JPH0153975B2 - - Google Patents

Info

Publication number
JPH0153975B2
JPH0153975B2 JP22939383A JP22939383A JPH0153975B2 JP H0153975 B2 JPH0153975 B2 JP H0153975B2 JP 22939383 A JP22939383 A JP 22939383A JP 22939383 A JP22939383 A JP 22939383A JP H0153975 B2 JPH0153975 B2 JP H0153975B2
Authority
JP
Japan
Prior art keywords
heat
resistant resin
weight
resin composition
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22939383A
Other languages
Japanese (ja)
Other versions
JPS60120752A (en
Inventor
Taisuke Okada
Juichi Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP22939383A priority Critical patent/JPS60120752A/en
Publication of JPS60120752A publication Critical patent/JPS60120752A/en
Publication of JPH0153975B2 publication Critical patent/JPH0153975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は暹脂分濃床が高く、貯蔵安定性が良奜
で耐熱性の良奜な塗膜、フむルム等の成型品を䞎
える耐熱性暹脂組成物に関する。 ポリアミドむミド暹脂がすぐれた耐熱性、耐薬
品性、機械特性を有するこずはよく知られおお
り、耐熱電線甚塗料、金属衚面保護塗料、フむル
ム等ずしお広く実甚に䟛されおいる。しかしなが
ら、この暹脂は䞀般に−メチル−−ピロリド
ン、−ゞメチルホルムアミド等の高䟡で特
殊な溶媒にしか溶解せず、このため、補品ずしお
の暹脂組成物の䟡栌も高䟡なものずなり、甚途的
には制限されるような堎合もある。塗膜圢成成分
ずはなり埗ない溶媒の䜿甚量を枛少し、暹脂分濃
床を高くするこずができれば、実質的なコストダ
りンを図るこずができ、䜵せお省資源にも貢献す
るこずができる。 高暹脂分濃床化の䞀぀の方法ずしお暹脂の分子
量を䜎䞋させるこずがあげられる。珟圚、実甚さ
れおいるポリアミドむミド暹脂組成物は暹脂の還
元粘床が0.4を超え、暹脂分濃床が10〜30重量
30℃における粘床30±ポアズずした堎合の
ものがほずんどである。還元粘床を0.4以䞋、ず
りわけ、0.35以䞋にすれば暹脂分濃床を35重量
以䞊にするこずができる。しかしながら、このよ
うに単玔に分子量を䜎䞋させるのみでは暹脂分濃
床は高くな぀おも、暹脂の末端官胜基濃床が高く
なるため、暹脂組成物の粘床が時間の経過ずずも
に高くなり、぀いにはゲル化に至る。 経日により増粘した堎合には、䟋えば金属衚面
保護塗料ずしお甚いる堎合、最初に蚭定した塗装
条件を倉曎したり、増粘した暹脂組成物を溶剀で
垌釈しお粘床を調節しなければならない等の䞍郜
合が生じ、たた、溶剀を揮発させお圢成した保護
塗膜の諞特性が倉化するこずもある。 特に電子郚品甚の回路板等に応甚するような堎
合は数ミクロンの厚さのフむルムを圢成させなけ
ればならず、粘床倉化は倧きな問題である。 このような貯蔵安定性を改良するために、アル
コヌル類を添加しお加熱反応させ、末端基を封鎖
ブロツクする方法が提案されおいる。しかし、
この方法によ぀お埗られた組成物は焌付䜜業幅が
狭く、゚ナメル線の補造に適甚した堎合、特に焌
付速床の遅い堎合に可ずう性や密着性が著しく䜎
䞋しお補品ずしおの芁求性胜を満足せず、このた
め炉枩や焌付速床の管理に现心の泚意を払う必芁
があり、それでも堎合によ぀おは䞍良が発生し、
実甚的な面で生産性が劣るずいう重倧な問題が生
じる。 その原因の䞀぀ずしお、末端む゜シアネヌト基
ず反応したアルコヌル類が高枩でも解離し難く、
焌付時に十分、分子量が倧きくならないこずが考
えられる。 この問題を解決すべく皮々怜蚎を重ねた結果、
極めお少量のメラミンたたはメラミン誘導䜓を添
加するこずによ぀お著しい効果が埗られるこずを
芋出し、本発明を完成するに至぀た。 すなわち本発明は、䞀分子䞭に二個以䞊のむ゜
シアネヌト基を有する倚䟡む゜シアネヌトず䞉塩
基酞無氎物又はその機胜誘導䜓ずを反応させお埗
られら還元粘床0.10〜0.40の耐熱性暹脂に耐熱性
暹脂100重量郚に察しお0.1〜10重量郚のアルコヌ
ル類を添加し、加熱反応させた埌、耐熱性暹脂
100重量郚に察しお0.01〜重量郚のメラミンた
たはメラミン誘導䜓を加え、これらを溶媒に溶解
せしめお埗られる耐熱性暹脂組成物に関する。 本発明における耐熱性暹脂の補造においおは、
耐熱性、機械的特性、化孊的特性等の芳点からは
む゜シアネヌト基の圓量をカルボキシル基ず酞無
氎物基の圓量の和に察しお若干過剰に甚いるこず
が奜たしいが、あたり過剰になるず、アルコヌル
類を添加反応させおも貯蔵安定性が劣る結果を招
き、䞡者のバランスを考慮するず、カルボキシル
基ず酞無氎物基の圓量の和に察しおむ゜シアネ
ヌト基の圓量を0.8〜1.1ずするこずが奜たしく、
0.95〜1.08の実質的に等しい圓量比で反応させる
こずが、より奜たしい。 䞀分子䞭に二個以䞊のむ゜シアネヌト基を有す
る倚䟡む゜シアネヌトずしおは脂肪族、脂環族、
芳銙脂肪族、芳銙族及び耇玠環ポリむ゜シアネヌ
ト、䟋えば゚チレンゞむ゜シアネヌト、−
テトラメチレンゞむ゜シアネヌト、−ヘキ
サメチレンゞむ゜シアネヌト、12−ドデカン
ゞむ゜シアネヌト、シクロブデン−−ゞむ
゜シアネヌト、シクロヘキサン−及び
−ゞむ゜シアネヌト、む゜フオロンゞむ゜シア
ネヌト及び−プニレンゞむ゜シア
ネヌト、−及び−トリレンゞむ゜シ
アネヌト及びこれらの異性䜓の混合物、ゞプニ
ルメタン−4′−ゞむ゜シアネヌト、ゞプニ
ルメタン−4′−ゞむ゜シアネヌト、ゞプニ
ル゚ヌテル−4′−ゞむ゜シアネヌト、キシリ
レンゞむ゜シアネヌト、ナフタレン−−ゞ
む゜シアネヌト、ナフタレン−−ゞむ゜シ
アネヌト、−メトキシベンれン−−ゞむ
゜シアネヌト、ゞプニルスルフオン−4′−
ゞむ゜シアネヌト及びこれらのゞむ゜シアネヌト
類を倚量化しお埗られる䞀分子䞭に䞉個以䞊のむ
゜シアネヌト基を有する化合物、ポリプニルメ
チレンポリむ゜シアネヌト䟋えばアニリンずホ
ルムアルデヒドの瞮合物をホスゲンで凊理しお埗
られる等を甚いるこずができ、特に制限はな
い。 䞉塩基酞無氎物ずしおは、䟋えば䞀般匏(i)及び
(ii)で瀺される化合物が甚いられる。 は−CR2−は又はCH3、−CO−、SO2
−、−−等である 匏(i)又は匏(ii)の構造匏で瀺される化合物の具䜓
䟋ずしおはトリメリツト酞無氎物、−
−ゞカルボキシプニル−−−カルボキシ
プニルプロパン無氎物、−ゞカルボ
キシプニル−カルボキシプニルメタ
ン無氎物、−ゞカルボキシプニル
−カルボキシプニル゚ヌテル無氎物、
3′−トリカルボキシベンゟプノン無氎物等
がある。そのほか、−ブタントリカル
ボン酞無氎物、−ナフタレントリカル
ボン酞無氎物、−ナフタレントリカル
ボン酞無氎物、−ナフタレントリカル
ボン酞無氎物、2′−ビプニルトリカル
ボン酞無氎物等があげられる。耐熱性、コストの
点からトリメリツト酞無氎物を甚いるこずが奜た
しい。 必芁に応じお、䞊蚘の䞉塩基酞無氎物又はその
機胜誘導䜓以倖の倚塩基酞たたはその機胜誘導䜓
を䜵甚するこずができる。倚塩基酞ずしおはトリ
メシン酞、トリス−カルボキシ゚チルむ゜
シアヌレヌトなどの䞉塩基酞、テレフタル酞、む
゜フタル酞、コハク酞、アゞピン酞、セバシン
酞、ドデカンゞカルボン酞などの二塩基酞、
−ブタンテトラカルボン酞、シクロペ
ンタンテトラカルボン酞、゚チレンテトラカルボ
ン酞、ビシクロ−〔〕−オクト−(7)−゚
ン−−テトラカルボン酞等の脂肪
族系および脂環族系四塩基酞、ピロメリツト酞、
3′4′−ベンゟプノンテトラカルボン
酞、ビス−ゞカルボキシプニル゚ヌ
テル、−ナフタレンテトラカルボ
ン酞、−ナフタレンテトラカルボ
ン酞、゚チレングリコヌルビストリメリテヌト、
2′−ビス−ゞカルボキシプニル
プロパン、2′3′−ゞプニルテトラカ
ルボン酞、10−ペリレンテトラカル
ボン酞、ビス−ゞカルボキシプニル
スルホン、ビス−ゞカルボキシプニ
ルメタン等の芳銙族四塩基酞、チオプン−
−テトラカルボン酞、ピラゞンテ
トラカルボン酞等の耇玠環匏四塩基酞などがあげ
られる。 本発明においお、䞉塩基酞無氎物の機胜誘導䜓
又は倚塩基酞の機胜誘導䜓ずは䞉塩基酞無氎物又
は倚塩基酞から誘導される䞀無氎物、二無氎物、
゚ステル、アミド、クロラむド等を意味する。 䞀分子䞭に二個以䞊のむ゜シアネヌト基を有す
る倚䟡む゜シアネヌトず䞉塩基酞無氎物又はその
機胜誘導䜓及び必芁に応じお倚塩基酞又はその機
胜誘導䜓ずを反応させるに際しおは、有機溶媒䞭
で行なうこずが奜たしく、有機溶媒の䟋ずしお
は、−メチル−−ピロリドン、−ゞメ
チルフオルムアミド、−ゞメチルアセトア
ミド、ゞメチルスルホキシド、ヘキサメチルフオ
スフオンアミド、−メチル−カプロラクタム、
ニトロベンれン、アセトプノン、アニ゜ヌルな
どが甚いられる。反応性や埗られる暹脂の性胜の
点から−メチル−−ピロリドンを合成溶媒ず
するこずが奜たしい。 合成時のモノマ濃床は40〜80重量、特に50〜
60重量ずしお反応させるこずが奜たしい。モノ
マ濃床が40重量未満では、本発明の䞀぀の目的
である暹脂分濃床の高い組成物ずするために、合
成埌過剰の溶媒を蒞発せしめなければならず、経
枈的に䞍利ずなる傟向があり、たた、80重量を
超えた堎合には反応の進行が速すぎお制埡が困難
ずなる傟向があるからである。ここで、モノマ濃
床ずは、反応開始時における䞀分子䞭に二個以䞊
のむ゜シアネヌト基を有する倚䟡む゜シアネヌト
ず䞉塩基酞無氎物又はその機胜誘導䜓及び必芁に
応じお甚いる倚塩基酞又はその機胜誘導䜓の重量
の和が系䞭に占める重量分率を指す。 䞀分子䞭に二個以䞊のむ゜シアネヌト基を有す
る倚䟡む゜シアネヌトず䞉塩基酞無氎物又はその
機胜誘導䜓ずを反応させお埗られる暹脂の還元粘
床は0.10〜0.40ずされ、0.15〜0.35ずするこずが
より奜たしい。還元粘床が0.10未満では貯蔵安定
性や耐熱性その他の実甚性胜が䞍十分ずなり、
0.40を越えた堎合には暹脂分濃床が䜎䞋し、本発
明の目的の䞀぀を満足できなくなる。還元粘床の
調敎はあらかじめ反応系からサンプリングした溶
液の粘床ガヌドナヌ粘床、絶察粘床等ず暹脂
の還元粘床ずの怜量線を䜜成しおおき、反応䞭に
適宜、粘床を枬定するこずによ぀お行なうこずが
できる。還元粘床は次のようにしお枬定する。即
ち合成盎埌の暹脂溶液濃床玄10重量15を
氎又はメタノヌル䞭に投じお沈殿を生成せし
め、この沈殿物をmmHg以䞋の枛圧䞋、50〜70
℃で〜12時間加熱也燥させる。次いでこの固型
暹脂を−ゞメチルホルムアミドで垌釈しお
濃床0.5dlの溶液ずし、以䞋、垞法によ぀お、
30℃でオストワルド粘床蚈又はキダノンプンス
ケ粘床蚈を甚いお流䞋時間を枬定しお算出され
る。 還元粘床が0.40を越える堎合には組成物を20〜
60℃で数ケ月貯蔵しおも粘床倉化はほずんど認め
られない。これに察しお還元粘床を0.40以䞋にし
た堎合、特に0.35以䞋の堎合には前述のように貯
蔵䞭に増粘したりゲル化したりしお実甚䞊倧きな
問題が生じる。このような貯蔵安定性の問題を解
決するためにはアルコヌル類を添加反応させるこ
ずこずが極めお効果的である。その際、アルコヌ
ル類を単に添加混合したのみでは貯蔵安定性は改
良されず、奜たしくは40℃以䞊の枩床、より奜た
しくは50〜150℃、さらに奜たしくは80〜120℃で
奜たしくは0.1〜20時間、より奜たしくは0.5〜10
時間、さらに奜たしくは〜時間加熱反応させ
る必芁がある。 アルコヌル類を添加反応させるこずによ぀お貯
蔵安定性が改良される理由は十分明らかではない
が、次匏で瀺すように、分子鎖末端のむ゜シアネ
ヌト基がアルコヌル類でブロツクされお安定化さ
れるためである。 〜〜〜暹脂〜〜〜NCOROH→ 〜〜〜暹脂〜〜〜NHCOOR なお、宀枩付近で単にアルコヌル類を添加混合
したのみでは貯蔵安定性が改良されないが、この
理由は、この末端む゜シアネヌト基が十分にブロ
ツクされないためず考えられる。 たた、必芁以䞊に混枩又は長時間で加熱反応さ
せた堎合には耐熱性その他の実甚性胜が䜎䞋す
る。これはあたりに高枩又は長時間反応させた堎
合には次匏で瀺すように、分子鎖䞭のアミド結合
やむミド結合がアルコヌル類によ぀おアルコリシ
ス反応を受け、結合が解裂するこずが䞀因ではな
いかず考える。 〜〜〜CONH〜〜〜ROH→ 〜〜〜COORH2N〜〜〜 アルコヌル類の添加量は、暹脂100重量郚に察
しお奜たしくは0.1〜10重量郚、より奜たしくは
0.5〜重量郚、さらに奜たしくは〜重量郚
ずされる。0.1重量郚未満では貯蔵安定性の改良
効果が乏しく、たた、10重量郚を越える堎合には
耐熱性をはじめずする実甚特性が䜎䞋する。 アルコヌル類ずしおは、メタノヌル、゚タノヌ
ル、−プロパノヌル、む゜プロパノヌル、−
ブタノヌル、−ブタノヌル、−ブタノヌル、
メチルセロ゜ルブ、゚チルセロ゜ルブ、メチルカ
ルビトヌル、ベンゞルアルコヌル、シクロヘキノ
ヌル等が甚いられる。これらのうち、メタノヌ
ル、゚タノヌル、プロパノヌル又はブタノヌルが
効果的である。 このようにしお埗られた耐熱性暹脂に前述した
ように、メラミンたたはメラミン誘導䜓を添加す
る。これらのメラミンたたはメラミン誘導䜓は単
独で甚いおもよいし耇数を組み合わせお甚いおも
よい。 メラミンたたはメラミン誘導䜓の添加量は耐熱
性暹脂100重量郚に察しお0.01〜重量郚が奜た
しく、0.1〜0.9重量郚がより奜たしい。埌述の実
斜䟋でも瀺すように、わずか0.2重量郚皋床の添
加でも著しい効果を衚わすこずは驚くべきこずで
ある。添加量が0.9重量郚を超えるず゚ナメル線
に適甚した堎合、耐劣化性や耐摩耗性などの特性
が䜎䞋する傟向がある。 添加枩床は副反応を避ける芳点から30〜100℃
が奜たしい。 本発明で甚いるメラミン誘導䜓ずしおは、䞀分
子䞭に䞀個のメラミン栞ず䞀個以䞊のメチロヌル
基を有し、堎合によ぀おそのメチロヌル基が、炭
玠数〜個のアルコヌルで゚ヌテル化されおい
る化合物が奜たしく、その䟋ずしおは、モノメチ
ロヌルメラミン、ゞメチロヌル、トリメチロヌル
メラミン、テトルメチロヌルメラミン、ペンタメ
チロヌルメラミン、ヘキサメチロヌルメラミンな
どがあり、、たた、これらの化合物のメチロヌル
基の党郚又は䞀郚がメタノヌル、゚タノヌル、プ
ロパノヌル、む゜プロパノヌル、ブタノヌル、む
゜ブタノヌルなどの䜎玚アルキル基で゚ヌテル化
されおいるものがあげられる。商品の䟋であげる
ならば、䟋えば日立化成工業株匏䌚瀟補ML−
520、ML−521、ML−243などである。 本発明で甚いるメラミン誘導䜓ず類䌌の化合物
ずしお個以䞊のメチロヌル基を有する個以䞊
のメラミン栞が゚ヌテル結合やメチレン結合など
で結合された圢のいわゆるメラミン暹脂がある
が、このような化合物は重量郚以䞋の少量の添
加では効果がなく、たた逆に耐劣化性や耐摩耗性
を䜎䞋させるマむナス䜜甚が倧きくお䜿甚できな
い。 溶媒ずしおは、耐熱性暹脂を合成する堎合の溶
媒の䟋ずしお䞊述したもののほか、ベンれン、ト
ル゚ン、キシレン、高沞点芳銙族炭化氎玠䟋え
ば日本石油補ハむゟヌル100、ハむゟヌル150等、
γ−ブチロラクトン、曎に䞋蚘の䞀般匏で瀺され
る倚䟡アルコヌル類誘導䜓を䜿甚するこずができ
る。 R3COOCHR4CH2Oo R3COOCHR4CH2OoCOR5 R3OCHR4CH2OoR6 R3OCHR4CH2Oo R3COOCHR4CH2OoR7 ただし、䞊匏においおR3、R5、R6、R7は䜎玚
アルキル基、アリヌル基たたはアラルキル基、
R4は氎玠たたはメチル基、はからの敎数
である。 この䞀般匏で瀺される化合物の具䜓䟋ずしお
は、゚チレングリコヌルモノアセテヌト、プロピ
レングリコヌルモノアセテヌト、ゞ゚チレングリ
コヌルモノアセテヌト、゚チレングリコヌルゞア
セテヌト、プロピレングリコヌルゞアセテヌト、
ゞ゚チレングリコヌルゞアセテヌト、゚チレング
リコヌルゞメチル゚ヌテル、゚チレングリコヌル
ゞ゚チル゚ヌテル、゚チレングリコヌルゞプロピ
ル゚ヌテル、゚チレングリコヌルゞブチル゚ヌテ
ル、プロピレングリコヌルゞメチル゚ヌテル、ゞ
゚チレングリコヌルゞメチル゚ヌテル、ゞ゚チレ
ングリコヌルゞ゚チル゚ヌテル、ゞ゚チレングリ
コヌルゞプロピル゚ヌテル、゚チレングリコヌル
モノメチル゚ヌテル、゚チレングリコヌルモノ゚
チル゚ヌテル、゚チレングリコヌルモノプロピル
゚ヌテル、゚チレングリコヌルモノブチル゚ヌテ
ル、ゞ゚チレングリコヌルモノメチル゚ヌテル、
ゞ゚チレングリコヌルモノ゚チル゚ヌテル、ゞ゚
チレングリコヌルモノプロピル゚ヌテル、ゞ゚チ
レングリコヌルモノブチル゚ヌテル、゚チレング
リコヌルモノメチル゚ヌテルアセテヌト、゚チレ
ングリコヌルモノ゚チル゚ヌテルアセテヌト、゚
チレングリコヌルモノむ゜プロピル゚ヌテルアセ
テヌト、゚チレングリコヌルモノブチル゚ヌテル
アセテヌト、ゞ゚チレングリコヌルモノメチル゚
ヌテルアセテヌト、ゞ゚チレングリコヌルモノ゚
チル゚ヌテルアセテヌト、ゞ゚チレングリコヌル
モノむ゜プロピル゚ヌテルアセテヌト、プロピレ
ングリコヌルモノメチル゚ヌテルアセテヌト、プ
ロピレングリコヌルモノむ゜プロピル゚ヌテルア
セテヌト、ゞプロピレングリコヌルモノメチル゚
ヌテルアセテヌトなどがあげられる。 たた、䞋蚘の䞀般匏で瀺される化合物も䜿甚す
るこずができる。 R1OOCCH2oCOOR2 ただし、䞊匏においおR1、R2は䜎玚アルキル
基、はから10の敎数である この䞀般匏で瀺される化合物の具䜓䟋ずしお
は、マロン酞ゞメチル、マロン酞ゞ゚チル、マロ
ン酞ゞむ゜プロピル、マロン酞ゞブチル、マロン
酞ゞベンチル、コハク酞ゞメチル、コハク酞ゞ゚
チル、コハク酞ゞむ゜プロピル、コハク酞ゞブチ
ル、コハク酞ゞペンチル、グルタル酞ゞメチル、
グルタル酞ゞ゚チル、グルタル酞ゞプロピル、グ
ルタル酞ゞブチル、グルタン酞ゞベンチル、アゞ
ピン酞ゞメチル、アゞピン酞ゞ゚チル、アゞピン
酞ゞプロピル、アゞピン酞ゞブチル、アゞピン酞
ゞペンチル、マレむン酞ゞメチル、マレむン酞ゞ
゚チル、マレむン酞ゞプロピル、マレむン酞ゞブ
チル、マレむン酞ゞペンチル、フマル酞ゞメチ
ル、フマル酞ゞ゚チル、フマル酞ゞプロピル、フ
マル酞ゞブチル、フマル酞ゞペンチル、ピメリツ
ク酞ゞメチル、ピメリツク酞ゞ゚チル等があげら
れる。 本発明になる耐熱性暹脂組成物は、溶液粘床を
25〜30ポアズ30℃に蚭定した堎合、暹脂分濃
床は玄35〜55重量ずなり、埓来品の玄30重量
ず比范するず高濃床化されおいる。 以䞋に本発明を実斜䟋及び比范䟋によ぀お曎に
詳现に説明する。 比范䟋  ゞプニルメタン−4′−ゞむ゜シアネヌト
1.67Kg、無氎トリメリツト酞1.28Kg、−メチル
−−ピロリドン3.61Kgを枩床蚈、撹拌機、窒玠
導入管を備えた10の合成装眮に入れ、90℃で
1.5時間、100℃で1.5時間、120℃で1.5時間反応さ
せ、−ゞメチルホルムアミド1.45Kgを加え
お垌釈した。このものから少量をサンプリングし
お前述の方法で枬定した暹脂の還元粘床は0.31で
あ぀た。曎に、メタノヌル46を加え、90℃で
時間加熱反応させた。埗られた組成物の暹脂分濃
床は38.1重量で初期粘床は33ポアズであり、宀
枩でケ月貯蔵埌の粘床も33ポアズで倉化しなか
぀た。 比范䟋  比范䟋ず同様にしお合成した耐熱性暹脂にメ
タノヌルを添加反応させず、そのたた埌述の衚
に瀺した配合比でメラミン誘導䜓を加えお最終組
成物ずした。埗られた組成物の初期粘床は33ポア
ズであ぀たが、宀枩でケ月貯蔵埌には増粘しお
49ポアズずな぀た。 比范䟋  比范䟋で埗られた耐熱性暹脂に埌述の衚に
瀺した配合比でメラミン誘導䜓を加えお最終組成
物ずした。 実斜䟋 〜 比范䟋で埗られた耐熱性暹脂ずメラミンたた
は各皮メラミン誘導䜓ずを衚に瀺した配合比で
組み合わせお最終組成物ずした。 実斜䟋の組成物を垞法により、盎埄mmの銅
線に皮膜厚さが40ÎŒmになるように、炉枩260
360400℃入口䞭倮出口で塗垃、焌付け
るこずを回繰返しお埗られた゚ナメル銅線の特
性JISC300に準じお枬定したを、比范䟋、
比范䟋及び埓来品である垂販ポリアミドむミド
ワニス日立化成工業(æ ª)補HL−405−30を甚
いお同様にしお埗られた゚ナメル銅線の特性ず焌
付速床を倉えお比范しお衚に瀺した。 たた、実斜䟋〜で埗た組成物を甚いお同様
にしお゚ナメル銅線を埗お同様の詊隓を行な぀た
結果を衚に瀺した。
The present invention relates to a heat-resistant resin composition that has a high resin concentration, has good storage stability, and provides molded products such as coatings and films that have good heat resistance. It is well known that polyamide-imide resins have excellent heat resistance, chemical resistance, and mechanical properties, and are widely used in practical applications such as heat-resistant wire coatings, metal surface protection coatings, and films. However, this resin is generally soluble only in expensive and special solvents such as N-methyl-2-pyrrolidone and N,N-dimethylformamide, which makes the resin composition as a product expensive. In some cases, there may be restrictions on usage. If the amount of solvent that cannot be used as a coating film-forming component can be reduced and the resin concentration can be increased, substantial cost reductions can be achieved, and at the same time, it can also contribute to resource conservation. One method for increasing the resin concentration is to lower the molecular weight of the resin. Polyamide-imide resin compositions currently in practical use have a reduced viscosity of resin exceeding 0.4 and a resin concentration of 10 to 30% by weight.
(When the viscosity is 30±5 poise at 30°C). If the reduced viscosity is 0.4 or less, especially 0.35 or less, the resin concentration can be reduced to 35% by weight.
You can do more than that. However, if the molecular weight is simply lowered in this way, even though the resin concentration increases, the terminal functional group concentration of the resin increases, so the viscosity of the resin composition increases over time, and eventually gels. leading to. If the viscosity increases over time, for example, when used as a metal surface protection paint, the viscosity must be adjusted by changing the initially set coating conditions or diluting the thickened resin composition with a solvent. In addition, the properties of the protective coating formed by volatilizing the solvent may change. Particularly when applied to circuit boards for electronic components, it is necessary to form a film with a thickness of several microns, and viscosity change is a big problem. In order to improve such storage stability, a method has been proposed in which an alcohol is added and a heating reaction is caused to block the terminal groups. but,
The composition obtained by this method has a narrow baking range, and when applied to the production of enamelled wire, the flexibility and adhesion are significantly reduced, especially when the baking speed is slow, and the required performance as a product is not met. Therefore, it is necessary to pay close attention to controlling the furnace temperature and baking speed, and even then, defects may occur in some cases.
A serious problem arises in terms of practical productivity. One of the reasons for this is that alcohols that have reacted with terminal isocyanate groups are difficult to dissociate even at high temperatures.
It is thought that the molecular weight does not increase sufficiently during baking. As a result of various studies to solve this problem,
The present inventors have discovered that significant effects can be obtained by adding a very small amount of melamine or melamine derivatives, and have completed the present invention. That is, the present invention provides a heat-resistant resin having a reduced viscosity of 0.10 to 0.40 obtained by reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or a functional derivative thereof. After adding 0.1 to 10 parts by weight of alcohol to 100 parts by weight of resin and causing a heating reaction, heat-resistant resin
The present invention relates to a heat-resistant resin composition obtained by adding 0.01 to 5 parts by weight of melamine or a melamine derivative to 100 parts by weight and dissolving these in a solvent. In the production of heat-resistant resin in the present invention,
From the viewpoint of heat resistance, mechanical properties, chemical properties, etc., it is preferable to use the equivalent of the isocyanate group in a slight excess with respect to the sum of the equivalents of the carboxyl group and the acid anhydride group. Even if the addition reaction is carried out, the storage stability will be poor. Considering the balance between the two, it is preferable that the equivalent of the isocyanate group is 0.8 to 1.1 relative to the sum of the equivalents of the carboxyl group and the acid anhydride group. ,
It is more preferred to react in substantially equal equivalent ratios of 0.95 to 1.08. Polyvalent isocyanates having two or more isocyanate groups in one molecule include aliphatic, alicyclic,
Aroaliphatic, aromatic and heterocyclic polyisocyanates, such as ethylene diisocyanate, 1,4-
Tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutene-1,3-diisocyanate, cyclohexane 1,3- and 1,
4-diisocyanate, isophorone diisocyanate 1,3 and 1,4-phenylene diisocyanate, 2,4- and 2,6-tolylene diisocyanate and mixtures of these isomers, diphenylmethane-2,4'-diisocyanate, diphenylmethane- 4,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate, xylylene diisocyanate, naphthalene-1,4-diisocyanate, naphthalene-1,5-diisocyanate, 1-methoxybenzene-2,4-diisocyanate, diphenyl diisocyanate Enylsulfone-4,4'-
Diisocyanates and compounds having three or more isocyanate groups in one molecule obtained by multiplying these diisocyanates, polyphenylmethylene polyisocyanates (for example, obtained by treating a condensate of aniline and formaldehyde with phosgene), etc. It can be used without any particular restriction. Examples of tribasic acid anhydrides include general formulas (i) and
A compound shown in (ii) is used. (X is -CR2- (R is H or CH3 ), -CO-, SO2
-, -O-, etc.) Specific examples of compounds represented by the structural formula of formula (i) or formula (ii) include trimellitic anhydride, 2-(3,4
-dicarboxyphenyl)-2-(3-carboxyphenyl)propane anhydride, (3,4-dicarboxyphenyl)(3-carboxyphenyl)methane anhydride, (3,4-dicarboxyphenyl) )(3
-carboxyphenyl)ether anhydride, 3,
Examples include 3',4-tricarboxybenzophenone anhydride. In addition, 1,2,4-butanetricarboxylic anhydride, 2,3,5-naphthalenetricarboxylic anhydride, 2,3,6-naphthalenetricarboxylic anhydride, 1,2,4-naphthalenetricarboxylic anhydride, Examples include 2,2',3-biphenyltricarboxylic anhydride. From the viewpoint of heat resistance and cost, it is preferable to use trimellitic acid anhydride. If necessary, polybasic acids or functional derivatives thereof other than the above tribasic acid anhydrides or functional derivatives thereof can be used in combination. Examples of polybasic acids include tribasic acids such as trimesic acid and tris(2-carboxyethyl)isocyanurate, dibasic acids such as terephthalic acid, isophthalic acid, succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid;
2,3,4-butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, ethylenetetracarboxylic acid, bicyclo-[2,2,2]-oct-(7)-ene-2:3,5:6-tetracarboxylic acid Aliphatic and alicyclic tetrabasic acids such as acids, pyromellitic acid,
3,3',4,4'-benzophenonetetracarboxylic acid, bis(3,4-dicarboxyphenyl)ether, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6 - naphthalenetetracarboxylic acid, ethylene glycol bistrimelitate,
2,2'-bis(3,4-dicarboxyphenyl)
Propane, 2,2',3,3'-diphenyltetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, bis(3,4-dicarboxyphenyl)
Aromatic tetrabasic acids such as sulfone, bis(3,4-dicarboxyphenyl)methane, thiophene-
Examples include heterocyclic tetrabasic acids such as 2,3,4,5-tetracarboxylic acid and pyrazinetetracarboxylic acid. In the present invention, functional derivatives of tribasic acid anhydrides or functional derivatives of polybasic acids are monoanhydrides, dianhydrides derived from tribasic acid anhydrides or polybasic acids,
Means ester, amide, chloride, etc. When reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or its functional derivative and, if necessary, with a polybasic acid or its functional derivative, it must be carried out in an organic solvent. is preferred, and examples of organic solvents include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphonamide, N-methyl-caprolactam,
Nitrobenzene, acetophenone, anisole, etc. are used. From the viewpoint of reactivity and performance of the resulting resin, it is preferable to use N-methyl-2-pyrrolidone as the synthesis solvent. The monomer concentration during synthesis is 40-80% by weight, especially 50-80% by weight.
It is preferable to carry out the reaction at 60% by weight. If the monomer concentration is less than 40% by weight, excess solvent must be evaporated after synthesis in order to obtain a composition with a high resin content, which is one of the objects of the present invention, which tends to be economically disadvantageous. Moreover, if it exceeds 80% by weight, the reaction tends to progress too quickly and become difficult to control. Here, the monomer concentration refers to the polyvalent isocyanate having two or more isocyanate groups in one molecule at the start of the reaction, the tribasic acid anhydride or its functional derivative, and the polybasic acid or its functional derivative used as necessary. The sum of the weights represents the weight fraction occupied in the system. The reduced viscosity of the resin obtained by reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or its functional derivative is 0.10 to 0.40, and can be 0.15 to 0.35. More preferred. If the reduced viscosity is less than 0.10, storage stability, heat resistance, and other practical performance will be insufficient.
If it exceeds 0.40, the resin concentration will decrease, making it impossible to satisfy one of the objects of the present invention. To adjust the reduced viscosity, prepare a calibration curve between the viscosity of the solution sampled from the reaction system (Gardner viscosity, absolute viscosity, etc.) and the reduced viscosity of the resin, and then measure the viscosity as appropriate during the reaction. can be done. Reduced viscosity is measured as follows. That is, 15 g of the resin solution (concentration approximately 10% by weight) immediately after synthesis is poured into water or methanol to form a precipitate.
Heat and dry at ℃ for 8 to 12 hours. Next, this solid resin was diluted with N,N-dimethylformamide to obtain a solution with a concentration of 0.5 g/dl, and the following was carried out using a conventional method.
Calculated by measuring the flow time using an Ostwald viscometer or Canon Fuenske viscometer at 30°C. If the reduced viscosity exceeds 0.40, the composition should be
Almost no change in viscosity is observed even after storage at 60°C for several months. On the other hand, if the reduced viscosity is set to 0.40 or less, especially if it is 0.35 or less, the viscosity increases or gels during storage as described above, causing a serious problem in practice. In order to solve such storage stability problems, it is extremely effective to add and react alcohols. At that time, simply adding and mixing alcohols does not improve the storage stability, and the temperature is preferably 40°C or higher, more preferably 50 to 150°C, even more preferably 80 to 120°C, and preferably 0.1 to 20 hours. , more preferably 0.5-10
It is necessary to carry out the heating reaction for a period of time, preferably 1 to 6 hours. The reason why storage stability is improved by addition of alcohol is not fully clear, but as shown in the following formula, the isocyanate group at the end of the molecular chain is blocked and stabilized by alcohol. It is. 〜〜〜(Resin)〜〜〜NCO+ROH→ 〜〜〜(Resin)〜〜〜NHCOORSimply adding and mixing alcohols at around room temperature does not improve storage stability, but the reason for this is that this terminal isocyanate This is thought to be because the groups are not sufficiently blocked. Furthermore, if the reaction is carried out at a mixed temperature or by heating for a longer time than necessary, heat resistance and other practical performance will deteriorate. One reason for this is that if the reaction is carried out at too high a temperature or for a long time, the amide and imide bonds in the molecular chain undergo an alcoholysis reaction with the alcohol, causing the bonds to cleave, as shown in the following formula. I wonder if there is. 〜〜〜CONH〜〜〜ROH→ 〜〜〜COORH 2 N〜〜〜 The amount of alcohol added is preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight of the resin.
The amount is 0.5 to 5 parts by weight, more preferably 1 to 3 parts by weight. If it is less than 0.1 part by weight, the effect of improving storage stability is poor, and if it exceeds 10 parts by weight, practical properties such as heat resistance will deteriorate. Alcohols include methanol, ethanol, n-propanol, isopropanol, n-
Butanol, i-butanol, t-butanol,
Methyl cellosolve, ethyl cellosolve, methyl carbitol, benzyl alcohol, cyclohexynol, etc. are used. Among these, methanol, ethanol, propanol or butanol are effective. Melamine or a melamine derivative is added to the heat-resistant resin thus obtained, as described above. These melamines or melamine derivatives may be used alone or in combination. The amount of melamine or melamine derivative added is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 0.9 parts by weight, based on 100 parts by weight of the heat-resistant resin. As shown in the examples below, it is surprising that even addition of only about 0.2 part by weight can produce a remarkable effect. If the amount added exceeds 0.9 parts by weight, properties such as deterioration resistance and abrasion resistance tend to deteriorate when applied to enameled wire. The addition temperature is 30 to 100℃ to avoid side reactions.
is preferred. The melamine derivative used in the present invention has one melamine nucleus and one or more methylol groups in one molecule, and in some cases, the methylol group is etherified with an alcohol having 1 to 4 carbon atoms. Preferred compounds include monomethylolmelamine, dimethylol, trimethylolmelamine, tetramethylolmelamine, pentamethylolmelamine, hexamethylolmelamine, etc., and all or part of the methylol groups of these compounds are methanol. Examples include those etherified with lower alkyl groups such as , ethanol, propanol, isopropanol, butanol, and isobutanol. As an example of a product, for example, ML- manufactured by Hitachi Chemical Co., Ltd.
520, ML-521, ML-243, etc. As a compound similar to the melamine derivative used in the present invention, there is a so-called melamine resin in which two or more melamine nuclei having one or more methylol groups are bonded by an ether bond, a methylene bond, etc.; Addition of a small amount of 1 part by weight or less has no effect, and conversely, it has a large negative effect of reducing deterioration resistance and wear resistance, so it cannot be used. Examples of solvents include those mentioned above as examples of solvents for synthesizing heat-resistant resins, as well as benzene, toluene, xylene, high-boiling aromatic hydrocarbons (for example, Nippon Oil's Hysol 100, Hysol 150, etc.),
In addition to γ-butyrolactone, polyhydric alcohol derivatives represented by the following general formula can be used. R 3 COO (CHR 4 CH 2 O) o H R 3 COO (CHR 4 CH 2 O) o COR 5 R 3 O (CHR 4 CH 2 O) o R 6 R 3 O (CHR 4 CH 2 O) o H R 3 COO(CHR 4 CH 2 O) o R 7 (However, in the above formula, R 3 , R 5 , R 6 , and R 7 are lower alkyl groups, aryl groups, or aralkyl groups,
R 4 is hydrogen or a methyl group, and n is an integer from 1 to 3. ) Specific examples of compounds represented by this general formula include ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, ethylene glycol diacetate, propylene glycol diacetate,
Diethylene glycol diacetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether , ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether,
Diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monoisopropyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate , diethylene glycol monoisopropyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoisopropyl ether acetate, dipropylene glycol monomethyl ether acetate, and the like. Further, compounds represented by the following general formula can also be used. R 1 OOC(CH 2 ) o COOR 2 (However, in the above formula, R 1 and R 2 are lower alkyl groups, and n is an integer from 1 to 10.) Specific examples of compounds represented by this general formula include malon Dimethyl acid, diethyl malonate, diisopropyl malonate, dibutyl malonate, dibentyl malonate, dimethyl succinate, diethyl succinate, diisopropyl succinate, dibutyl succinate, dipentyl succinate, dimethyl glutarate,
Diethyl glutarate, dipropyl glutarate, dibutyl glutarate, dibentyl glutarate, dimethyl adipate, diethyl adipate, dipropyl adipate, dibutyl adipate, dipentyl adipate, dimethyl maleate, diethyl maleate, dipropyl maleate, maleic acid Examples include dibutyl, dipentyl maleate, dimethyl fumarate, diethyl fumarate, dipropyl fumarate, dibutyl fumarate, dipentyl fumarate, dimethyl pimelic acid, diethyl pimelic acid, and the like. The heat-resistant resin composition of the present invention has a solution viscosity of
When set at 25 to 30 poise (30℃), the resin concentration will be approximately 35 to 55% by weight, which is approximately 30% by weight of conventional products.
It is highly concentrated compared to The present invention will be explained in more detail below using Examples and Comparative Examples. Comparative Example 1 Diphenylmethane-4,4'-diisocyanate
1.67 kg of trimellitic anhydride, 1.28 kg of N-methyl-2-pyrrolidone, and 3.61 kg of N-methyl-2-pyrrolidone were placed in 10 synthesizers equipped with a thermometer, a stirrer, and a nitrogen inlet tube, and heated at 90°C.
The mixture was reacted for 1.5 hours, at 100°C for 1.5 hours, and at 120°C for 1.5 hours, and diluted by adding 1.45 kg of N,N-dimethylformamide. A small amount of this resin was sampled and the reduced viscosity of the resin was measured using the method described above, and the reduced viscosity was 0.31. Furthermore, add 46g of methanol and heat at 90°C.
The mixture was heated and reacted for an hour. The resulting composition had a resin concentration of 38.1% by weight and an initial viscosity of 33 poise, and the viscosity remained unchanged at 33 poise after being stored at room temperature for one month. Comparative Example 2 Methanol was not added to the heat-resistant resin synthesized in the same manner as in Comparative Example 1 and the reaction was not carried out, and the results were directly summarized in Table 1 below.
A final composition was prepared by adding the melamine derivative at the blending ratio shown in . The initial viscosity of the resulting composition was 33 poise, but it thickened after being stored at room temperature for one month.
It became 49 poise. Comparative Example 3 A final composition was prepared by adding a melamine derivative to the heat-resistant resin obtained in Comparative Example 1 at a blending ratio shown in Table 1 below. Examples 1 to 5 The heat-resistant resin obtained in Comparative Example 1 and melamine or various melamine derivatives were combined at the blending ratio shown in Table 1 to prepare a final composition. The composition of Example 1 was applied to a copper wire with a diameter of 1 mm by a conventional method so that the coating thickness was 40 ÎŒm, and the furnace temperature was 260/2.
The properties (measured according to JISC300) of the enamelled copper wire obtained by repeating coating and baking at 360/400°C (inlet/center/outlet) seven times were compared to Comparative Example 1,
Comparative example 3 and the characteristics of enamelled copper wire obtained in the same manner using a conventional commercially available polyamide-imide varnish (HL-405-30, manufactured by Hitachi Chemical Co., Ltd.) and different baking speeds are compared in the table below. Shown in 2. Furthermore, enamelled copper wires were obtained in the same manner using the compositions obtained in Examples 2 to 5, and the same tests were conducted, and the results are shown in Table 3.

【衚】【table】

【衚】【table】

【衚】 分の長さを枬定する。
[Table] Measure the length of minutes.

【衚】 以䞊のように、本発明になる耐熱性暹脂組成物
は、耐熱性が優れおおり、暹脂分濃床が高く、貯
蔵安定性が良奜で焌付䜜業幅も広く、耐熱電線甚
塗料、金属衚面保護塗料、フむルム、積局品、接
着剀等ずしお広く工業的に応甚するこずができ
る。
[Table] As described above, the heat-resistant resin composition of the present invention has excellent heat resistance, high resin concentration, good storage stability, and a wide range of baking operations. It can be widely applied industrially as surface protection paints, films, laminated products, adhesives, etc.

Claims (1)

【特蚱請求の範囲】  䞀分子䞭に二個以䞊のむ゜シアネヌト基を有
する倚䟡む゜シアネヌトず䞉塩基酞無氎物又はそ
の機胜誘導䜓ずを反応させお埗られる還元粘床
0.10〜0.40の耐熱性暹脂に、耐熱性暹脂100重量
郚に察しお0.1〜10重量郚のアルコヌル類を添加
し、加熱反応させた埌、耐熱性暹脂100重量郚に
察しお0.01〜重量郚のメラミンたたはメラミン
誘導䜓を添加し、これらを溶媒に溶解せしめお埗
られる耐熱性暹脂組成物。  䞀分子䞭に二個以䞊のむ゜シアネヌト基を有
する倚䟡む゜シアネヌトがゞプニルメタンゞむ
゜シアネヌト又はトリレンゞむ゜シアネヌトであ
る特蚱請求の範囲第項蚘茉の耐熱性暹脂組成
物。  䞉塩基酞無氎物又はその機胜誘導䜓がトリメ
リツト酞無氎物である特蚱請求の範囲第項又は
第項蚘茉の耐熱性暹脂組成物。  アルコヌル類がメタノヌル、゚タノヌル、む
゜プロパノヌル又はブタノヌルである特蚱請求の
範囲第項、第項又は第項蚘茉の耐熱性暹脂
組成物。  耐熱性暹脂ずアルコヌル類の加熱反応条件が
枩床50〜150℃、時間〜時間である特蚱請求
の範囲第項、第項、第項又は第項蚘茉の
耐熱性暹脂組成物。  メラミン誘導䜓がモノメチロヌルメラミン、
ゞメチロヌルメラミン、トリメチロヌルメラミ
ン、テトラメチロヌルメラミン、ペンタメチロヌ
ルメラミン、ヘキサメチロヌルメラミンあるいは
これらの化合物のメチロヌル基が炭玠数〜の
アルコヌルで゚ヌテル化されおいる化合物である
特蚱請求の範囲第項、第項、第項、第項
又は第項蚘茉の耐熱性暹脂組成物。
[Claims] 1. Reduced viscosity obtained by reacting a polyvalent isocyanate having two or more isocyanate groups in one molecule with a tribasic acid anhydride or a functional derivative thereof.
Add 0.1 to 10 parts by weight of alcohol per 100 parts by weight of the heat resistant resin to a heat resistant resin of 0.10 to 0.40, heat the reaction, and then add 0.01 to 5 parts by weight per 100 parts by weight of the heat resistant resin. A heat-resistant resin composition obtained by adding melamine or a melamine derivative and dissolving them in a solvent. 2. The heat-resistant resin composition according to claim 1, wherein the polyvalent isocyanate having two or more isocyanate groups in one molecule is diphenylmethane diisocyanate or tolylene diisocyanate. 3. The heat-resistant resin composition according to claim 1 or 2, wherein the tribasic acid anhydride or its functional derivative is trimellitic anhydride. 4. The heat-resistant resin composition according to claim 1, 2, or 3, wherein the alcohol is methanol, ethanol, isopropanol, or butanol. 5. The heat-resistant resin composition according to claim 1, 2, 3, or 4, wherein the heating reaction conditions of the heat-resistant resin and alcohol are a temperature of 50 to 150°C and a time of 1 to 6 hours. thing. 6 The melamine derivative is monomethylolmelamine,
Claim 1 which is dimethylolmelamine, trimethylolmelamine, tetramethylolmelamine, pentamethylolmelamine, hexamethylolmelamine, or a compound in which the methylol group of these compounds is etherified with an alcohol having 1 to 4 carbon atoms. , the heat-resistant resin composition according to item 2, item 3, item 4, or item 5.
JP22939383A 1983-12-05 1983-12-05 Heat-resistant resin composition Granted JPS60120752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22939383A JPS60120752A (en) 1983-12-05 1983-12-05 Heat-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22939383A JPS60120752A (en) 1983-12-05 1983-12-05 Heat-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS60120752A JPS60120752A (en) 1985-06-28
JPH0153975B2 true JPH0153975B2 (en) 1989-11-16

Family

ID=16891493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22939383A Granted JPS60120752A (en) 1983-12-05 1983-12-05 Heat-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS60120752A (en)

Also Published As

Publication number Publication date
JPS60120752A (en) 1985-06-28

Similar Documents

Publication Publication Date Title
US4497944A (en) Process for producing polyamide-imide resin
JPS61192774A (en) Thixotropic paint
CA2420314C (en) Polyamideimide resin solution and its use to prepare wire enamels
JP5028814B2 (en) Aromatic resin composition, heat-resistant paint comprising the aromatic resin composition as a paint component, and sliding part coating paint binder
JPS5968108A (en) Insulated wire
US4447589A (en) Method for preparing polyamide-imide resin
JPH0153975B2 (en)
JPS6322217B2 (en)
JPS6336610B2 (en)
JP4341113B2 (en) Polyamideimide resin composition and film forming material containing the same
JPH02218722A (en) Heat-resistant resin composition
JPH0632864A (en) Production of high-molecular weight polyamide-imide resin and heat-resistant resin composition
JP2005179575A (en) Thermosetting polyimide resin composition and its cured product
JPS61166854A (en) Heat-resistant resin composition
JP2007039560A (en) Polyester resin composition
JP2002371182A (en) Polyimide resin composition and film-forming material comprising the same
JP2012171979A (en) Resin composition for electric insulation, and enamel wire
JP2007277336A (en) Polyamideimide resin composition and paint, coating paint, binder resin using the same
JP2012219107A (en) Polyamideimide resin composition, production method therefor, curable resin composition using the same and coating
JP2006143920A (en) Heat resistant resin composition, paint and enameled wire
JP2002155204A (en) Heat-resistant resin composition and coating
JP2003160730A (en) Heat-resistant resin composition, coating material and enamel wire
JPS59126422A (en) Polyamide-imide resin composition
JPS6210544B2 (en)
JPH01182364A (en) Heat resistant resin composition