JPH0196819A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0196819A
JPH0196819A JP25254287A JP25254287A JPH0196819A JP H0196819 A JPH0196819 A JP H0196819A JP 25254287 A JP25254287 A JP 25254287A JP 25254287 A JP25254287 A JP 25254287A JP H0196819 A JPH0196819 A JP H0196819A
Authority
JP
Japan
Prior art keywords
protective film
oxide layer
oxygen
recording medium
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25254287A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Noboru Isoe
磯江 昇
Kunio Wakai
若居 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP25254287A priority Critical patent/JPH0196819A/en
Publication of JPH0196819A publication Critical patent/JPH0196819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a recording medium in a corrosive atmosphere and to obtain the high-reliability recording medium by providing a higher oxide layer or hydrous oxide layer of cobalt on the surface of a magnetic layer and providing an inorg. protective film essentially consisting of nickel and oxygen on said layer, then specifying the content of oxygen in the protective film near the boundary face of said protective film and the oxide layer to a prescribed value. CONSTITUTION:The magnetic layer 2 consisting of a thin ferromagnetic metallic film essentially composed of cobalt is formed on a substrate 1 of the magnetic substrate and the higher hydrous oxide layer 3 of Co consisting of the higher oxide layer or hydrous oxide layer of the cobalt is formed on the magnetic layer 2. The inorg. protective film 4 essentially consisting of the nickel and oxygen is formed on the oxide layer 3. This protective film 4 consists essentially of nickel and contains oxygen at 15-50atom.%. The content of the oxygen contained in the protective film near the boundary face of the hydrous oxide layer 3 and the protective film 4 is specified to >=20atom.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強磁性金属薄膜型の磁気記録媒体に係り、さら
に詳しくは耐食性に優れた無機質保護膜を有する信頼性
の高い磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferromagnetic metal thin film type magnetic recording medium, and more particularly to a highly reliable magnetic recording medium having an inorganic protective film with excellent corrosion resistance.

〔従来の技術〕[Conventional technology]

従来、真空蒸着法、スパッタリング法あるいはイオンブ
レーティング法などによって成膜されるCo、Co−N
i、Co−N1−Pなど、Coを主成分とする強磁性金
1@薄膜を磁性層とする磁気記録媒体は、高密度磁気記
録に適した優れた磁気特性を有する反面、磁気ヘッドな
どとの摺動接触の際に摩耗や損傷を被り易く、また磁性
層が腐食され易いCo系の強磁性金属薄膜であるので、
大気中における耐食性が低く、そのため磁気特性が劣化
し耐久性ならびに信頼性に劣るという欠点があった。
Conventionally, Co and Co-N films are formed by vacuum evaporation, sputtering, ion blating, etc.
Magnetic recording media, such as Co-N1-P, whose magnetic layer is a ferromagnetic gold 1@ thin film mainly composed of Co, have excellent magnetic properties suitable for high-density magnetic recording, but are difficult to use with magnetic heads. Because it is a Co-based ferromagnetic metal thin film that is easily subject to wear and damage during sliding contact, and the magnetic layer is easily corroded,
It has the drawback of low corrosion resistance in the atmosphere, resulting in deterioration of magnetic properties and inferior durability and reliability.

この欠点を解消するために、磁性層表面にレーザ光線を
照射して熱酸化させる方法(特開昭58−130428
号公報)や、グロー放電によって酸化物保護層を形成さ
せる方法(特開昭58−41439号公報、同58−2
08935号公報)、水蒸気処理により安定な耐食性被
膜を形成させる方法(特開昭57−123533号公報
)、オゾン雰囲気に曝すことにより酸化物保護層を形成
させる方法(特開昭59−63031号公報)あるいは
高温高湿の雰囲気下で処理して安定な酸化物保護層を形
成させる方法(米国特許第3460968号)などがあ
り、これらの方法は、少なくともスピネル(Co:10
4)またはCo20.・nH,oの形で表わされる安定
な結晶性の高次酸化物もしくは含水酸化物を磁性層表面
に形成させるものである。また、Cr、Tiなどの金属
またはこれらの酸化物よりなる保護膜を磁性層上に形成
させて耐食性の改善をはかる方法(特開昭51−474
01号公報、同58−26320号公報)など多く提案
されている。
In order to eliminate this drawback, a method of thermally oxidizing the surface of the magnetic layer by irradiating it with a laser beam (Japanese Unexamined Patent Publication No. 58-130428
JP-A-58-41439, JP-A-58-2
08935), a method of forming a stable corrosion-resistant film by steam treatment (JP-A-57-123533), and a method of forming an oxide protective layer by exposing to an ozone atmosphere (JP-A-59-63031). ) or a method in which a stable oxide protective layer is formed by treatment in a high temperature and high humidity atmosphere (US Pat. No. 3,460,968).
4) or Co20. - Stable crystalline higher-order oxide or hydrated oxide expressed in the form of nH, o is formed on the surface of the magnetic layer. In addition, a method of improving corrosion resistance by forming a protective film made of metals such as Cr and Ti or their oxides on the magnetic layer (Japanese Patent Laid-Open No. 51-474
Many proposals have been made, such as Publication No. 01 and Publication No. 58-26320).

しかし、上記の安定な結晶性高次酸化物の形成あるいは
磁性層上にCr、Tiなとの金属またはこれらの酸化物
の保護膜の形成だけでは必ずしも所望する耐食性を得る
ことができず、長時間にわたる高温高湿の雰囲気中、あ
るいは硫黄酸化物、窒素酸化物などを含む酸性の雰囲気
中に放置すると磁性層の腐食が著しく進行し磁気特性な
らびに走行性などが著しく低下するという問題があった
However, it is not always possible to obtain the desired corrosion resistance simply by forming the above-mentioned stable crystalline higher-order oxide or by forming a protective film of metals such as Cr and Ti or oxides of these on the magnetic layer. If the magnetic layer is left in a high temperature and high humidity atmosphere for a long period of time, or in an acidic atmosphere containing sulfur oxides, nitrogen oxides, etc., corrosion of the magnetic layer will progress significantly, resulting in a significant decrease in magnetic properties and runnability. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述した従来技術において高温高湿の雰囲気
下におけるCOもしくはCOを主成分とする強磁性金属
薄膜からなる磁性層の腐食の問題。
The present invention solves the problem of corrosion of a magnetic layer made of CO or a ferromagnetic metal thin film containing CO as a main component in a high temperature and high humidity atmosphere in the prior art described above.

特に硫黄酸化物、窒素酸化物などを含む雰囲気下におけ
る腐食の問題を解消し、硫黄酸化物、窒素酸化物などを
含む高温高湿の雰囲気下、特に酸性の還元性雰囲気下に
極めて強い耐食性保護膜を形成させることによって、耐
食性ならびに走行性が極めて良好で、耐久性および信頼
性に優れた磁気記録媒体を提供することを目的とする。
Eliminates corrosion problems especially in atmospheres containing sulfur oxides, nitrogen oxides, etc., and provides extremely strong corrosion resistance protection in high temperature, high humidity atmospheres containing sulfur oxides, nitrogen oxides, etc., especially in acidic reducing atmospheres. The object of the present invention is to provide a magnetic recording medium that has extremely good corrosion resistance and runnability, and is excellent in durability and reliability by forming a film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、種々研究を重ねた結果、COもしくはG
oを主成分とする強磁性金属薄膜よりなる磁性層表面に
、Coの高次酸化物(C03o4など)層または含水酸
化物(Co20.・nH2Oなど)層を形成させた後、
その上にNiと酸素を主成分とする保護膜を設けると、
比較的良好な耐食性を得ることができるが、しかしこれ
だけでは高温高湿の雰囲気下、特に酸性の還元性雰囲気
下における耐食性が十分でなく、COの高次酸化物層が
その上に形成された無機質保護膜によって還元されたり
して、COの高次酸化物が化学的に不安定となり、その
ため耐食性が劣化することを知見した。
As a result of various studies, the present inventors discovered that CO or G
After forming a layer of a higher-order oxide of Co (such as CO3o4) or a layer of hydrated oxide (such as Co20.nH2O) on the surface of the magnetic layer made of a ferromagnetic metal thin film mainly composed of o,
If a protective film containing Ni and oxygen as main components is provided on top of that,
Although relatively good corrosion resistance can be obtained, this alone does not provide sufficient corrosion resistance in a high temperature and high humidity atmosphere, especially in an acidic reducing atmosphere, and a higher order oxide layer of CO is formed on top of it. It has been found that higher-order oxides of CO become chemically unstable due to being reduced by the inorganic protective film, and as a result, corrosion resistance deteriorates.

本発明の目的は、磁性層の表面に形成されたGoの高次
酸化物層の上に形成させるNiと酸素を主成分とする無
機質保護膜において、上記Goの高次酸化物層との界面
近傍における無機質保護中の酸素含有量を20原子%以
上とすることにより、達成される。
An object of the present invention is to provide an inorganic protective film containing Ni and oxygen as main components to be formed on a Go higher oxide layer formed on the surface of a magnetic layer. This is achieved by setting the oxygen content in the inorganic protection in the vicinity to 20 atomic % or more.

そして、本発明のNiと酸素を主成分とする無機質保護
膜中の酸素含有量は15〜50原子%の範囲が好ましく
、15原子%未満では上記保護膜が軟らかくなり、また
50原子%を超えると脆くなって耐摩耗性が低下するの
で好ましくない。
The oxygen content in the inorganic protective film containing Ni and oxygen as main components of the present invention is preferably in the range of 15 to 50 at. This is not preferable because it becomes brittle and reduces wear resistance.

本発明の無機質保護膜において、Niを主成分とし、酸
素を15〜50a子%含有し、さらにFeを、NiとF
eの合計量に対して、原子比で0.05〜0.4の範囲
含有させると、さらに優れた耐食性が得られる。この場
合、上記原子比がO,OS未満または0.4を超えると
、たとえ無機質保護膜中の酸素含有量が15〜50原子
%の範囲であっても十分な耐食性は得られない。
The inorganic protective film of the present invention contains Ni as a main component, contains 15 to 50% of oxygen, and further contains Fe, Ni and F.
Even better corrosion resistance can be obtained by containing e in an atomic ratio of 0.05 to 0.4 with respect to the total amount. In this case, if the above atomic ratio is less than O, OS or more than 0.4, sufficient corrosion resistance cannot be obtained even if the oxygen content in the inorganic protective film is in the range of 15 to 50 at %.

また、本発明のNiと酸素を主成分とする無機質保護膜
中に、Cr、Ti、Siなどの元素を適量添加しても有
効である。
It is also effective to add an appropriate amount of elements such as Cr, Ti, and Si to the inorganic protective film of the present invention whose main components are Ni and oxygen.

本発明の無機質保護膜の膜厚は、50人未満では耐食性
の向上効果が少なく、1000人を超えるとスペーシン
グロスが大きくなり再生出力が低下するので好ましくな
く、その膜厚は50〜1000人の範囲が好ましく、よ
り好ましい範囲は100〜500人である。
If the thickness of the inorganic protective film of the present invention is less than 50 people, the effect of improving corrosion resistance will be small, and if it exceeds 1000 people, the spacing loss will increase and the reproduction output will decrease, so it is not preferable. The range is preferably 100 to 500, and the more preferred range is 100 to 500.

本発明の無機質保護膜の形成は、酸化性の雰囲気中で、
真空蒸着法、スパッタリング法あるいはイオンブレーテ
ィング法などの物理蒸着法によって成膜することができ
る。酸化性のガスとしては、酸素、オゾン、酸素リッチ
ガス、空気、あるいはHe、Arなどの不活性ガスに希
釈された酸素ガスを用いることができる。
The inorganic protective film of the present invention is formed in an oxidizing atmosphere.
The film can be formed by a physical vapor deposition method such as a vacuum evaporation method, a sputtering method, or an ion blating method. As the oxidizing gas, oxygen, ozone, oxygen-rich gas, air, or oxygen gas diluted with an inert gas such as He or Ar can be used.

本発明のCoを主成分とする強磁性金属材料として、C
oの他、Go −Cr、 Co −Ti、 Go −P
 。
As the ferromagnetic metal material mainly composed of Co of the present invention, C
In addition to o, Go -Cr, Co -Ti, Go -P
.

Co −Ni、 Co −Fe、 Go−Ni −Cr
、 Co −Mn。
Co-Ni, Co-Fe, Go-Ni-Cr
, Co-Mn.

Co−N1−P、Go−Pd、Co−5i、Co−Fe
−Crなどを用いることができる。
Co-N1-P, Go-Pd, Co-5i, Co-Fe
-Cr etc. can be used.

また、本発明の無機質保護膜が適用できる磁気記録媒体
は、ポリエチレンテレフタレート、ポリエステル、ポリ
イミド、ポリアミド、ポリ塩化ビニルなどの合成樹脂製
のフィルムあるいはAQ。
Further, the magnetic recording medium to which the inorganic protective film of the present invention can be applied is a film made of synthetic resin such as polyethylene terephthalate, polyester, polyimide, polyamide, polyvinyl chloride, or AQ.

Af1合金、Ti、Ti合金、ステンレスなどの金属板
を基体とするテープ、シート、カード、ディスク状など
の種々の形態の磁気記録媒体を包含するものである。
It includes various forms of magnetic recording media such as tapes, sheets, cards, disks, etc., which are based on metal plates such as Af1 alloy, Ti, Ti alloy, and stainless steel.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ1図面を参照しながらさ
らに詳細に説明する。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to one drawing.

第2図に示す真空斜め入射蒸着装置を使用し、第1図に
示す断面構造の磁気テープを作製した。
A magnetic tape having the cross-sectional structure shown in FIG. 1 was produced using the vacuum oblique incidence deposition apparatus shown in FIG.

基体1として、10−厚さのポリエチレンテレフタレー
トフィルムを用い、強磁性金属材料の蒸発源13よりC
o−N1(重量比80 : 20)合金を 5×1O−
sT orrの真空下で電子ビーム溶解により加熱蒸発
させ、最低入射角50度で斜め入射蒸着を開始すると同
時に最低入射角部に設けた酸素ガス導入口16より酸素
ガスを200mQ/min導入しつつGo−Ni合金よ
りなる膜厚が1500人の強磁性金属薄膜を形成させた
後、大気中に曝し、ついで1気圧の酸素ガスの容器中に
1週間放置して、磁性層2である強磁性金属薄膜の表面
にCoの高次含水酸化物(Cr203・nHtO)層3
を形成させた。
A 10-thick polyethylene terephthalate film is used as the substrate 1, and C is
o-N1 (weight ratio 80:20) alloy 5×1O-
Heat evaporation by electron beam melting in a vacuum of sT orr, start oblique incidence evaporation at a minimum incident angle of 50 degrees, and at the same time introduce oxygen gas at 200 mQ/min from the oxygen gas inlet 16 provided at the lowest incident angle. - After forming a ferromagnetic metal thin film of Ni alloy with a thickness of 1,500 mm, it is exposed to the atmosphere, and then left in a container of oxygen gas at 1 atm for one week. Higher-order hydrated oxide of Co (Cr203/nHtO) layer 3 on the surface of the thin film
was formed.

次に、同じく第2図に示す真空斜め入射蒸着装置を用い
、Ni−Fe合金を加熱蒸発させ、最低入射角50度で
蒸着させると同時に、酸素ガス導入口16および17か
ら酸素ガスを導入し、加熱蒸発させるNi−Fe合金の
組成と導入する酸素ガスの量を変化させて、第1表の実
施例1〜11に示すNi −Fe−0よりなる種々の組
成を有する無機質保護膜4を150人の膜厚に成膜し、
磁気テープを作製した。
Next, using the vacuum oblique incidence evaporation apparatus shown in FIG. 2, the Ni-Fe alloy is heated and evaporated at a minimum incidence angle of 50 degrees, and at the same time, oxygen gas is introduced from the oxygen gas inlets 16 and 17. By changing the composition of the Ni-Fe alloy to be heated and evaporated and the amount of oxygen gas introduced, inorganic protective films 4 having various compositions of Ni-Fe-0 shown in Examples 1 to 11 in Table 1 were prepared. A film was formed to a thickness of 150 people,
A magnetic tape was made.

(比較例1) Ni−Fe合金の蒸着時に酸素ガスの導入を省略した以
外は、実施例1〜11と同様にして磁気テープを作製し
た。
(Comparative Example 1) Magnetic tapes were produced in the same manner as Examples 1 to 11, except that the introduction of oxygen gas was omitted during the vapor deposition of the Ni-Fe alloy.

(比較例2) Co−Ni合金よりなる強磁性金属薄膜の表面にCoの
高次含水酸化物層の形成を省略した以外は。
(Comparative Example 2) Except that the formation of a higher-order hydrated oxide layer of Co on the surface of a ferromagnetic metal thin film made of a Co-Ni alloy was omitted.

実施例1〜11と同様にして磁気テープを作製した。Magnetic tapes were produced in the same manner as Examples 1 to 11.

以上の実施例および比較例において作製した磁気テープ
について、Ni−Fe−0保護膜中のNi。
Regarding the magnetic tapes produced in the above Examples and Comparative Examples, Ni in the Ni-Fe-0 protective film.

Fe、Oの含有量および上記保護膜の磁性層との界面近
傍50人深さ部分の酸素含有量を求め、耐食性はS 0
.1 ppm、 N O,1ppm、 H,S O,5
ppm含有する35℃75%RH−の雰囲気中に、それ
ぞれ所定時間暴露し、腐食生成物の有無(0印腐食なし
、×印腐食あり)およびVH8型VTRを用い磁気テー
プの再生出力が初期の値の172まで低下するスチル時
間を調べ、耐食性を評価した。
The contents of Fe and O and the oxygen content at a depth of 50 mm near the interface with the magnetic layer of the protective film were determined, and the corrosion resistance was determined as S 0
.. 1 ppm, N O, 1 ppm, H, S O, 5
ppm contained in an atmosphere at 35°C and 75% RH for a predetermined time. Corrosion resistance was evaluated by examining the still time at which the value decreased to 172.

その結果を第1表に示す。The results are shown in Table 1.

第1表から明らかなごとく、本発明の実施例1〜11に
示す磁気テープは、いずれも優れた耐食性を有すること
が分かる。
As is clear from Table 1, the magnetic tapes shown in Examples 1 to 11 of the present invention all have excellent corrosion resistance.

C発明の効果〕 以上詳細に説明したごとく、COもしくはCOを主成分
とする磁性層の表面にCOの高次酸化物または含水酸化
物層を形成させ、さらに上記酸化物層の界面近傍におけ
る酸素含有量が20原子%以上含むNiと酸素を主成分
とする無機質保護膜を、上記酸化物層の上に設けた本発
明の磁気記録媒体は、特に酸化硫黄、酸化窒素、硫化水
素などを含む腐食性の雰囲気下において優れた耐食性を
示し、また無機質保護膜中に酸素を15〜50原子%含
有させることによって耐摩耗性も向上し、耐久性ならび
に信頼性の高い磁気記録媒体を得ることができる。
C Effects of the Invention] As explained in detail above, a higher order oxide or hydrous oxide layer of CO is formed on the surface of CO or a magnetic layer containing CO as a main component, and furthermore, oxygen near the interface of the oxide layer is formed. The magnetic recording medium of the present invention, in which an inorganic protective film mainly composed of Ni and oxygen containing 20 atomic % or more, is provided on the oxide layer, especially containing sulfur oxide, nitrogen oxide, hydrogen sulfide, etc. It exhibits excellent corrosion resistance in corrosive atmospheres, and by containing 15 to 50 atomic percent of oxygen in the inorganic protective film, wear resistance is also improved, making it possible to obtain magnetic recording media with high durability and reliability. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において作製した磁気テープの
断面構造を示す模式図、第2図は本発明の実施例におい
て用いた真空蒸着装置の構造を示す模式図である。 1・・・基体      2・・・磁性層3・・・Co
の高次含水酸化物層 4・・・無機質保護膜  5・・・界面近傍6・・・真
空4q!7・・・真空排気系8・・・円筒状キャン  
9・・・原反ロール10、11・・・ガイドロール 12・・・巻取ロール  13・・・蒸発源14・・・
G o −N i合金  15・・・防着板16、17
・・・酸素ガス導入口 A・・・最低入射角部  B・・・最高入射角部代理人
弁理士  中 村 純之助 第2図
FIG. 1 is a schematic diagram showing a cross-sectional structure of a magnetic tape produced in an example of the present invention, and FIG. 2 is a schematic diagram showing the structure of a vacuum evaporation apparatus used in an example of the present invention. 1... Base body 2... Magnetic layer 3... Co
High-order hydrated oxide layer 4... Inorganic protective film 5... Near interface 6... Vacuum 4q! 7... Vacuum exhaust system 8... Cylindrical can
9... Original fabric rolls 10, 11... Guide roll 12... Take-up roll 13... Evaporation source 14...
G o -N i alloy 15... adhesion prevention plates 16, 17
... Oxygen gas inlet A ... Lowest incident angle section B ... Highest incident angle section Patent attorney Junnosuke Nakamura Figure 2

Claims (1)

【特許請求の範囲】 1、コバルトもしくはコバルトを主成分とする強磁性金
属薄膜からなる磁性層を有する磁気記録媒体において、
上記磁性層の表面にコバルトの高次酸化物層もしくは含
水酸化物層を形成させ、上記コバルトの高次酸化物層上
に、ニッケルおよび酸素を主成分とする無機質保護膜を
設け、上記コバルトの高次酸化物層と無機質保護膜との
界面近傍における無機質保護膜中に含まれる酸素の含有
量を、原子%で20%以上とすることを特徴とする磁気
記録媒体。 2、無機質保護膜が、ニッケルを主成分とし、酸素を1
5〜50原子%含有することを特徴とする特許請求の範
囲第1項に記載の磁気記録媒体。 3、無機質保護膜が、ニッケルと酸素と鉄を含有し、鉄
の含有量が、ニッケルと鉄の合計量に対して、原子比で
0.05〜0.4の範囲にあることを特徴とする特許請
求の範囲第1項または第2項に記載の磁気記録媒体。
[Claims] 1. A magnetic recording medium having a magnetic layer made of cobalt or a ferromagnetic metal thin film containing cobalt as a main component,
A cobalt higher oxide layer or a hydrous oxide layer is formed on the surface of the magnetic layer, and an inorganic protective film containing nickel and oxygen as main components is provided on the cobalt higher oxide layer. A magnetic recording medium characterized in that the content of oxygen contained in the inorganic protective film near the interface between the higher-order oxide layer and the inorganic protective film is 20% or more in atomic percent. 2. The inorganic protective film contains nickel as the main component and oxygen as the main component.
The magnetic recording medium according to claim 1, characterized in that the magnetic recording medium contains 5 to 50 atom %. 3. The inorganic protective film contains nickel, oxygen, and iron, and the iron content is in the range of 0.05 to 0.4 in atomic ratio to the total amount of nickel and iron. A magnetic recording medium according to claim 1 or 2.
JP25254287A 1987-10-08 1987-10-08 Magnetic recording medium Pending JPH0196819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25254287A JPH0196819A (en) 1987-10-08 1987-10-08 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25254287A JPH0196819A (en) 1987-10-08 1987-10-08 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0196819A true JPH0196819A (en) 1989-04-14

Family

ID=17238823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25254287A Pending JPH0196819A (en) 1987-10-08 1987-10-08 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0196819A (en)

Similar Documents

Publication Publication Date Title
US20080170329A1 (en) Granular perpendicular magnetic recording media with improved corrosion resistance by SUL post-deposition heating
JPS63160011A (en) Magnetic recording medium
JPS5961014A (en) Magnetic recording medium
JPH0196819A (en) Magnetic recording medium
KR100233697B1 (en) Magnetic recording medium
JPS6313115A (en) Magnetic recording medium and its production
JPS63253521A (en) Magnetic recording medium and its production
JPS6364622A (en) Magnetic recording medium
JPS63231717A (en) Magnetic recording medium and its production
JPH02172016A (en) Magnetic recording medium and production thereof
JPH02108224A (en) Magnetic recording medium
JPS6366719A (en) Magnetic recording medium
JP2538123B2 (en) Fixed magnetic disk and manufacturing method thereof
JPH02152007A (en) Magnetic recording medium
JPH0229956A (en) Magneto-optical recording medium
JPS61284829A (en) Magnetic recording medium
JPH0352115A (en) Metallic thin film type magnetic recording medium
JPS60253018A (en) Magnetic recording method
JPS6033341A (en) High magnetic permeability alloy excellent in wear resistance property
JPH0364929B2 (en)
US20050244680A1 (en) Environmentally stable metal-evaporated recording media
JPS6154024A (en) Magnetic recording medium
JPS6050622A (en) Vertical magnetic recording medium
JPH04111220A (en) Magnetic recording medium and its production
JPS63197017A (en) Magnetic recording medium