JPH0159711B2 - - Google Patents

Info

Publication number
JPH0159711B2
JPH0159711B2 JP56075203A JP7520381A JPH0159711B2 JP H0159711 B2 JPH0159711 B2 JP H0159711B2 JP 56075203 A JP56075203 A JP 56075203A JP 7520381 A JP7520381 A JP 7520381A JP H0159711 B2 JPH0159711 B2 JP H0159711B2
Authority
JP
Japan
Prior art keywords
insulation resistance
resistance value
added
shows
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56075203A
Other languages
Japanese (ja)
Other versions
JPS57189481A (en
Inventor
Hidesato Kawanishi
Noboru Naruo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7520381A priority Critical patent/JPS57189481A/en
Priority to DE8282901434T priority patent/DE3278966D1/en
Priority to PCT/JP1982/000171 priority patent/WO1982004171A1/en
Priority to EP82901434A priority patent/EP0079385B1/en
Priority to AU83963/82A priority patent/AU541582B2/en
Priority to AT82901434T priority patent/ATE36797T1/en
Priority to US06/460,242 priority patent/US4586020A/en
Publication of JPS57189481A publication Critical patent/JPS57189481A/en
Publication of JPH0159711B2 publication Critical patent/JPH0159711B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシーズヒータに関し、特に寿命が長
く、かつ長時間使用後の使用状態における絶縁抵
抗値の高いシーズヒータを提供しようとするもの
である。 一般に、シーズヒータは第1図に示すように、
両端に端子棒1を備えたコイル状の電熱線2を金
属パイプ3に挿入し、この金属パイプ3に電融マ
グネシア、電融シリカ、電融アルミナ等の電気絶
縁粉末4を充填してなり、必要に応じて金属パイ
プ3の両端をガラス5や耐熱性樹脂6で封口して
なるものである。 このシーズヒータは、加熱部品として、その非
常に優れた性能、品質、簡便さなどから飛躍的に
多用されてきており、家庭電化製品を初め、各種
工業用や宇宙開発、原子力などの特殊用途に至る
まで、その市場範囲は拡大してきている。その中
でも高温用シーズヒータの用途は今後さらに伸び
ていくものと思われる。 ところが、世界的視野でシーズヒータの性能お
よび品質の現状をみると、使用状態における絶縁
抵抗値(以下、熱時絶縁抵抗値と称す)が時間の
経過につれて低下してしまうという欠点と、電熱
線が断線するまでの時間が短かいという欠点があ
つた。 本発明は上記従来のシーズヒータの欠点を解消
し、初期の目的を達成するシーズヒータを提供し
ようとするものである。 本発明者らは、電気絶縁粉末4に着目し各種検
討した結果、NiO,CpO,WO3,CuO,Ga2O3
SoO2の群から選ばれる少くとも一種の酸化物を
0.1〜10重量%添加した電気絶縁粉末4を用いて
シーズヒータを構成することにより、長時間使用
後の熱時絶縁抵抗値が高く、かつ、寿命の長いシ
ーズヒータが得られるという結論を得た。 以下、本発明の実施例について説明する。 〔実施例 1〕 電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末に、Ni
を適当量加えて混合し、これを電気絶縁粉末4と
して準備した。 なお、電融マグネシア粉末は下記第1表の組成
比のものを用いた。 第1表 MgO ……96〜97重量% CaO ……0.2〜0.3重量% SiO2 ……2〜3重量% Al2O3 ……0.4〜0.5重量% Fe2O3 ……0.14〜0.16重量% また、電熱線2として線径0.29mmのニクロム線
第1種を用い、これを巻径2mmのコイル状とし両
端に端子棒1を接続した。 さらに、金属パイプ3として長さ413mm、外径
8mm、肉厚0.46mmのNCF2P(商品名インコロイ
800)を用いた。 この金属パイプ3に、上記端子棒1を両端に接
続した電熱線2を挿入し、この金属パイプ3にあ
らかじめ準備しておいた上記電気絶縁粉末4を充
填し、圧延減径、焼鈍(1050℃、10分間)の各工
程を経て、長さ500mm、外径6.6mmとし、さらに金
属パイプ3の両端を低融点ガラス5および耐熱性
樹脂6で封口して試料番号2〜8のシーズヒータ
を完成した。 なお、試料番号2〜8のシーズヒータにおける
NiOの添加量は第2表に示す通りである。 また、比較のために上記第1表の組成比の電融
マグネシア粉末のみを電気絶縁粉末4として用
い、従来のシーズヒータ(試料番号1)を作成し
た。 上記試料番号1〜8の各シーズヒータについ
て、絶縁性能および寿命性能を調べるために以下
の試験を行つた。 まず、完成された各試料の初期特性として、金
属パイプ表面温度750℃とした状態における絶縁
抵抗値を測定した。この結果を第2表に示す。 また、金属パイプ3の表面温度950℃に維持す
るように電熱線2に連続通電し、熱時絶縁抵抗値
の変化を測定した。なお、熱時絶縁抵抗値を測定
する時は金属パイプ3の表面温度を750℃に低下
させて測定した。この熱時絶縁抵抗値の変化を第
2図に示す。第2図において、A〜Hはそれぞれ
試料番号1〜8の各シーズヒータの熱時絶縁抵抗
値の変化を示す。 ちなみに、上記連続通電開始から11日後におけ
る熱時絶縁抵抗値を第2表に示す。また、Ni
の添加量と上記連続通電開始から11日後における
熱時絶縁抵抗値の関係を第3図に示す。 さらに、試料番号1〜8の各シーズヒータにつ
いて、上記連続通電を持続し、電熱線2が断線す
るまでの日数(寿命)を測定した。この結果を第
2表に示すとともに、NiOの添加量を寿命との
関係を第4図に示す。
The present invention relates to a sheathed heater, and an object of the present invention is to provide a sheathed heater that has a particularly long life and a high insulation resistance value in a used state after long-term use. Generally, sheathed heaters are as shown in Figure 1.
A coiled heating wire 2 with terminal rods 1 at both ends is inserted into a metal pipe 3, and the metal pipe 3 is filled with electrical insulating powder 4 such as fused magnesia, fused silica, fused alumina, etc. Both ends of the metal pipe 3 are sealed with glass 5 or heat-resistant resin 6 as required. This sheathed heater has been rapidly used as a heating component due to its excellent performance, quality, and simplicity, and is used in home appliances, various industries, space exploration, nuclear power, and other special applications. Since then, its market scope has been expanding. Among these, the use of high-temperature sheathed heaters is expected to continue to grow in the future. However, if we look at the current state of performance and quality of sheathed heaters from a global perspective, we find that their insulation resistance value (hereinafter referred to as hot insulation resistance value) decreases over time during use, and that the heating wire The disadvantage was that it took a short time for the wire to break. The present invention aims to eliminate the drawbacks of the conventional sheathed heaters mentioned above and provide a sheathed heater that achieves the initial objectives. The present inventors focused on the electrical insulating powder 4 and as a result of various studies, found that N i O, C p O, WO 3 , Cu O, Ga 2 O 3 ,
At least one oxide selected from the group of S o O 2
It was concluded that by constructing a sheathed heater using electrical insulating powder 4 added with 0.1 to 10% by weight, a sheathed heater with a high insulation resistance value when hot after long-term use and a long life can be obtained. . Examples of the present invention will be described below. [Example 1] Electro-fused magnesia powder was used as the main component of the electrical insulating powder 4, and N i O was added to this electro-fused magnesia powder.
An appropriate amount of was added and mixed to prepare electrical insulation powder 4. The fused magnesia powder used had the composition ratio shown in Table 1 below. Table 1 M g O ...96-97% by weight C a O ...0.2-0.3% by weight S i O 2 ...2-3% by weight A l2 O 3 ...0.4-0.5% by weight Fe 2 O 3 ... ...0.14 to 0.16% by weight Further, a first type nichrome wire with a wire diameter of 0.29 mm was used as the heating wire 2, which was formed into a coil with a winding diameter of 2 mm and the terminal rods 1 were connected to both ends. Furthermore, as the metal pipe 3, NCF 2 P (trade name Incoloy) with a length of 413 mm, an outer diameter of 8 mm, and a wall thickness of 0.46 mm is
800) was used. The heating wire 2 with the terminal bar 1 connected to both ends is inserted into the metal pipe 3, the metal pipe 3 is filled with the electrical insulation powder 4 prepared in advance, and the metal pipe 3 is rolled to reduce its diameter and annealed at 1050°C. , 10 minutes), the length was 500 mm and the outer diameter was 6.6 mm, and both ends of the metal pipe 3 were sealed with low melting point glass 5 and heat-resistant resin 6 to complete the sheathed heaters of sample numbers 2 to 8. did. In addition, in the sheathed heaters of sample numbers 2 to 8
The amount of N i O added is shown in Table 2. Further, for comparison, a conventional sheathed heater (sample number 1) was prepared using only the electrofused magnesia powder having the composition ratio shown in Table 1 above as the electrical insulating powder 4. The following tests were conducted to examine the insulation performance and life performance of each of the sheathed heaters of sample numbers 1 to 8 above. First, as an initial characteristic of each completed sample, the insulation resistance value was measured at a metal pipe surface temperature of 750°C. The results are shown in Table 2. Further, the heating wire 2 was continuously energized so as to maintain the surface temperature of the metal pipe 3 at 950° C., and the change in insulation resistance value during heating was measured. In addition, when measuring the insulation resistance value under heat, the surface temperature of the metal pipe 3 was lowered to 750°C. FIG. 2 shows the change in insulation resistance value during heating. In FIG. 2, A to H indicate changes in insulation resistance values during heating of each sheathed heater of sample numbers 1 to 8, respectively. Incidentally, Table 2 shows the thermal insulation resistance values 11 days after the start of the continuous current application. Also, N i O
FIG. 3 shows the relationship between the amount of addition and the thermal insulation resistance value 11 days after the start of the continuous current application. Furthermore, for each of the sheathed heaters of sample numbers 1 to 8, the continuous energization was continued and the number of days (life) until the heating wire 2 was disconnected was measured. The results are shown in Table 2, and the relationship between the amount of N i O added and the service life is shown in FIG.

〔実施例 2〕[Example 2]

電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末に、CpOを
適当量加えて混合し、これを電気絶縁粉末4とし
て準備した。 以下、実施例1と同様にして、試料番号9〜14
のシーズヒータを完成した。 また、これらのシーズヒータについて、実施例
1と同様にして初期熱時絶縁抵抗値、熱時絶縁抵
抗値の経時変化、寿命を測定した。 この測定結果のうち、第3表に初期熱時絶縁抵
抗値、11日後の熱時絶縁抵抗値、寿命を示す。 また、第5図に熱時絶縁抵抗値の経時変化を示
し、第6図にCpOの添加量と11日後の熱時絶縁抵
抗値の関係を示し、第7図にCpOの添加量と寿命
の関係を示す。 なお、第5図において、I〜Nはそれぞれ試料
番号9〜14の各シーズヒータの場合を示す。
Electrically fused magnesia powder was used as the main component of the electrically insulating powder 4, and an appropriate amount of C p O was added and mixed to the fused magnesia powder to prepare the electrically insulating powder 4. Hereinafter, sample numbers 9 to 14 were prepared in the same manner as in Example 1.
completed a sheathed heater. Further, for these sheathed heaters, the initial heating insulation resistance value, the temporal change in the heating insulation resistance value, and the lifespan were measured in the same manner as in Example 1. Among the measurement results, Table 3 shows the initial heat insulation resistance value, the heat insulation resistance value after 11 days, and the lifespan. In addition, Fig. 5 shows the change over time in the thermal insulation resistance value, Fig. 6 shows the relationship between the amount of C p O added and the thermal insulation resistance value after 11 days, and Fig. 7 shows the relationship between the amount of C p O added and the thermal insulation resistance value after 11 days. Shows the relationship between quantity and lifespan. In addition, in FIG. 5, I to N indicate the cases of each sheathed heater of sample numbers 9 to 14, respectively.

〔実施例 3〕[Example 3]

電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末に、WO3
を適当量加えて混合し、これを電気絶縁粉末4と
して準備した。 以下、実施例1と同様にして、試料番号15〜20
のシーズヒータを完成した。 また、これらのシーズヒータについて、実施例
1と同様にして初期熱時絶縁抵抗値、熱時絶縁抵
抗値の経時変化、寿命を測定した。 この測定結果のうち、第4表に初期熱時絶縁抵
抗値、11日後の熱時絶縁抵抗値、寿命を示す。 また、第8図に熱時絶縁抵抗値の経時変化を示
し、第9図にWO3の添加量と11日後の熱時絶縁
抵抗値の関係を示し、第10図にWO3の添加量
と寿命の関係を示す。 なお、第8図において、P〜Uはそれぞれ試料
番号15〜20の各シーズヒータの場合を示す。
Electrically fused magnesia powder is used as the main component of the electrical insulating powder 4, and WO 3 is added to this fused magnesia powder.
An appropriate amount of was added and mixed to prepare electrical insulation powder 4. Hereinafter, sample numbers 15 to 20 were prepared in the same manner as in Example 1.
completed a sheathed heater. Further, for these sheathed heaters, the initial heating insulation resistance value, the temporal change in the heating insulation resistance value, and the lifespan were measured in the same manner as in Example 1. Among the measurement results, Table 4 shows the initial heat insulation resistance value, the heat insulation resistance value after 11 days, and the lifespan. In addition, Fig. 8 shows the change in the thermal insulation resistance value over time, Fig. 9 shows the relationship between the amount of WO 3 added and the insulation resistance value after 11 days, and Fig. 10 shows the relationship between the amount of WO 3 added and the insulation resistance value after 11 days. Shows the relationship between lifespan. In addition, in FIG. 8, P to U indicate the cases of each sheathed heater with sample numbers 15 to 20, respectively.

〔実施例 4〕[Example 4]

電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末に、Cu
を適当量加えて混合し、これを電気絶縁粉末4と
して準備した。 以下、実施例1と同様にして、試料番号21〜26
のシーズヒータを完成した。 また、これらのシーズヒータについて、実施例
1と同様にして初期熱時絶縁抵抗値、熱時絶縁抵
抗値の経時変化、寿命を測定した。 この測定結果のうち、第5表に初期熱時絶縁抵
抗値、11日後の熱時絶縁抵抗値、寿命を示す。 また、第11図に熱時絶縁抵抗値の経時変化を
示し、第12図にCuOの添加量と11日後の熱時
絶縁抵抗値の関係を示し、第13図にCuOの添
加量と寿命の関係を示す。 なお、第11図において、a〜fはそれぞれ試
料番号21〜26の各シーズヒータの場合を示す。
Electrically fused magnesia powder is used as the main component of the electrical insulating powder 4, and C u O is added to this fused magnesia powder.
An appropriate amount of was added and mixed to prepare electrical insulation powder 4. Hereinafter, sample numbers 21 to 26 were prepared in the same manner as in Example 1.
completed a sheathed heater. Further, for these sheathed heaters, the initial heating insulation resistance value, the temporal change in the heating insulation resistance value, and the lifespan were measured in the same manner as in Example 1. Among the measurement results, Table 5 shows the initial heat insulation resistance value, the heat insulation resistance value after 11 days, and the lifespan. In addition, Fig. 11 shows the change in the thermal insulation resistance over time, Fig. 12 shows the relationship between the amount of C u O added and the thermal insulation resistance after 11 days, and Fig. 13 shows the relationship between the amount of C u O added and the thermal insulation resistance after 11 days. Shows the relationship between quantity and lifespan. In addition, in FIG. 11, a to f indicate the cases of each sheathed heater of sample numbers 21 to 26, respectively.

【表】【table】

〔実施例 5〕[Example 5]

電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末に、Ga2O3
を適当量加えて混合し、これを電気絶縁粉末4と
して準備した。 以下、実施例1と同様にして、試料番号27〜32
のシーズヒータを完成した。 また、これらのシーズヒータについて、実施例
1と同様にして初期熱時絶縁抵抗値、熱時絶縁抵
抗値の経時変化、寿命を測定した。 この測定結果のうち、第6表に初期熱時絶縁抵
抗値、11日後の熱時絶縁抵抗値、寿命を示す。 また、第14図に熱時絶縁抵抗値の経時変化を
示し、第15図にGa2O3の添加量と11日後の熱時
絶縁抵抗値の関係を示し、第16図にGa2O3の添
加量と寿命の関係を示す。 なお、第14図において、g〜lはそれぞれ試
料番号27〜32の各シーズヒータの場合を示す。
Electro-fused magnesia powder is used as the main component of the electrical insulating powder 4, and Ga 2 O 3 is added to this electro-fused magnesia powder.
An appropriate amount of was added and mixed to prepare electrical insulation powder 4. Hereinafter, sample numbers 27 to 32 were prepared in the same manner as in Example 1.
completed a sheathed heater. Further, for these sheathed heaters, the initial heating insulation resistance value, the temporal change in the heating insulation resistance value, and the lifespan were measured in the same manner as in Example 1. Among the measurement results, Table 6 shows the initial heat insulation resistance value, the heat insulation resistance value after 11 days, and the lifespan. In addition, Fig. 14 shows the change over time in the thermal insulation resistance value, Fig. 15 shows the relationship between the amount of Ga 2 O 3 added and the thermal insulation resistance value after 11 days, and Fig. 16 shows the relationship between the amount of Ga 2 O 3 added and the thermal insulation resistance value after 11 days. The relationship between the amount of addition and the life is shown. In addition, in FIG. 14, g to l indicate the cases of each sheathed heater of sample numbers 27 to 32, respectively.

〔実施例 6〕[Example 6]

電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末に、SoO2
を適当量加えて混合し、これを電気絶縁粉末4と
して準備した。 以下、実施例1と同様にして、試料番号33〜38
のシーズヒータを完成した。 また、これらのシーズヒータについて、実施例
1と同様にして初期熱時絶縁抵抗値、熱時絶縁抵
抗値の径時変化、寿命を測定した。 この測定結果のうち、第7表に初期熱時絶縁抵
抗値、11日後の熱時絶縁抵抗値、寿命を示す。 また、第17図に熱時絶縁抵抗値の経時変化を
示し、第18図にSoO2の添加量と11日後の熱時
絶縁抵抗値の関係を示し、第19図にSoO2の添
加量と寿命の関係を示す。 なお、第17図において、m〜rはそれぞれ試
料番号33〜38の各シーズヒータの場合を示す。
Electrically fused magnesia powder is used as the main component of the electrical insulating powder 4, and S O 2 is added to this fused magnesia powder.
An appropriate amount of was added and mixed, and this was prepared as electrical insulating powder 4. Hereinafter, sample numbers 33 to 38 were prepared in the same manner as in Example 1.
completed a sheathed heater. Further, for these sheathed heaters, the initial heating insulation resistance value, the radial change in the heating insulation resistance value, and the lifespan were measured in the same manner as in Example 1. Among the measurement results, Table 7 shows the initial heat insulation resistance value, the heat insulation resistance value after 11 days, and the lifespan. In addition, Fig. 17 shows the change over time in the thermal insulation resistance value, Fig. 18 shows the relationship between the amount of S o O 2 added and the thermal insulation resistance value after 11 days, and Fig . 19 shows the change in the thermal insulation resistance value over time. The relationship between the amount of addition and the service life is shown. In addition, in FIG. 17, m to r indicate the cases of each sheathed heater of sample numbers 33 to 38, respectively.

〔実施例 7〕[Example 7]

電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末に、Ni
とCpOを適当量加えて混合し、これを電気絶縁粉
末4として準備した。なお、NiOの添加量とCp
Oの添加量は同一とした。 以下、実施例1と同様にして、試料番号39〜44
のシーズヒータを完成した。 また、これらのシーズヒータについて、実施例
1と同様にして初期熱時絶縁抵抗値、熱時絶縁抵
抗値の経時変化、寿命を測定した。 この測定結果のうち、第8表に初期熱時絶縁抵
抗値、11日後の熱時絶縁抵抗値、寿命を示す。 また、第20図に熱時絶縁抵抗値の経時変化を
示し、第21図にNiOとCpOの総添加量と11日
後の熱時絶縁抵抗値の関係を示し、第22図に
NiOとCpOの総添加量と寿命の関係を示す。 なお、第20図において、s〜xはそれぞれ試
料番号39〜44の各シーズヒータの場合を示す。
Electrically fused magnesia powder is used as the main component of the electrical insulating powder 4, and N i O is added to this fused magnesia powder.
and C p O were added and mixed in appropriate amounts, and this was prepared as electrical insulating powder 4. In addition, the amount of N i O added and C p
The amount of O added was the same. Hereinafter, sample numbers 39 to 44 were prepared in the same manner as in Example 1.
completed a sheathed heater. Further, for these sheathed heaters, the initial heating insulation resistance value, the temporal change in the heating insulation resistance value, and the lifespan were measured in the same manner as in Example 1. Among the measurement results, Table 8 shows the initial heat insulation resistance value, the heat insulation resistance value after 11 days, and the lifespan. In addition, Fig. 20 shows the change over time in the thermal insulation resistance value, Fig. 21 shows the relationship between the total addition amount of N i O and C p O and the thermal insulation resistance value after 11 days, and Fig. 22 shows the relationship between the total addition amount of N i O and C p O and the thermal insulation resistance value after 11 days.
The relationship between the total amount of N i O and C p O added and life is shown. In addition, in FIG. 20, s to x indicate the cases of each sheathed heater with sample numbers 39 to 44, respectively.

〔実施例 8〕[Example 8]

電気絶縁粉末4の主成分として電融マグネシア
粉末を用い、この電融マグネシア粉末にNiOと
CuOとGa2O3を適当量加えて混合し、これを電気
絶縁粉末4として準備した。なお、NiOの添加
量とCpOの添加量とGa2O3の添加量は同一とし
た。 以下、実施例1と同様にして、試料番号45〜50
のシーズヒータを完成した。 また、これらのシーズヒータについて、実施例
1と同様にして初期熱時絶縁抵抗値、熱時絶縁抵
抗値の経時変化、寿命を測定した。 この測定結果のうち、第9表に初期熱時絶縁抵
抗値、11日後の熱時絶縁抵抗値、寿命を示す。 また、第23図に熱時絶縁抵抗値の経時変化を
示し、第24図にNiOとCuOとGa2O3の総添加量
と11日後の熱時絶縁抵抗値の関係を示し、第25
図にNiOとCuOとGa2O3の総添加量と寿命の関係
を示す。 なお、第23図において、イ〜ヘはそれぞれ試
料番号45〜50の各シーズヒータの場合を示す。
Electro-fused magnesia powder is used as the main component of the electrical insulating powder 4, and NiO and N i O are added to this electro-fused magnesia powder.
Appropriate amounts of C u O and Ga 2 O 3 were added and mixed to prepare electrical insulating powder 4. Note that the amount of N i O added, the amount of C p O added, and the amount of Ga 2 O 3 added were the same. Hereinafter, in the same manner as in Example 1, sample numbers 45 to 50
completed a sheathed heater. Further, for these sheathed heaters, the initial heating insulation resistance value, the temporal change in the heating insulation resistance value, and the lifespan were measured in the same manner as in Example 1. Among the measurement results, Table 9 shows the initial heat insulation resistance value, the heat insulation resistance value after 11 days, and the lifespan. In addition, Fig. 23 shows the change in thermal insulation resistance over time, and Fig. 24 shows the relationship between the total amount of NiO , CuO , and Ga 2 O 3 added and the thermal insulation resistance after 11 days. , 25th
The figure shows the relationship between the total amount of N i O, Cu O , and Ga 2 O 3 added and the life. In addition, in FIG. 23, A to F show the cases of each sheathed heater with sample numbers 45 to 50, respectively.

【表】【table】

【表】 第9表および第23図から明らかなように、試
料番号45〜49のシーズヒータ、すなわちNiOと
CuOとGa2O3の総添加量が0.1〜10重量%のシー
ズヒータは従来の試料番号1のシーズヒータに比
べて熱時絶縁抵抗値の低下が少なく良好であつ
た。また、試料番号50のシーズヒータは完成初期
の熱時絶縁抵抗値が低く、実用に供し得ない。 また、第24図から明らかなように、NiOと
CuOとGa2O3の総添加量が0.1〜10重量%のシー
ズヒータは連続通電開始から11日後の熱時絶縁抵
抗値が従来の試料番号1のシーズヒータに比べ、
高い値を示した。 さらに、第24図から明らかなように、Ni
とCuOとGa2O3の総添加量が0.1〜10重量%のシ
ーズヒータは従来の試料番号1のシーズヒータに
比べ寿命が長くなつた。 このようにNiOとCuOとGa2O3の総添加量を
0.1〜10重量%とした電気絶縁粉末4を用いて構
成したシーズヒータは熱時絶縁抵抗値の低下が少
なく、かつ、寿命が長いものとなつた。 なお、上記実施例1〜8において、電気絶縁粉
末の主成分として電融マグネシア粉末を用いた
が、電融マグネシア粉末に代えて、電融アルミナ
粉末、電融シリカ粉末を用いても同様の傾向を示
した。 さらに、電融マグネシア粉末を用いる場合にお
いても電融マグネシア粉末の種類により、その特
性を維持しながら本発明効果が付加される。例え
ば固有抵抗値の高い電融マグネシア粉末を用いれ
ば絶縁抵抗値のより高いシーズヒータを得ること
ができ、また比較的に寿命の長い高純度電融マグ
ネシア粉末を用いれば寿命のより長いシーズヒー
タが得られる。 また、電熱線2としてニクロム線第1種を用い
たが、第10表に示す線材を用いても同様の結果が
得られ、金属パイプ3についても第11表に示すも
のを用いても同様の結果が得られた。
[Table] As is clear from Table 9 and Figure 23, the sheathed heaters of sample numbers 45 to 49, that is, the
The sheathed heater in which the total amount of C u O and Ga 2 O 3 added was 0.1 to 10% by weight was better than the conventional sheathed heater of sample number 1, with less decrease in insulation resistance value during heating. In addition, the sheathed heater of sample number 50 had a low insulation resistance value during heating at the initial stage of completion, and could not be put to practical use. Also, as is clear from Figure 24, N i O and
The sheathed heater with a total additive amount of C u O and Ga 2 O 3 of 0.1 to 10% by weight has a thermal insulation resistance value 11 days after the start of continuous energization compared to the conventional sheathed heater of sample number 1.
It showed a high value. Furthermore, as is clear from Fig. 24, N i O
The sheathed heater in which the total addition amount of C u O and Ga 2 O 3 was 0.1 to 10% by weight had a longer lifespan than the conventional sheathed heater of sample number 1. In this way, the total amount of N i O, C u O, and Ga 2 O 3 added is
The sheathed heater constructed using the electrically insulating powder 4 in an amount of 0.1 to 10% by weight showed less decrease in insulation resistance value during heating and had a longer life. In addition, in Examples 1 to 8 above, fused magnesia powder was used as the main component of the electrical insulating powder, but the same tendency would occur even if fused alumina powder or fused silica powder was used instead of fused magnesia powder. showed that. Furthermore, even when using electrofused magnesia powder, the effects of the present invention can be added while maintaining its characteristics depending on the type of electrofused magnesia powder. For example, if fused magnesia powder with a high specific resistance value is used, a sheathed heater with a higher insulation resistance value can be obtained, and if high-purity fused magnesia powder with a relatively long life is used, a sheathed heater with a longer life can be obtained. can get. In addition, although a type 1 nichrome wire was used as the heating wire 2, similar results were obtained using the wire materials shown in Table 10, and similar results were obtained using the wire materials shown in Table 11 for the metal pipe 3. The results were obtained.

【表】【table】

【表】【table】

【表】 また、上記実施例1〜8において、低融点ガラ
ス5、耐熱性樹脂6で封口したが、封口しない場
合にあつても同様の傾向を示した。 以上の説明から明らかなように、本発明のシー
ズヒータは、NiO,CpO,WO3,CuO,Ga2O3
SoO2の群から選ばれる少くとも一種の酸化物を
0.1〜10重量%添加した電気絶縁粉末を用いるこ
とにより、寿命が長く、かつ、長時間使用後にお
ける熱時絶縁抵抗値が高いものとなる。 なお、本発明シーズヒータは第1図に示す形状
のものに限定されることはなく、カートリツジヒ
ータやグロープラグと称されるものも含む。
[Table] Furthermore, in Examples 1 to 8, the seals were sealed with low melting point glass 5 and heat resistant resin 6, but the same tendency was observed even when the seals were not sealed. As is clear from the above description, the sheathed heater of the present invention contains N i O, C p O, WO 3 , Cu O, Ga 2 O 3 ,
At least one oxide selected from the group of S o O 2
By using electrical insulating powder added in an amount of 0.1 to 10% by weight, the product has a long life and a high insulation resistance value when hot after long-term use. Note that the sheathed heater of the present invention is not limited to the shape shown in FIG. 1, but also includes what are called cartridge heaters and glow plugs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なシーズヒータの断面図、第2
〜25図は本発明の実施例に係り、第2,5,
8,11,14,17,20,23図は通電日数
と熱時絶縁抵抗値の特性図、第3,6,9,1
2,15,18,21,24図は酸化物の添加量
と熱時絶縁抵抗値の特性図、第4,7,10,1
3,16,19,22,25図は酸化物の添加量
と寿命の特性図である。 2…電熱線、3…金属パイプ、4…電気絶縁粉
末。
Figure 1 is a cross-sectional view of a typical sheathed heater, Figure 2
-25 relate to the embodiment of the present invention, and the second, fifth, and
Figures 8, 11, 14, 17, 20, and 23 are characteristic diagrams of the number of energizing days and the insulation resistance value during heat, and Figures 3, 6, 9, and 1
Figures 2, 15, 18, 21, and 24 are characteristic diagrams of the amount of oxide added and the insulation resistance value during heating, and figures 4, 7, 10, and 1
Figures 3, 16, 19, 22, and 25 are characteristic diagrams of the amount of oxide added and the life. 2... Heating wire, 3... Metal pipe, 4... Electrical insulation powder.

Claims (1)

【特許請求の範囲】[Claims] 1 金属パイプに電熱線を挿入するとともに電気
絶縁粉末を充填してなるシーズヒータにおいて、
前記電気絶縁粉末として、電融マグネシア粉末に
WO3,CuO,Ga2O3の群から選ばれる少くとも
一種の酸化物を0.1〜10重量%添加したものを用
いてなるシーズヒータ。
1 In a sheathed heater made by inserting a heating wire into a metal pipe and filling it with electrical insulating powder,
As the electric insulating powder, electrofused magnesia powder is used.
A sheathed heater containing 0.1 to 10% by weight of at least one oxide selected from the group of WO 3 , CuO , and Ga 2 O 3 .
JP7520381A 1981-05-18 1981-05-18 Sheathed heater Granted JPS57189481A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7520381A JPS57189481A (en) 1981-05-18 1981-05-18 Sheathed heater
DE8282901434T DE3278966D1 (en) 1981-05-18 1982-05-17 A shielded heating element and a method of manufacturing the same
PCT/JP1982/000171 WO1982004171A1 (en) 1981-05-18 1982-05-17 A shielded heating element and a method of manufacturing the same
EP82901434A EP0079385B1 (en) 1981-05-18 1982-05-17 A shielded heating element and a method of manufacturing the same
AU83963/82A AU541582B2 (en) 1981-05-18 1982-05-17 A shielded heating element and a method of manufacturing the same
AT82901434T ATE36797T1 (en) 1981-05-18 1982-05-17 SHIELDED HEATING ELEMENT AND ITS MANUFACTURING PROCESS.
US06/460,242 US4586020A (en) 1981-05-18 1982-05-17 Sheathed resistance heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7520381A JPS57189481A (en) 1981-05-18 1981-05-18 Sheathed heater

Publications (2)

Publication Number Publication Date
JPS57189481A JPS57189481A (en) 1982-11-20
JPH0159711B2 true JPH0159711B2 (en) 1989-12-19

Family

ID=13569396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7520381A Granted JPS57189481A (en) 1981-05-18 1981-05-18 Sheathed heater

Country Status (1)

Country Link
JP (1) JPS57189481A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212987A (en) * 1984-04-09 1985-10-25 松下電器産業株式会社 Sheathed heater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469000A (en) * 1977-11-10 1979-06-02 Matsushita Electric Ind Co Ltd Electric insulator porcelain
JPS5658248A (en) * 1979-10-17 1981-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469000A (en) * 1977-11-10 1979-06-02 Matsushita Electric Ind Co Ltd Electric insulator porcelain
JPS5658248A (en) * 1979-10-17 1981-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor device

Also Published As

Publication number Publication date
JPS57189481A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
EP0079386B1 (en) A shielded heating element
US4280932A (en) Magnesia insulated heating elements
JPH0159711B2 (en)
EP0079385B1 (en) A shielded heating element and a method of manufacturing the same
US4234786A (en) Magnesia insulated heating elements and method of making the same
JPH0129036B2 (en)
JPS649716B2 (en)
JPS6047709B2 (en) Sea heater
JPH0211992B2 (en)
JPS6362077B2 (en)
JPH0318318B2 (en)
JPS5914288A (en) Sheathed heater
JPH0131675B2 (en)
JPS647470B2 (en)
JPS6041809B2 (en) sheathed heater
JPS6359517B2 (en)
JPS6362075B2 (en)
JPS5914289A (en) Sheathed heater
JPS6047710B2 (en) Sea heater
JPH0138360B2 (en)
JPH0155555B2 (en)
JPS6258118B2 (en)
JPS5953644B2 (en) electrical insulation materials
JPS6322035B2 (en)
JPH0155554B2 (en)