding machine
US5097432A (en) Evaluation method of flow analysis on molding of a molten material
EP1166994A1 (en) Injection moulding control system
JP3412419B2 (en) Method for optimizing molding conditions of injection molding machine
US5088911A (en) Injection molding apparatus for controlling molding optimum condition in response to temperature
JP3395589B2 (en) Injection molding machine molding condition setting method
JP3395542B2 (en) Injection molding machine molding condition setting method
JPH08281756A (en) Operation control method for injection molding machine
JP4166746B2 (en) Resin characteristic measurement method and injection control method for injection molding machine
JP3897397B2 (en) Injection speed control device for injection molding machine
JPH0976320A (en) Automatic setting method for injection molding speed condition of injection mold machine
JPH08174609A (en) Method for controlling speed of injection molding machine
JPS63209918A (en) Method for setting molding conditions of injection molder
JP2807924B2 (en) Control device for injection molding machine
JPH0679432A (en) Automatic controller for injecting speed of injection forming apparatus
JPH08156060A (en) System for optimizing injection molding condition
JPH08258105A (en) Molding quality discriminating method for injection molding machine
KR20120096484A (en) Method for controlling the production of a product
JPH07241892A (en) Setting method for dwelling and dwell time of injection molding machine
JPH08230006A (en) Method for setting molding condition in injection molder
JPH081725A (en) Injection molding machine and injection molding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090328

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090328

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100328

LAPS Cancellation because of no payment of annual fees