JPH0157457B2 - - Google Patents

Info

Publication number
JPH0157457B2
JPH0157457B2 JP26319284A JP26319284A JPH0157457B2 JP H0157457 B2 JPH0157457 B2 JP H0157457B2 JP 26319284 A JP26319284 A JP 26319284A JP 26319284 A JP26319284 A JP 26319284A JP H0157457 B2 JPH0157457 B2 JP H0157457B2
Authority
JP
Japan
Prior art keywords
copper
way
contact
molybdenum
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26319284A
Other languages
Japanese (ja)
Other versions
JPS61140011A (en
Inventor
Eizo Naya
Mitsuhiro Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59263192A priority Critical patent/JPS61140011A/en
Priority to CN85108080.4A priority patent/CN1003329B/en
Priority to KR1019850008360A priority patent/KR890002585B1/en
Priority to DE8585115919T priority patent/DE3584825D1/en
Priority to EP85115919A priority patent/EP0184854B1/en
Publication of JPS61140011A publication Critical patent/JPS61140011A/en
Priority to US07/080,260 priority patent/US4870231A/en
Publication of JPH0157457B2 publication Critical patent/JPH0157457B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は大電流しや断性能に優れ、かつ耐電
圧性能に優れた真空しや断器用接点材料に関する
ものである。 〔従来の技術〕 真空しや断器は、その無保守、無公害性、優れ
たしや断性能等の利点を持つため、適用範囲が急
速に拡大してきている。また、それに伴い、より
高耐圧化、大電流しや断化の要求がきびしくなつ
てきている。一方、真空しや断器の性能は真空容
器内の接点材料によつて決定される要素がきわめ
て大である。 真空しや断器用接点材料の満足すべき特性とし
て、(1)しや断容量が大きいこと、(2)耐電圧が高い
こと、(3)接触抵抗が小さいこと、(4)溶着力が小さ
いこと、(5)接点消耗量が小さいこと、(6)さい断電
流量が小さいこと、(7)加工性が良いこと、(8)十分
な機械的強度を有すること等がある。 実際の接点材料では、これらの特性を全て満足
させることは、かなり困難であつて、一般には用
途に応じて特に重要な特性を満足させ、他の特性
をある程度犠牲にした材料を使用しているのが実
状である。例えば特開昭55−78429号に記載の銅
−タングステン接点材料は耐電圧性能が優れてい
るため、負荷開閉器や接触器等の用途によく用い
られているが、この接点材料は大電流しや断性能
が若干劣るという面を持つている。 一方、例えば特開昭54−71375号に記載の銅−
クロム接点材料は非常にしや断性能が優れている
ため、しや断器等の用途によく用いられている
が、耐電圧性能では上記銅−タングステン接点材
料に劣つている。 上記真空しや断器用接点材料の他に、一般に気
中、油中等で用いられている接点材料の例が「粉
末治金学(日刊工業新聞社刊)」等の文献に挙げ
られている。しかし、例えば上記粉末治金学
P.229〜230に記載の銀−モリブデン系接点材料や
銅−モリブデン接点材料は真空しや断器用接点に
用いた場合、耐電圧性能は上記銅−タングステン
接点材料よりも劣り、電流しや断性能は上記銅−
クロム接点材料よりも劣つているため、現在のと
ころほとんど使用されていない。 〔発明が解決しようとする問題点〕 従来の真空しや断器用接点は以上のように、
各々の特性を活かして使用されてきたが、近年真
空しや断器の大電流化、高電圧化への要求が一段
と厳しくなり、従来の接点材料では要求性能を十
分満足させることが困難となつてきている。又、
真空しや断器の小型化に対しても、より優れた性
能をもつ接点材料が求められている。 この発明は上記のような従来のものを改良する
ためになされたもので、しや断性能に優れた真空
しや断器用接点材料を提供することを目的として
いる。 〔問題点を解決するための手段〕 発明者らは銅に種々の金属、合金、金属間化合
物を添加した材料を試作し、真空しや断器に組込
み、種々の実験を行つた。この結果、銅とクロム
とモリブデンとニオブから成る接点材料は非常に
優れたしや断性能を有していることが判つた。 この発明による真空しや断器用接点材料は銅と
クロムとモリブデンとニオブから成ることを特徴
としたものである。 〔作用〕 銅とクロムとモリブデンとニオブとで接点を構
成したので電気伝導度としや断性能の優れた接点
を得ることができる。 〔発明の実施例〕 以下、この発明の実施例について説明する。 (接点材料の作成) 接点材料の作成は粉末治金法を用い、溶浸法、
完全粉末焼結法及びホツトプレス法の3通りで行
つた。 第1の溶浸法による接点材料の製造方法は、粒
径45μm以下のクロム粉末と平均粒径3μmのモリ
ブデン粉末と粒径40μm以下のニオブ粉末と粒径
40μm以下の銅粉末を各々42.3対43.4対9.9対4.4の
割合で秤量した後、2時間混合を行い、つづいて
この混合粉を所定の形状の金型に充填し、1ton/
cm2の荷重でプレスし成形を行つた。 次にこの成形体を真空中1000℃で2時間焼結し
仮焼結体を得た。この後、仮焼結体に無酸素銅の
塊をのせて、水素雰囲気中1250℃で1時間保持
し、無酸素銅を仮焼結体に含浸させ接点材料とし
た。この接点材料の最終成分比を表1にサンプル
12として示す。尚、表1には上記に示したものと
同一方法により製造した他の成分比の接点材料に
ついても合せて掲げてあり、サンプル1〜10まで
は銅量60体積%を目標とし、サンプル11〜20まで
は銅量50体積%を目標、サンプル21〜30までは銅
量40体積%を目標とした。 第2の完全粉末焼結法による接点材料の製造方
法は粒径75μm以下のクロム粉末と平均粒径3μm
のモリブデン粉末と粒径40μm以下のニオブ粉末
と粒径40μm以下の銅粉末を各々14.9対18.9対3.9
対62.3の割合で秤量した後2時間混合を行い、つ
づいてこの混合粉を所定の形状の金型に充填し、
3.3ton/cm2の荷重でプレスし成形を行つた。 次にこの成形体を水素雰囲気中銅の融点直下で
2時間焼結を行い接点材料を得た。表2にサンプ
ル32としてこの例を示す。同様にして得られた他
の成分比の材料についても合せて表2に掲げる。
表2のサンプル31〜40が銅量40体積%で、サンプ
ル41〜50が銅量75体積%である。 第3のホツトプレス法による接点材料の製造法
は粉末の混合までは先に述べた完全粉末焼結法と
同じであり、先の例と同一混合粉を使用した。こ
の混合粉をカーボン製のダイスに充填し、真空中
で2時間加熱、この間に200Kg/cm2の荷重を加え
接点材料の塊を得た。表3にサンプル52としてこ
の例を示す。同様にして得られた他の成分比の材
料についても合せて表3に掲げる。表3のサンプ
ル51〜60が銅量40体積%でサンプル61〜70が銅量
75体積%である。 尚、本発明接点材料との比較をするための従来
の接点材料を表4に示してある。表4のサンプル
71が溶浸法により得られた比較例としての銅−モ
リブデン合金、サンプル72が完全粉末焼結法によ
り得られた銅−モリブデン合金、サンプル73がホ
ツトプレス法により得られた銅−モリブデン合金
で、従来例としてサンプル74に完全粉末焼結法に
より得られた銅−クロム合金を示す。
[Industrial Field of Application] The present invention relates to a contact material for a vacuum shield circuit breaker which has excellent large current circuit breaker performance and excellent withstand voltage performance. [Prior Art] Vacuum sheath breakers have advantages such as maintenance-free, non-polluting properties, and excellent shingle breaker performance, so the scope of their application is rapidly expanding. In addition, along with this, demands for higher voltage resistance and higher current resistance are becoming more severe. On the other hand, the performance of a vacuum shield breaker is determined to a large extent by the contact material inside the vacuum container. Satisfactory characteristics of contact materials for vacuum shield disconnectors include (1) large shield breaking capacity, (2) high withstand voltage, (3) low contact resistance, and (4) low welding force. (5) low contact wear, (6) low cutting current, (7) good workability, and (8) sufficient mechanical strength. In actual contact materials, it is quite difficult to satisfy all of these properties, and in general, materials are used that satisfy particularly important properties depending on the application, sacrificing other properties to some extent. This is the actual situation. For example, the copper-tungsten contact material described in JP-A No. 55-78429 has excellent withstand voltage performance and is often used for applications such as load switches and contactors, but this contact material does not handle large currents. However, the cutting performance is slightly inferior. On the other hand, for example, copper as described in JP-A-54-71375
Chromium contact materials have very good insulation properties and are often used for applications such as insulation breakers, but they are inferior to the above-mentioned copper-tungsten contact materials in terms of withstand voltage performance. In addition to the above-mentioned contact materials for vacuum shields and disconnectors, examples of contact materials generally used in air, oil, etc. are listed in literature such as "Powder Metallurgy" (published by Nikkan Kogyo Shimbun). However, for example, the powder metallurgy
When the silver-molybdenum contact materials and copper-molybdenum contact materials described on pages 229 to 230 are used for vacuum insulation or disconnection contacts, the withstand voltage performance is inferior to the above-mentioned copper-tungsten contact materials, and current resistance and disconnection are poor. Performance is above copper-
Because it is inferior to chrome contact materials, it is rarely used at present. [Problems to be solved by the invention] As described above, the conventional vacuum shield and disconnection contacts have the following problems:
Each material has been used to take advantage of its characteristics, but in recent years the demands for larger currents and higher voltages for vacuum circuit breakers have become even more stringent, making it difficult to fully satisfy the required performance with conventional contact materials. It's coming. or,
Contact materials with superior performance are also required for miniaturization of vacuum shields and disconnectors. This invention has been made to improve the conventional products as described above, and an object of the present invention is to provide a contact material for a vacuum shield breaker having excellent shearing performance. [Means for Solving the Problems] The inventors prototyped materials made by adding various metals, alloys, and intermetallic compounds to copper, incorporated them into vacuum shields and disconnectors, and conducted various experiments. As a result, it was found that the contact material made of copper, chromium, molybdenum, and niobium has extremely excellent shearing performance. The contact material for a vacuum shield or breaker according to the present invention is characterized in that it is made of copper, chromium, molybdenum, and niobium. [Operation] Since the contact is made of copper, chromium, molybdenum, and niobium, it is possible to obtain a contact with excellent electrical conductivity and shearing performance. [Embodiments of the Invention] Examples of the invention will be described below. (Creation of contact material) Contact material is created using powder metallurgy, infiltration method,
Three methods were used: complete powder sintering method and hot pressing method. The first method of manufacturing contact materials using the infiltration method involves combining chromium powder with a particle size of 45 μm or less, molybdenum powder with an average particle size of 3 μm, and niobium powder with a particle size of 40 μm or less.
After weighing copper powder of 40 μm or less at a ratio of 42.3: 43.4: 9.9: 4.4, mixing was performed for 2 hours, this mixed powder was then filled into a mold of a predetermined shape, and 1 ton/min was weighed.
The molding was performed by pressing with a load of cm 2 . Next, this compact was sintered in vacuum at 1000°C for 2 hours to obtain a temporary sintered body. Thereafter, a lump of oxygen-free copper was placed on the temporary sintered body and held at 1250° C. for 1 hour in a hydrogen atmosphere to impregnate the temporary sintered body with oxygen-free copper and use it as a contact material. A sample of the final component ratio of this contact material is shown in Table 1.
Shown as 12. Table 1 also lists contact materials with other component ratios manufactured by the same method as those shown above. Samples 1 to 10 have a copper content of 60% by volume as the target, and samples 11 to 10 have a copper content of 60% by volume. For Samples 21 to 30, the copper content was targeted at 50% by volume, and for Samples 21 to 30, the copper content was set at 40% by volume. The second method of manufacturing contact materials using a complete powder sintering method uses chromium powder with a particle size of 75 μm or less and an average particle size of 3 μm.
of molybdenum powder, niobium powder with a particle size of 40 μm or less, and copper powder with a particle size of 40 μm or less, respectively, 14.9 vs. 18.9 vs. 3.9.
After weighing at a ratio of 62.3 to 62.3, mixing was performed for 2 hours, and then this mixed powder was filled into a mold with a predetermined shape.
The molding was carried out by pressing under a load of 3.3 ton/cm 2 . Next, this molded body was sintered for 2 hours at just below the melting point of copper in a hydrogen atmosphere to obtain a contact material. This example is shown in Table 2 as sample 32. Table 2 also lists materials with other component ratios obtained in the same manner.
Samples 31 to 40 in Table 2 have a copper content of 40% by volume, and samples 41 to 50 have a copper content of 75% by volume. The third hot pressing method for manufacturing the contact material is the same as the previously described complete powder sintering method up to the mixing of the powder, and the same mixed powder as in the previous example was used. This mixed powder was filled into a carbon die and heated in a vacuum for 2 hours, during which time a load of 200 kg/cm 2 was applied to obtain a mass of contact material. This example is shown in Table 3 as sample 52. Table 3 also lists materials with other component ratios obtained in the same manner. Samples 51 to 60 in Table 3 have a copper content of 40% by volume, and samples 61 to 70 have a copper content of 40% by volume.
It is 75% by volume. Table 4 shows conventional contact materials for comparison with the contact materials of the present invention. Sample of Table 4
Sample 71 is a copper-molybdenum alloy obtained by infiltration method as a comparative example, sample 72 is a copper-molybdenum alloy obtained by complete powder sintering method, sample 73 is a copper-molybdenum alloy obtained by hot pressing method, As a conventional example, Sample 74 shows a copper-chromium alloy obtained by a complete powder sintering method.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、真空しや断
器の電極に銅とクロムとモリブデンとニオブから
成る接点材料を用いたので、しや断性能に優れか
つ耐電圧性能に優れた真空しや断器が得られた。
As described above, according to the present invention, a contact material made of copper, chromium, molybdenum, and niobium is used for the electrode of the vacuum shield, so that the vacuum shield has excellent insulation and voltage resistance. A disconnection was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及第3図はこの発明の一実施例
である溶浸法により製造された銅−クロム−モリ
ブデン−ニオブ接点材料のしや断性能を示すグラ
フ、第4図、第5図及第6図はこの発明の一実施
例である完全粉末焼結法により製造された銅−ク
ロム−モリブデン−ニオブ接点材料のしや断性能
を示すグラフ、第7図、第8図及第9図はこの発
明の一実施例であるホツトプレス法により製造さ
れた銅−クロム−モリブデン−ニオブ接点材料の
しや断性能を示すグラフである。
Figures 1, 2 and 3 are graphs showing the shearing performance of a copper-chromium-molybdenum-niobium contact material manufactured by an infiltration method, which is an embodiment of the present invention. 5 and 6 are graphs showing the shearing performance of a copper-chromium-molybdenum-niobium contact material manufactured by a complete powder sintering method, which is an embodiment of the present invention, and FIGS. FIG. 9 is a graph showing the shearing performance of a copper-chromium-molybdenum-niobium contact material manufactured by a hot pressing method according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 真空容器内で互いに接離可能な対向する一対
の電極を有する真空しや断器において、その電極
材料が銅とクロムとモリブデンとニオブから成る
ことを特徴とする真空しや断器用接点。 2 銅、クロム、モリブデン及ニオブが、各々単
体金属、四者、三者もしくは二者の合金、四者、
三者もしくは二者の金属間化合物、又はそれらの
複合体として分布していることを特徴とする特許
請求の範囲第1項に記載の真空しや断器用接点。
[Scope of Claims] 1. A vacuum shield having a pair of opposing electrodes that can be brought into and out of contact with each other in a vacuum vessel, characterized in that the electrode materials are made of copper, chromium, molybdenum, and niobium. and disconnector contacts. 2. Copper, chromium, molybdenum and niobium are each a single metal, a four-way metal, a three-way or two-way alloy, a four-way metal, a four-way metal, a three-way or two-way alloy, a four-way
The contact for a vacuum shield or breaker according to claim 1, characterized in that the contact is distributed as a three-way or two-way intermetallic compound, or a composite thereof.
JP59263192A 1984-12-13 1984-12-13 Contact for vacuum breaker Granted JPS61140011A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59263192A JPS61140011A (en) 1984-12-13 1984-12-13 Contact for vacuum breaker
CN85108080.4A CN1003329B (en) 1984-12-13 1985-11-04 Contacts for vacuum-break switches
KR1019850008360A KR890002585B1 (en) 1984-12-13 1985-11-08 Contacts for vacuum-break switches
DE8585115919T DE3584825D1 (en) 1984-12-13 1985-12-13 CONTACT FOR VACUUM SWITCHES.
EP85115919A EP0184854B1 (en) 1984-12-13 1985-12-13 Contact for vacuum interrupter
US07/080,260 US4870231A (en) 1984-12-13 1987-07-27 Contact for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263192A JPS61140011A (en) 1984-12-13 1984-12-13 Contact for vacuum breaker

Publications (2)

Publication Number Publication Date
JPS61140011A JPS61140011A (en) 1986-06-27
JPH0157457B2 true JPH0157457B2 (en) 1989-12-06

Family

ID=17386048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263192A Granted JPS61140011A (en) 1984-12-13 1984-12-13 Contact for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS61140011A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100400356B1 (en) * 2000-12-06 2003-10-04 한국과학기술연구원 Methods of Microstructure Control for Cu-Cr Contact Materials for Vacuum Interrupters

Also Published As

Publication number Publication date
JPS61140011A (en) 1986-06-27

Similar Documents

Publication Publication Date Title
KR100400356B1 (en) Methods of Microstructure Control for Cu-Cr Contact Materials for Vacuum Interrupters
US4686338A (en) Contact electrode material for vacuum interrupter and method of manufacturing the same
EP0101024B1 (en) Contact material of vacuum interrupter and manufacturing process therefor
US5429656A (en) Silver-based contact material for use in power engineering switchgear
KR890002585B1 (en) Contacts for vacuum-break switches
US5241745A (en) Process for producing a CUCB contact material for vacuum contactors
US4147909A (en) Sintered composite material as contact material for medium-voltage vacuum power circuit breakers
JPH0157457B2 (en)
US3548135A (en) Contacts for vacuum interrupters
JPH0157456B2 (en)
JPH02809B2 (en)
JPH0510782B2 (en)
US4784829A (en) Contact material for vacuum circuit breaker
EP0178796A2 (en) Manufacture of vacuum interrupter contacts
JPH0734342B2 (en) Contact for vacuum circuit breaker
JPH0143971B2 (en)
JPH0143970B2 (en)
JP2661202B2 (en) Electrode materials for vacuum interrupters
JP2661199B2 (en) Electrode materials for vacuum interrupters
JP2661200B2 (en) Electrode materials for vacuum interrupters
JPS61288331A (en) Contact material for vacuum breaker
JP2661203B2 (en) Electrode materials for vacuum interrupters
JPH0145171B2 (en)
JP2661201B2 (en) Electrode materials for vacuum interrupters
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode