JPH018955Y2 - - Google Patents

Info

Publication number
JPH018955Y2
JPH018955Y2 JP3860084U JP3860084U JPH018955Y2 JP H018955 Y2 JPH018955 Y2 JP H018955Y2 JP 3860084 U JP3860084 U JP 3860084U JP 3860084 U JP3860084 U JP 3860084U JP H018955 Y2 JPH018955 Y2 JP H018955Y2
Authority
JP
Japan
Prior art keywords
heating device
lead electrode
electrode
plug
lower plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3860084U
Other languages
Japanese (ja)
Other versions
JPS60151094U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3860084U priority Critical patent/JPS60151094U/en
Publication of JPS60151094U publication Critical patent/JPS60151094U/en
Application granted granted Critical
Publication of JPH018955Y2 publication Critical patent/JPH018955Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は熱間静水圧加圧装置、特に断熱層、加
熱装置、被処理体、下部プラグを一体的に前記加
圧装置外に取り出し可能な構成とし、同装置外で
被処理体を予熱後、加圧装置内で高圧処理を行な
うようにした予熱モジユラーシステム用熱間静水
圧加圧装置又は低圧高温静水圧加圧装置に好適な
加熱装置、就中電極部構造に関するものである。
[Detailed description of the invention] (Field of industrial application) The present invention is a hot isostatic pressurizing device, in particular, the heat insulating layer, heating device, object to be treated, and lower plug can be integrally taken out of the pressurizing device. It is suitable for a hot isostatic pressurizing device or a low-pressure high-temperature isostatic pressurizing device for a preheating modular system, which has a configuration in which the object to be treated is preheated outside the device and then subjected to high pressure treatment within the pressurizing device. The present invention relates to a heating device, particularly an electrode structure.

(従来技術) 近年、窒化ケイ素、サイアロン、炭化ケイ素な
どのセラミツクスが高温ガスタービンエンジンの
タービンブレードやノズル、熱交換器などに用い
る耐熱高強度構造材料として注目されている。そ
して一方、これらのセラミツクス材料をエンジニ
アリングセラミツクスとして実用化するための高
密度焼結手段として熱間静水圧加圧(以下、HIP
と略記する)処理法が最も有望なプロセスとして
関心を集めている。
(Prior Art) In recent years, ceramics such as silicon nitride, sialon, and silicon carbide have been attracting attention as heat-resistant, high-strength structural materials for use in turbine blades, nozzles, heat exchangers, etc. of high-temperature gas turbine engines. On the other hand, hot isostatic pressing (hereinafter referred to as HIP) is used as a high-density sintering method to put these ceramic materials into practical use as engineering ceramics.
(abbreviated as ) is attracting attention as the most promising process.

この場合、高密度化のためのHIP処理の温度、
圧力条件としては1000Kg/cm2以上の高圧と、窒化
ケイ素、サイアロンでは1700℃以上、炭化ケイ素
では1850℃以上の高温が要求されることが多い。
In this case, the temperature of the HIP process for densification,
Pressure conditions often require high pressures of 1000 Kg/cm 2 or higher and high temperatures of 1700°C or higher for silicon nitride and sialon, and 1850°C or higher for silicon carbide.

そこで、このような高温高圧の雰囲気を実現す
るためのHIP装置用加熱装置に関し従来より各方
面で研究が進められ、既にその幾つかが提案され
ているが、本出願人においても特公昭56−44345
号、44346号、53188号、53189号などにより種々、
改良に係る加熱装置を提案し、現在にあつては安
定的に2000℃、2000Kg/cm2レベルの高温高圧雰囲
気を発現し得る段階に至つている。
Therefore, research has been carried out in various fields regarding heating devices for HIP equipment to realize such a high temperature and high pressure atmosphere, and some of them have already been proposed. 44345
No. 44346, No. 53188, No. 53189, etc.
We have proposed an improved heating device, and have now reached the stage where it is possible to stably generate a high-temperature, high-pressure atmosphere of 2000℃ and 2000Kg/cm 2 level.

第1図はかかる既提案の加熱装置を具備した
HIP装置の1つを例示しており、高圧シリンダ1
とその上下開口部を密封する上部プラグ2および
下部プラグ3からなる高圧容器によつて画成され
る高圧室4内に断熱層5により断熱した炉室を形
成して該炉室内にグラフアイトヒータ6からなる
加熱装置が収設されており、グラフアイトヒータ
からなる加熱装置は2つの端子部8,8がその発
熱部9の加熱領域から軸方向の下方に逃げる位置
に引出され、かつ放熱面積の大なる無水冷電極7
に接続されて高圧室4外からの電力導入プラグ1
0を通じて通電可能な構成となつている。
Figure 1 shows a device equipped with such a previously proposed heating device.
One of the HIP devices is illustrated, and the high pressure cylinder 1
A furnace chamber insulated by a heat insulating layer 5 is formed in a high pressure chamber 4 defined by a high pressure vessel consisting of an upper plug 2 and a lower plug 3 that seal the upper and lower openings of the furnace chamber, and a graphite heater is installed in the furnace chamber. The heating device consisting of a graphite heater is pulled out to a position where two terminal portions 8, 8 escape downward in the axial direction from the heating area of the heat generating portion 9, and the heating device consisting of a graphite heater has a heat dissipation area. The great water-free electrode 7
High pressure chamber 4 connected to external power introduction plug 1
The configuration is such that electricity can be applied through 0.

しかしながら、近時、HIP処理法自体に関して
も、より経済的な手法が検討され、その1つとし
て通常のHIP装置、即ち前記した如き、高圧シリ
ンダと、その上下の開口部を密封する上部プラ
グ、下部プラグによつて画成される高圧容器内に
断熱層を介して加熱装置を収納し、下部プラグ上
に被処理体を支持して処理を施す装置に止まら
ず、同装置において断熱層、加熱装置、被処理
体、下部プラグを一体的に装置外に取り出し可能
に構成しHIP装置外で被処理体を予熱した後、
HIP装置内に収納し高温高圧処理を行なう方法が
特開昭51−124610号などで提案され、このような
炉構造を2基以上設けることによつてその交互予
熱HIPにより装置の稼働率を上げHIP処理を極め
て効率よくかつ経済的にする方法がいわゆる予熱
モジユラーHIPシステムとして知られ、これが実
用化される段階となつている。
However, recently, more economical methods have been considered for the HIP treatment itself, and one of them is a conventional HIP device, that is, a high-pressure cylinder as described above, and an upper plug that seals the upper and lower openings of the cylinder. The heating device is housed in a high-pressure container defined by a lower plug via a heat insulating layer, and the processing target is supported on the lower plug. After the device, the object to be processed, and the lower plug can be taken out of the device as one unit and the object to be processed is preheated outside the HIP device,
A method of performing high-temperature and high-pressure processing by storing the furnace in a HIP device was proposed in JP-A-51-124610, etc., and by providing two or more such furnace structures, the operating rate of the device was increased by alternating preheating HIP. A method for making HIP processing extremely efficient and economical is known as the so-called preheating modular HIP system, which is on the verge of being put into practical use.

ところでこのような状況下にあつて前記の如き
既提案に係る加熱装置に上記予熱モジユラーHIP
システムに適用しようとすれば以下の如き欠点が
あることが判明した。
By the way, under such circumstances, the above-mentioned preheating modular HIP can be added to the heating device according to the above-mentioned proposal.
When trying to apply it to a system, it was found that there were the following drawbacks.

即ち予熱をHIP装置外にて行なうため、別途高
圧容器を設けるという不合理を避ける上からも予
熱は10Kgf/cm2までの低圧で行なうことが多い。
これに対し前述の既知の加熱装置については基本
的に周囲に高圧の圧媒ガスが存在することを前提
に構成がなされており、第1図において無水冷電
極7を放熱面積の大なる形状に構成するとして一
応の配慮をなしているが、上記の如き低圧では端
子部8を通じての熱伝導による電極7更には、そ
れに直に連なる電力導入プラグ10の過昇温を周
囲の圧媒の対流にもとづく冷却作用又は輻射放熱
によつて抑止することはできず、仮に、水冷電極
構造にしてその作用を行なわせようとした場合に
は同部分をHIP処理時の高圧に耐え得る構造にせ
ざるを得ず、このことも亦非常に困難である。
That is, since preheating is performed outside the HIP apparatus, preheating is often performed at a low pressure of up to 10 Kgf/cm 2 in order to avoid the unreasonable need to provide a separate high-pressure container.
On the other hand, the above-mentioned known heating device is basically constructed on the premise that there is a high-pressure pressure medium gas around it, and as shown in FIG. However, at low pressures such as those mentioned above, the excessive temperature rise of the electrode 7 due to heat conduction through the terminal portion 8 and the power introduction plug 10 directly connected thereto is prevented by convection of the surrounding pressure medium. It cannot be suppressed by the original cooling effect or radiant heat dissipation, and if one were to use a water-cooled electrode structure to achieve this effect, the same part would have to be constructed to withstand the high pressure during HIP processing. However, this is also extremely difficult.

なお、上記過昇温によつて如何なる悪影響を生
ずるかというと、電極7の溶融は論外としても、
特に電力導入プラグ10においては、電気的絶縁
と同時に圧力封止を行なわせるために比較的使用
可能温度上限の低い材料を用いることが多く、例
えばOリングとしての弗素ゴム、あるいはテフロ
ン(登録商標)に電気絶縁材料としてのベークラ
イト等を組合せて使用することからして、同部の
温度過上昇は圧力封止機構の破損あるいは電気的
絶縁の破壊を招き、安定的なHIP処理の実施を不
可能とする。
As for what kind of adverse effects will be caused by the above-mentioned excessive temperature rise, even though melting of the electrode 7 is out of the question,
In particular, for the power introduction plug 10, materials with a relatively low upper limit of usable temperature are often used to provide electrical insulation and pressure sealing, such as fluorine rubber as an O-ring or Teflon (registered trademark). Since Bakelite and other electrical insulating materials are used in combination with the HIP process, an excessive temperature rise in this area may damage the pressure sealing mechanism or break down the electrical insulation, making it impossible to perform stable HIP processing. shall be.

従つて、前述の如き予熱モジユラーHIPシステ
ムに適用し好適な加熱装置はHIP処理の経済性を
高める上から頗る重要な課題である。
Therefore, a heating device suitable for use in the preheating modular HIP system as described above is an important issue in improving the economic efficiency of the HIP process.

(考案の目的) 本考案は叙上の如き実状に対処し、前記加熱装
置の問題点に着目して高温用グラフアイトヒータ
の端子部から電極部を経て下蓋の電力導入プラグ
に至る経路において電極部と下部プラグ又は下部
プラグと一体的に構成された部材とを接触面積大
なる薄肉の電気絶縁材スペーサを介して密着固定
し、電極部の電流通過方向と直角方向に下部プラ
グに向けて伝導熱放散をせしめることによりOリ
ング等の使用温度上限の低い部材が存在する電力
導入プラグでの熱伝導にもとづく温度過上昇を抑
止し、低圧下においても容易に使用可能ならしめ
ることを目的とするものである。
(Purpose of the invention) The present invention deals with the above-mentioned actual situation and focuses on the problems of the above-mentioned heating device. The electrode part and the lower plug or a member integrally formed with the lower plug are tightly fixed through a thin electrical insulating material spacer with a large contact area, and the electrode part is oriented toward the lower plug in a direction perpendicular to the current passing direction of the electrode part. By dissipating conductive heat, the purpose is to prevent excessive temperature rises due to heat conduction in power plugs that include members with low upper temperature limits such as O-rings, and to enable easy use even under low pressure. It is something to do.

(考案の構成) 即ち、本考案の特徴とするところは、熱間静水
圧加圧装置において、高圧シリンダと、その上下
開口部を密封する上下プラグからなる高圧容器内
で、前記下部プラグに支持された被処理体を加熱
するため、該被処理体収容部の周囲に繞設される
加熱装置であつて、筒状を呈する発熱部と、該発
熱部から下方に設けられた端子部と、該端子部の
下部に連結され、その下部に外側へ向かつて延び
る板状部を有する金属製電極と、該金属製電極の
板状部下面にその上面が接し前記下部プラグの外
周部上面に沿つて延びる板状のリード電極と、該
リード電極と下部プラグもしくは下部プラグ上に
取り付けられるリング状台座との間に配置された
電気絶縁材料からなる薄板状のスペーサと、前記
リード電極における金属製電極の反対側端部に設
けられたリード電極端子と、該リード電極端子に
接して外部より電力を供給する電力導入部材とを
含み、構成せしめた点にある。
(Structure of the invention) That is, the feature of the invention is that, in a hot isostatic pressurizing device, a high-pressure container consisting of a high-pressure cylinder and upper and lower plugs that seal the upper and lower openings of the cylinder is supported by the lower plug. A heating device is provided around the processing object accommodating section to heat the processed object, the heating device having a cylindrical heat generating section, and a terminal section provided below from the heat generating section. a metal electrode connected to the lower part of the terminal part and having a plate-shaped part extending outward at the lower part; a thin plate-shaped spacer made of an electrically insulating material disposed between the lead electrode and the lower plug or a ring-shaped pedestal attached to the lower plug; and a metal electrode in the lead electrode. The device is configured to include a lead electrode terminal provided at the opposite end of the lead electrode terminal, and a power introduction member that is in contact with the lead electrode terminal and supplies power from the outside.

(実施例) 以下、添付図面を参照し本考案の具体的な実施
例を説明する。
(Embodiments) Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

第2図は本考案に係る加熱装置を含むHIP装置
の1例であり、第3図は第2図A−A断面図であ
る。
FIG. 2 shows an example of a HIP device including a heating device according to the present invention, and FIG. 3 is a sectional view taken along line AA in FIG.

これら図において、1は高圧シリンダ、2は上
部プラグ、3は下部プラグで、これら高圧シリン
ダ1と上下のプラグ2,3によつて高圧容器が形
成され、その内部に高圧室4が画成されている。
そしてこの高圧室4の内部には第1図と同様、断
熱層5が配設されて該断熱層5により断熱した空
間を炉室に形成してこの炉室内に加熱用のグラフ
アイトヒータ6を収設させている。
In these figures, 1 is a high-pressure cylinder, 2 is an upper plug, and 3 is a lower plug. The high-pressure cylinder 1 and the upper and lower plugs 2 and 3 form a high-pressure container, and a high-pressure chamber 4 is defined inside the container. ing.
As shown in FIG. 1, a heat insulating layer 5 is disposed inside the high pressure chamber 4, and a space insulated by the heat insulating layer 5 is formed in the furnace chamber, and a graphite heater 6 for heating is installed in the furnace chamber. It is being housed.

ここで、断熱層5は前記高圧シリンダ1、上部
プラグ2、下部プラグ3からなる高圧容器を高温
炉室から保護するためのものであり、その構造と
しては例えば特公昭54−81943号公報に開示され
た如き多数の倒立型金属コツプをセラミツクスフ
アイバー層体で掩つてなる構成のものを用いるこ
とが好適である。
Here, the heat insulating layer 5 is for protecting the high pressure container consisting of the high pressure cylinder 1, upper plug 2, and lower plug 3 from the high temperature furnace chamber, and its structure is disclosed in Japanese Patent Publication No. 54-81943, for example. It is preferable to use a structure in which a large number of inverted metal chips such as those shown in FIG. 1 are covered with a ceramic fiber layer.

又、断熱層5内部に収設されたグラフアイトヒ
ータ6の構造は例えば特公昭56−53188号公報、
同53189号公報に開示されているが、通常第2図
左半部に図示する如く発熱部9となる筒部分の加
熱領域から端子部8が軸線方向の下方へ引き出さ
れ(普通、第3図に示すように両端より2個引き
出される)下部の金属製電極7に接続される。
Further, the structure of the graphite heater 6 housed inside the heat insulating layer 5 is disclosed in, for example, Japanese Patent Publication No. 56-53188,
As disclosed in the same No. 53189, the terminal part 8 is usually pulled out in the axial direction downward from the heating area of the cylinder part which becomes the heat generating part 9 as shown in the left half part of FIG. (Two electrodes are pulled out from both ends as shown in FIG. 2).

なおこの場合、発熱部9下方で端子部8,8が
存在しない円周方向の領域には第2図右半部に示
すように断熱材11を配設して高温炉室から下方
への熱絶縁を図つており、これは電極部構造の安
定性の上からも頗る効果的である。
In this case, as shown in the right half of FIG. 2, a heat insulating material 11 is provided in the circumferential area below the heat generating part 9 where the terminal parts 8, 8 are not present to prevent heat from the high temperature furnace chamber downward. This is intended to provide insulation, which is extremely effective in terms of stability of the electrode structure.

第4図及び第5図は上記の如き構成において本
考案の要部をなす電極部構造の詳細を示してお
り、図より明らかな如く、前記金属製電極7は下
部において外側へ向かつて延びる板状部7aを具
えていて、この板状部7a下面にその上面を接し
て前記下部プラグ3の外周部上面に沿つて板状の
リード電極12が延びている。そしてこのリード
電極12と前記下部プラグ3又は第6図に示すよ
うに下部プラグ上にリング状台座20が取り付け
られるときは同リング台座20との間に薄肉の電
気絶縁性材料からなるスペーサ13が介装され、
このスペーサ13を介してリード電極12は所要
の広い領域14で下部プラグ3を密着固定されて
いる。
FIGS. 4 and 5 show details of the structure of the electrode part which constitutes the essential part of the present invention in the above-mentioned configuration. As is clear from the figures, the metal electrode 7 has a plate extending outwardly at the lower part. A plate-shaped lead electrode 12 extends along the upper surface of the outer periphery of the lower plug 3 with its upper surface in contact with the lower surface of the plate-shaped portion 7a. When a ring-shaped pedestal 20 is attached to the lower plug 3 or the lower plug as shown in FIG. 6, a spacer 13 made of a thin electrically insulating material is placed between the lead electrode 12 and the ring-shaped pedestal 20. Intervened,
The lead electrode 12 is closely fixed to the lower plug 3 in a required wide area 14 via the spacer 13 .

なお、上記スペーサ13を構成する電気絶縁性
材料としては例えばアルミナ、窒化ケイ素等であ
り、同効の材料も使用可能である。
The electrically insulating material constituting the spacer 13 is, for example, alumina, silicon nitride, etc., and other materials having the same effect can also be used.

又、第4図中、同電極部において示される各部
材15,16,17は夫々固定部の電気的絶縁を
図るための介装材であり、何れも前記スペーサ1
3同様、アルミナ、窒化ケイ素等の材料で構成さ
れている。
Further, in FIG. 4, members 15, 16, and 17 shown in the same electrode part are intervening materials for electrically insulating the fixed part, and all of them are connected to the spacer 1.
3, it is made of materials such as alumina and silicon nitride.

殊にスペーサ13については出来る限り熱伝導
性に秀れた材料であることが好ましく、従つて、
同一材料であつても熱伝導性にすぐれた種類のも
のを使用することが好適である。例えば窒化ケイ
素に関しては反応焼結体よりも常圧焼結体の方が
好ましい。
In particular, it is preferable for the spacer 13 to be made of a material with as good thermal conductivity as possible;
Even if they are made of the same material, it is preferable to use a material with excellent thermal conductivity. For example, for silicon nitride, pressureless sintered bodies are preferable to reaction sintered bodies.

しかして上記の如く構成された電極部におい
て、リード電極12の金属製電極7との接続部の
反対の側にはこれから下部プラグ3に設けられた
電力導入プラグ10へと端子18からリード板1
9を通じて電気的接続がなされている。
In the electrode section configured as described above, the terminal 18 is connected to the power introduction plug 10 provided on the lower plug 3 on the side opposite to the connection section of the lead electrode 12 with the metal electrode 7.
Electrical connections are made through 9.

かくして電力導入プラグ10からグラフアイト
ヒータ6の発熱部9に到る電力供給用の系路が形
成され、発熱部9の発熱によつて被処理体に加熱
が施されるが、この加熱時において、逆に発熱部
から電力導入プラグへ熱伝導が生じるとしても、
広い接触面積を有するスペーサ13を通じること
により熱容量の大きい下部プラグへと熱放散が行
なわれ、電力導入プラグ部への熱伝導は少なく同
部の温度は充分低下する。
In this way, a power supply path from the power introduction plug 10 to the heat generating part 9 of the graphite heater 6 is formed, and the object to be processed is heated by the heat generated by the heat generating part 9. , Even if heat conduction occurs from the heat generating part to the power introduction plug,
By passing through the spacer 13 having a large contact area, heat is dissipated to the lower plug having a large heat capacity, and there is little heat conduction to the power introduction plug part, and the temperature of this part is sufficiently lowered.

なお、上記加熱装置は特に前述した如き予熱モ
ジユラーシステム方式に適用し極めて好適なもの
であるが、これに限らず他のHIP装置ならびに近
時、話題となつている窒化ケイ素の100Kgf/cm2
程度の低圧高温静水圧加圧装置にも適用可能であ
り頗る効果的である。
The above-mentioned heating device is especially suitable for the preheating modular system as described above, but it is not limited to this and is applicable to other HIP devices as well as silicon nitride 100Kgf/cm 2 , which has recently become a hot topic.
It is also applicable to low-pressure, high-temperature isostatic pressurization equipment, and is extremely effective.

又、電極部7,12をスペーサ13を介して下
部プラグ3に固定することについては両者を直接
固定する(第4図、第5図参照)場合が多いが、
第6図に図示した如く下部プラグ3と一体的に構
成したリング状台座20の如き部材に固定するこ
とも有効であることは前述の通りである。
Furthermore, when fixing the electrode parts 7 and 12 to the lower plug 3 via the spacer 13, both are often directly fixed (see Figs. 4 and 5);
As mentioned above, it is also effective to fix it to a member such as the ring-shaped pedestal 20 integrally constructed with the lower plug 3 as shown in FIG.

(考案の効果) 本考案は以上の如くHIP装置の加熱装置におい
て金属製電極の下部に外側へ向つて延びる板状部
を設けると共に該板状部下面にその上面が接して
下部プラグの外周部上面に沿うリード電極を配設
し、このリード電極と下部プラグ又はこれと一体
となすリング状台座との間に電気絶縁性薄板材か
らなるスペーサを介装し、かつリード電極の前記
金属製電極接続側と反対側において電力導入部材
と電気的に接続せしめたものであり、以下のよう
な種々の顕著な効果が期待される。
(Effects of the Invention) As described above, the present invention provides a heating device for a HIP device with a plate-shaped portion extending outward at the bottom of the metal electrode, and the upper surface of the plate-shaped portion is in contact with the lower surface of the plate-shaped portion, and the outer circumference of the lower plug is A lead electrode is arranged along the upper surface, a spacer made of an electrically insulating thin plate material is interposed between the lead electrode and the lower plug or a ring-shaped pedestal integrally formed therewith, and the metal electrode of the lead electrode is provided. It is electrically connected to the power introduction member on the side opposite to the connection side, and various remarkable effects such as the following are expected.

(1) 低圧使用時において前記電力供給系路を経て
逆に発熱部から電力導入プラグへと熱伝導を生
ずるが、電極からリード電極を経て端子へ至る
間にリード電極より広い接触面積を有するスペ
ーサを通じ熱容量の大きな下部プラグへと伝導
熱放散を生ずるためリード板では既に充分に温
度低下せしめることが可能であり、これによつ
てOリング等の使用温度上限の低い部材が存在
する電力導入プラグでの熱伝導にもとづく温度
過上昇を抑止することができる。
(1) When using low voltage, heat conduction occurs from the heat generating part to the power introduction plug via the power supply system, but a spacer has a larger contact area than the lead electrode between the electrode and the lead electrode to the terminal. Because conductive heat is dissipated through the lead plate to the lower plug with a large heat capacity, the temperature can already be sufficiently lowered in the lead plate. Excessive temperature rise due to heat conduction can be suppressed.

従つて、これより前述したような予熱モジユ
ラーシステム方式の高温HIP装置において安定
性のある好適な加熱装置の電極部構成とするこ
とが可能である。
Therefore, it is possible to provide a stable and suitable electrode structure of the heating device in the high-temperature HIP device of the preheating modular system type as described above.

(2) グラフアイトヒータをその端子部が発熱部の
加熱領域より軸方向下方に引き出された構造と
しているので電極との接続部が対流のはげしい
圧媒ガスと接して可成り冷却されることにな
り、従つて無水冷電極を用いても温度過上昇を
抑止することができ冷却水管設備を省いた装置
コンパクト化が容易である。
(2) Since the graphite heater has a structure in which the terminal part is drawn out axially downward from the heating area of the heat generating part, the connection part with the electrode comes into contact with the highly convective pressure medium gas and is cooled considerably. Therefore, even if a water-free cooling electrode is used, an excessive rise in temperature can be suppressed, and the apparatus can be easily made compact by omitting cooling water pipe equipment.

(3) 金属製電極とリード電極とが板状部で連結固
定されているため熱伝導が一層良好で熱放散を
助成する上に有効である。
(3) Since the metal electrode and the lead electrode are connected and fixed by the plate-like part, heat conduction is even better, which is effective in assisting heat dissipation.

(4) なお副次的に下部プラグそのものの昇温が問
題となる場合にも高圧シリンダ外側から水冷し
たり、下部プラグ自体を水冷することにより、
容易に昇温を回避することができしかも高圧容
器内部の水冷でないため実施も簡単である利点
もある。
(4) If the temperature rise of the lower plug itself becomes a secondary problem, it can be solved by water-cooling it from the outside of the high-pressure cylinder or by water-cooling the lower plug itself.
It has the advantage of being able to easily avoid temperature rise and being easy to implement since there is no water cooling inside the high pressure vessel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は既知の加熱装置内蔵HIP装置の断面概
要図、第2図は本考案に係る加熱装置内蔵型HIP
装置の断面概要図、第3図は第2図A−A断面
図、第4図は本考案加熱装置の要部をなす電極部
の正面図、第5図は同要部側面図、第6図は本考
案加熱装置の変形実施例を示す断面概要図であ
る。 1……高圧シリンダ、2……上部プラグ、3…
…下部プラグ、4……高圧室、5……断熱層、6
……加熱装置、7……金属製電極、7a……板状
部、8……端子、9……発熱部、10……電力導
入プラグ、11……断熱材、12……リード電
極、13……スペーサ、18……リード電極端
子、19……リード板、20……リング状台座。
Figure 1 is a cross-sectional schematic diagram of a known HIP device with a built-in heating device, and Figure 2 is a schematic cross-sectional view of a HIP device with a built-in heating device according to the present invention.
3 is a cross-sectional view taken along the line A-A in FIG. 2, FIG. 4 is a front view of an electrode section which is a main part of the heating device of the present invention, FIG. 5 is a side view of the same main part, and FIG. The figure is a schematic cross-sectional view showing a modified embodiment of the heating device of the present invention. 1...High pressure cylinder, 2...Upper plug, 3...
...Lower plug, 4...High pressure chamber, 5...Insulation layer, 6
... Heating device, 7 ... Metal electrode, 7a ... Plate-shaped part, 8 ... Terminal, 9 ... Heat generating part, 10 ... Power introduction plug, 11 ... Heat insulating material, 12 ... Lead electrode, 13 ... Spacer, 18 ... Lead electrode terminal, 19 ... Lead plate, 20 ... Ring-shaped pedestal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱間静水圧加圧装置において、高圧シリンダ
と、その上下開口部を密封する上下プラグからな
る高圧容器内で、前記下部プラグに支持された被
処理体を加熱するため、該被処理体収容部の周囲
に繞設される加熱装置であつて、筒状を呈する発
熱部と、該発熱部から下方に設けられた端子部
と、該端子部の下部に連結され、その下部に外側
へ向かつて延びる板状部を有する金属製電極と、
該金属製電極の板状部下面にその上面が接し、前
記下部プラグの外周部上面に沿つて延びる板状の
リード電極と、該リード電極と下部プラグもしく
は下部プラグ上に取り付けられるリング状台座と
の間に配置された電気絶縁材料からなる薄板状の
スペーサと、前記リード電極における金属製電極
の反対側端部に設けられたリード電極端子と、該
リード電極端子に接して外部より電力を供給する
電力導入部材とを含み、構成されてなることを特
徴とする熱間静水圧加圧装置用加熱装置。
In a hot isostatic pressurizing device, in a high-pressure container consisting of a high-pressure cylinder and upper and lower plugs that seal the upper and lower openings of the high-pressure cylinder, in order to heat the object to be processed supported by the lower plug, the object-to-be-processed storage section is used. The heating device is a heating device that is installed around the cylindrical heat generating part, a terminal part provided below the heat generating part, and a terminal part connected to the lower part of the terminal part and facing outward at the lower part. a metal electrode having an extending plate-like portion;
a plate-shaped lead electrode whose upper surface is in contact with the plate-shaped lower surface of the metal electrode and which extends along the outer peripheral upper surface of the lower plug; and a ring-shaped pedestal that is attached to the lead electrode and the lower plug or on the lower plug. a thin plate-like spacer made of an electrically insulating material disposed between; a lead electrode terminal provided at the opposite end of the metal electrode of the lead electrode; and a lead electrode terminal that is in contact with and supplies power from the outside. 1. A heating device for a hot isostatic pressurizing device, characterized in that the heating device is configured to include a power introduction member that provides a power introduction member.
JP3860084U 1984-03-17 1984-03-17 Heating device for hot isostatic pressurization equipment Granted JPS60151094U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3860084U JPS60151094U (en) 1984-03-17 1984-03-17 Heating device for hot isostatic pressurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3860084U JPS60151094U (en) 1984-03-17 1984-03-17 Heating device for hot isostatic pressurization equipment

Publications (2)

Publication Number Publication Date
JPS60151094U JPS60151094U (en) 1985-10-07
JPH018955Y2 true JPH018955Y2 (en) 1989-03-10

Family

ID=30545760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3860084U Granted JPS60151094U (en) 1984-03-17 1984-03-17 Heating device for hot isostatic pressurization equipment

Country Status (1)

Country Link
JP (1) JPS60151094U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101708490B1 (en) * 2014-04-11 2017-02-21 에너진(주) A isostatic press be able to heating and colding, and a manufacturing method of Chip Component using the same

Also Published As

Publication number Publication date
JPS60151094U (en) 1985-10-07

Similar Documents

Publication Publication Date Title
US5117482A (en) Porous ceramic body electrical resistance fluid heater
JPH018955Y2 (en)
CN105960033B (en) Heating device
US3403212A (en) Electric furnace having a heating element of carbon or graphite for producing temperatures under high pressures
US4469925A (en) Inductive heating device utilizing a heat insulator
JP2004323920A (en) Sintering die of electric pressure sintering device
JPS6338885A (en) High-pressure sintering furnace
CN212834143U (en) Graphite electrode device and silicon ingot furnace
US4119876A (en) Electrode structure for an electric discharge device
JP3719769B2 (en) Heating device
CN219572691U (en) Electrode structure for resistance furnace with insulation and heat dissipation functions
US785535A (en) Electric furnace.
CN219174677U (en) Water-cooled electrode flange device of induction coil in vacuum chamber
WO1991001474A1 (en) Oxidizing atmosphere hot isotropic press
JPS6031002Y2 (en) Immersion nozzle for continuous casting
JPS6348789A (en) Ceramic heater
JP3088604B2 (en) High frequency induction thermal plasma equipment
JP3491937B2 (en) Rapid heating method of sample under pressure, diamond growth method using this rapid heating method and its apparatus
US5987053A (en) High temperature air cooled vacuum furnace
JPH02192592A (en) Vacuum heat treatment furnace
SU767848A1 (en) Support insulator
CN116222237A (en) Electrode structure for silicon carbide crystal growth resistance furnace
Kramers et al. A high temperature resistance-heated high vacuum furnace
SU1439367A1 (en) High-temperature vacuum furnace
JPH08250263A (en) Three-phase silicon carbide heater