JPH0153966B2 - - Google Patents

Info

Publication number
JPH0153966B2
JPH0153966B2 JP59168561A JP16856184A JPH0153966B2 JP H0153966 B2 JPH0153966 B2 JP H0153966B2 JP 59168561 A JP59168561 A JP 59168561A JP 16856184 A JP16856184 A JP 16856184A JP H0153966 B2 JPH0153966 B2 JP H0153966B2
Authority
JP
Japan
Prior art keywords
parts
epoxy
unsaturated
temperature
epoxy compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59168561A
Other languages
Japanese (ja)
Other versions
JPS6147716A (en
Inventor
Junichi Takena
Toshio Takagishi
Shuichi Kanekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP16856184A priority Critical patent/JPS6147716A/en
Publication of JPS6147716A publication Critical patent/JPS6147716A/en
Publication of JPH0153966B2 publication Critical patent/JPH0153966B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、不飽和エポキシエステル樹脂を含有
してなる重合性樹脂組成物に関する。 従来より不飽和エポキシエステル樹脂として
種々のものが提案されており、最も一般的なもの
として、ビスフエノールAとエピクロルヒドリン
との反応によつて得られるエポキシ樹脂(以下ビ
スA系エポキシと称する)と不飽和一塩基酸とを
反応させて得られる不飽和エポキシエステル樹脂
が知られている。該エポキシエステル樹脂は、塗
料用、印刷素材用、接着剤用として広く用いられ
ているものの、耐薬品性、可撓性、素材との密着
性等において未だ十分ではなく、それらの面での
改良が求められている。 本発明者らは、従来のビスA系エポキシを原料
として不飽和エポキシエステル樹脂の上記問題点
を克服すべく鋭意検討した結果、特殊な構造因子
を導入したエポキシ樹脂を原料とすることによ
り、耐薬品性、可撓性、、密着性等のすぐれた不
飽和エポキシエステル樹脂組成物が得られること
を見い出し、本発明を完成するに到つた。 すなわち、本発明は、分子内に平均一個より多
くのエポキシ基を有するエポキシ化合物と不飽和
一塩基酸とを反応させて得られる不飽和エポキシ
エステル樹脂を含有してなる重合性樹脂組成物に
おいて、該エポキシ化合物が、(A)多核二価フエノ
ールとエピハロヒドリンより得られるエポキシ化
合物と、(B)単核二価フエノールとを、モル比で
(A):(B)=1〜1.9:1、好ましくは1〜1.5:1の
範囲で反応させることにより得られるエポキシ化
合物であることを特徴とする重合性樹脂組成物に
関する。 本発明において用いられるエポキシ化合物(A)
は、多核二価フエノールとエピハロヒドリンを用
いて公知の方法、例えば多核二価フエノールとエ
ピハロヒドリンとを塩基性触媒存在下で反応させ
ることにより得られる。 ここで使用されるエピハロヒドリンは、通常、
エピクロルヒドリンであるが、これ以外にエピブ
ロムヒドリン、メチルエピクロルヒドリン等も使
用できる。 本発明に用いられる多核二価フエノール類とし
ては、ビスフエノールA、ビス(4−ヒドロキシ
フエニル)メタン、1,1−ビス(4−ヒドロキ
シフエニル)エタン、2,2−ビス(4−ヒドロ
キシフエニル)ブタン等のビス(4−ヒドロキシ
フエニル)アルカン類、1,1−ビス(4−ヒド
ロキシフエニル)シクロヘキサン等のビス(4−
ヒドロキシフエニル)シクロヘキサン等のビス
(4−ヒドロキシフエニル)シクロアルカン類ま
たは4,4′−ジヒドロキシビフエニル等の二核二
価フエノール類のような異なる核に水酸基が結合
している多核二価フエノール類の単独又はそれら
の混合物を挙げることができる。これらの中でビ
スフエノールAが特に好ましい。 また、単核二価フエノール類(B)としては、レゾ
ルシン、ハイドロキノン、カテコール、または5
−メチルレゾルシン、2,5−ジメチルレゾルシ
ン、5−エチルレゾルシン、4,5−ジメチルレ
ゾルシンなどのアルキルレゾルシン、アルケニル
レゾルシン或いはハロゲン化レゾルシン等の置換
レゾルシンもしくはアルキルハイドロキノン、ア
ルケニルハイドロキノン或いはハロゲン化ハイド
ロキノン等の置換ハイドロキノンおよびアルキル
カテコール、アルケニルカテコール或いはハロゲ
ン化カテコール等の置換カテコールなどを含む全
ての単核二価フエノールを挙げることができる。 これらの単核二価フエノール類の一種又は二種
以上が用いられる。これらの中でもレゾルシンが
特に好ましい。 (A)多核二価フエノールとエピハロヒドリンより
得られるエポキシ化合物と、(B)単核二価フエノー
ルとの反応は、モル比で(A):(B)=1〜1.9:1、
好ましくは1〜1.5:1で無溶媒、又は必要に応
じてメチルエチルトン、メチルイソブチルケトン
等のケトン類、トルエン、キシレン等の芳香族化
合物等の溶媒の存在下に、加熱して行われる。(A)
のモル比が2以上の場合は、可撓性や素材との密
着性が十分に向上しない。 本発明に用いられるエポキシ化合物と反応させ
る不飽和一塩基酸としては、アクリル酸、メタク
リル酸、クロトン酸等が例示され、不飽和二塩基
酸のモノエステル類も含まれる。 これらの中ではアクリル酸が特に好ましい。 本発明に用いられるエポキシ樹脂と不飽和一塩
基酸との反応は、エステル化触媒の存在下に、必
要ならば適当な溶剤あるいは重合性モノマー、重
合禁止剤を添加して、反応温度50〜160℃、望ま
しくは70〜140℃にて、酸価20以下、望ましくは
5以下となるまで行なわれる。このとき、エポキ
シ基とカルボキシル基の当量比は0.7〜1.3が適当
であり、0.9〜1.1が特に好ましい。 ここにおいて、エステル化触媒としては通常よ
く用いられる常用の触媒、例えば、第2級、3級
アミン類あるいはその無機、有機酸塩類、有機酸
塩類、ルイス酸類とそれらの有機化合物付加物
類、金属ハロゲン化物等が挙げられ、その使用量
は生成エステル100重量部に対し0.001〜10部が適
当である。 また、必要に応じて用いられる溶剤としては、
メチルエチルケトン、メチルイソブチルケトン等
のケトン類、酢酸エチル等の酢酸エステル類、ト
ルエン、キシレン等の芳香族化合物が例示され、
また、重合性モノマーとしてはアクリル酸あるい
はメタクリル酸のエステル類、重合禁止剤として
はフエノール類、キノン類、銅塩等が挙げられる
が、特にこれらに限定されるものではない。 こうして得られた不飽和エポキシエステル樹脂
組成物は、一般に高粘度かあるいは固体であり、
そのものだけで取り扱うことはたいへん困難であ
るから、粘度を下げるためには希釈剤を使用する
のがよく、かかる希釈剤としては、上記の溶剤あ
るいは重合性モノマーが適当である。 本発明の重合性樹脂組成物は、これを加熱もし
くは、紫外線、X線、γ線や電子線の如きエネル
ギー線を照射することにより硬化させることがで
きる。加熱による場合は、開始剤としてベンゾイ
ルパーオキサイド、ジ−t−ブチルパーオキサイ
ド、t−ブチルパーオキシベンゾエート等の有機
過酸化物を添加することが好ましいが、その他ア
ゾ化合物の如き公知の重合開始剤も使用可能であ
る。また、紫外線の場合には、光重合開始剤とし
てベンゾイン系、ベンゾフエノン系、キノン系、
ジアゾ化合物等の各種化合物が添加される。具体
的には、ベンゾインアルキルエーテル、2,2′−
ジエトキシアセトフエノン、ベンゾフエノン、ベ
ンジル、メチルオルソベンゾイルベンゾエート、
4,4′−ビスジエチルアミノベンゾフエノン等が
例示される。 開始剤の使用量は、いずれの場合にも重合性樹
脂組成物100重量部当り0.1〜10重量部が適当であ
る。 本発明の組成物には、必要に応じて種々の添加
剤、例えばアクリル樹脂、ケトン樹脂、ポリエス
テル樹脂、ポリエチレン、ポリプロピレン、ポリ
酢酸ビニル等のポリマー類やチタン白などの顔
料、充填剤、接着性付与剤、フロー改良剤等を添
加することができる。 本発明の組成物より得られた硬化生成物は耐薬
品性、可撓性、素材との密着性に優れ、従来のビ
スA系エポキシと不飽和一塩基酸からの不飽和エ
ポキシエステルの欠点が改良された、より高性能
の硬化生成物が得られる。 従つて、本発明の重合性樹脂組成物は、塗料
用、印刷素材用、接着剤用等の広い範囲に極めて
有用である。 次に本発明を参考例及び実施例により具体的に
説明するが、本発明がこれらの実施例に限定され
ないことは言うまでもない。尚、文中、部は特記
しない限り重量部を表わす。 参考例 1 撹拌器、温度計及び還流冷却器をつけた反応器
にビスフエノールAのジグリシジルエーテル(エ
ポキシ当量187g/eq.、粘度12700cp/25℃)750
部(2.0モル)とレゾルシン165部(1.5モル)及
びメチルイソブチルケトン(以下MIBK)397部
を仕込み100℃に昇温する。同温度にてトリ−n
−ブチルアミン0.4部を添加した後、還流温度ま
で昇温し、そのまま還流下にて7時間保温する。
次いで反応混合物よりMIBKを留去することによ
り、軟化点94℃、エポキシ当量950g/eq.のエ
ポキシ樹脂を得た。 上記エポキシ樹脂570部を酢酸ブチル263部に溶
解させ、アクリル酸43.5部トリエチルアミン4.4
部、メチルヒドロキノン0.3部を添加した後、110
℃まで昇温した。同温度にて4時間保温すること
により、酸価0.6、粘度500ps/25℃の組成物(A)を
得た。 参考例 2 参考例1と同様の反応器にビスフエノールAの
ジグリシジルエーテル(エポキシ当量187g/e
q.、粘度12700cp/25℃)935部(2.5モル)を仕
込み、60℃まで昇温後、レゾルシン135部(1.23
モル)を添加し溶解させる。 同温度にてトリ−n−ブチルアミン0.5部を添
加した後、100℃まで昇温し、そのまま同温度に
て5時間保温することにより、軟化点65℃、エポ
キシ当量450g/eq.のエポキシ樹脂を得た。次
いで、このエポキシ樹脂450部を約100℃で溶融さ
せ、これにアクリル酸72部、トリエチルアミン
2.6部、メチルヒドロキノン0.2部を添加後、120
℃まで昇温し、そのまま同温度にて3時間保温す
ることにより、酸価0.2、軟化点72℃の組成物(B)
を得た。 参考例 3 参考例1と同様の反応器にビスフエノールA系
固型エポキシ樹脂(エポキシ当量975g/eq.、軟
化点100℃)600部を酢酸ブチル276部に溶解させ、
アクリル酸45部、トリエチルアミン4.6部、メチ
ルヒドロキノン0.3部を添加した。その後110℃ま
で昇温し、そのまま同温度にて約6時間保温する
ことにより、酸価0.8、粘度495ps/25℃の組成物
(C)を得た。 参考例 4 参考例1と同様の反応器にレゾルシンのジグリ
シジルエーテル(エポキシ当量131g/eq.、粘度
440cp/25℃)350部とレゾルシン92部及び
MIBK189部を仕込み、100℃まで昇温する。同温
度にてトリ−n−ブチルアミン0.5部を添加した
後、還流温度まで昇温し、そのまま還流下にて4
時間保温する、次いで反応混合物よりMIBKを留
去することにより、軟化点62℃、エポキシ当量
500g/eq.のエポキシ樹脂を得た。さらに得ら
れたエポキシ樹脂500部を約100℃で溶融させ、こ
れにアクリル酸69部、トリエチルアミン3部、メ
チルヒドロキノン0.2部を加えた後、120℃まで昇
温し、そのまま同温度にて約3時間保温すること
により、酸価0.5、軟化点73℃の組成物(D)を得た。 実施例 参考例1〜4で得られた組成物(A)〜(D)70部(固
型分換算)に1,4−ブタンジオールジアクリレ
ート30部、イルガキユア651(チバ・ガイギー社
製)3部を添加し、充分に溶解混合させ樹脂組成
物を得た。該組成物を軟鋼板に膜厚20〜25μに塗
付し、下記条件により硬化させた後、物性を検討
した結果について表−2に示す。 硬化条件: ランプの種類 メタルハライドランプ ランプ入力 120W/cm 照射距離 15cm コンベアスピード 10m/分 照射回数 3回 後処理(焼付) 100℃×50分
The present invention relates to a polymerizable resin composition containing an unsaturated epoxy ester resin. Various unsaturated epoxy ester resins have been proposed in the past, and the most common one is an epoxy resin obtained by the reaction of bisphenol A and epichlorohydrin (hereinafter referred to as bis A-based epoxy) and an unsaturated epoxy ester resin. Unsaturated epoxy ester resins obtained by reacting with saturated monobasic acids are known. Although epoxy ester resins are widely used for paints, printing materials, and adhesives, they are still insufficient in terms of chemical resistance, flexibility, adhesion to materials, etc., and improvements in these aspects are needed. is required. The present inventors have made intensive studies to overcome the above-mentioned problems of unsaturated epoxy ester resins using conventional bis-A epoxy as raw materials. The present inventors have discovered that an unsaturated epoxy ester resin composition with excellent chemical properties, flexibility, and adhesion can be obtained, and have completed the present invention. That is, the present invention provides a polymerizable resin composition containing an unsaturated epoxy ester resin obtained by reacting an epoxy compound having an average of more than one epoxy group in the molecule with an unsaturated monobasic acid, The epoxy compound contains (A) an epoxy compound obtained from a polynuclear divalent phenol and epihalohydrin, and (B) a mononuclear divalent phenol in a molar ratio.
The present invention relates to a polymerizable resin composition characterized by being an epoxy compound obtained by reacting at (A):(B)=1 to 1.9:1, preferably 1 to 1.5:1. Epoxy compound (A) used in the present invention
can be obtained by a known method using polynuclear divalent phenol and epihalohydrin, for example, by reacting polynuclear divalent phenol and epihalohydrin in the presence of a basic catalyst. The epihalohydrin used here is usually
Epichlorohydrin is used, but epibromohydrin, methylepichlorohydrin, etc. can also be used. Polynuclear divalent phenols used in the present invention include bisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)ethane, Bis(4-hydroxyphenyl)alkanes such as phenyl)butane, bis(4-hydroxyphenyl)alkanes such as 1,1-bis(4-hydroxyphenyl)cyclohexane, etc.
polynuclear divalent compounds in which hydroxyl groups are attached to different nuclei, such as bis(4-hydroxyphenyl)cycloalkanes such as cyclohexane or dinuclear divalent phenols such as 4,4'-dihydroxybiphenyl; Mention may be made of phenols alone or in mixtures thereof. Among these, bisphenol A is particularly preferred. In addition, mononuclear divalent phenols (B) include resorcinol, hydroquinone, catechol, or
- Alkylresorcinols such as methylresorcinol, 2,5-dimethylresorcinol, 5-ethylresorcinol, 4,5-dimethylresorcinol, substituted resorcinols such as alkenylresorcinols or halogenated resorcinols, or substitutions with alkylhydroquinones, alkenylhydroquinones, halogenated hydroquinones, etc. Mention may be made of all mononuclear dihydric phenols, including hydroquinone and substituted catechols such as alkylcatechols, alkenylcatechols or halogenated catechols. One or more types of these mononuclear divalent phenols are used. Among these, resorcinol is particularly preferred. The reaction between (A) an epoxy compound obtained from polynuclear divalent phenol and epihalohydrin and (B) mononuclear divalent phenol is carried out in a molar ratio of (A):(B)=1 to 1.9:1.
It is preferably carried out at a ratio of 1 to 1.5:1 without a solvent or, if necessary, in the presence of a solvent such as a ketone such as methyl ethyltone or methyl isobutyl ketone, or an aromatic compound such as toluene or xylene, with heating. (A)
If the molar ratio is 2 or more, flexibility and adhesion to the material will not be sufficiently improved. Examples of the unsaturated monobasic acid to be reacted with the epoxy compound used in the present invention include acrylic acid, methacrylic acid, crotonic acid, etc., and also include monoesters of unsaturated dibasic acids. Among these, acrylic acid is particularly preferred. The reaction between the epoxy resin and the unsaturated monobasic acid used in the present invention is carried out in the presence of an esterification catalyst, by adding an appropriate solvent, polymerizable monomer, or polymerization inhibitor if necessary, and at a reaction temperature of 50 to 160 ml. C., preferably from 70 to 140.degree. C., until the acid value reaches 20 or less, preferably 5 or less. At this time, the equivalent ratio of epoxy group to carboxyl group is suitably 0.7 to 1.3, particularly preferably 0.9 to 1.1. Here, as the esterification catalyst, commonly used catalysts such as secondary and tertiary amines or their inorganic and organic acid salts, organic acid salts, Lewis acids and their organic compound adducts, metal Examples include halides, and the appropriate amount to be used is 0.001 to 10 parts per 100 parts by weight of the produced ester. In addition, solvents that may be used as necessary include:
Examples include ketones such as methyl ethyl ketone and methyl isobutyl ketone, acetic esters such as ethyl acetate, and aromatic compounds such as toluene and xylene.
Examples of polymerizable monomers include esters of acrylic acid or methacrylic acid, and examples of polymerization inhibitors include phenols, quinones, copper salts, etc., but the invention is not particularly limited to these. The unsaturated epoxy ester resin composition thus obtained is generally highly viscous or solid;
Since it is very difficult to handle it by itself, it is recommended to use a diluent to lower the viscosity, and the above-mentioned solvents or polymerizable monomers are suitable as such diluents. The polymerizable resin composition of the present invention can be cured by heating or by irradiating it with energy rays such as ultraviolet rays, X-rays, γ-rays, and electron beams. In the case of heating, it is preferable to add an organic peroxide such as benzoyl peroxide, di-t-butyl peroxide, or t-butyl peroxybenzoate as an initiator, but other known polymerization initiators such as an azo compound may also be used. is also available. In addition, in the case of ultraviolet rays, benzoin-based, benzophenone-based, quinone-based,
Various compounds such as diazo compounds are added. Specifically, benzoin alkyl ether, 2,2'-
Diethoxyacetophenone, benzophenone, benzyl, methyl orthobenzoyl benzoate,
Examples include 4,4'-bisdiethylaminobenzophenone. In either case, the appropriate amount of the initiator to be used is 0.1 to 10 parts by weight per 100 parts by weight of the polymerizable resin composition. The composition of the present invention may optionally contain various additives, such as polymers such as acrylic resin, ketone resin, polyester resin, polyethylene, polypropylene, and polyvinyl acetate, pigments such as titanium white, fillers, and adhesive properties. Additives, flow improvers, etc. can be added. The cured product obtained from the composition of the present invention has excellent chemical resistance, flexibility, and adhesion to materials, and has the drawbacks of conventional bis-A epoxy and unsaturated epoxy esters made from unsaturated monobasic acids. An improved, higher performance cured product is obtained. Therefore, the polymerizable resin composition of the present invention is extremely useful in a wide range of applications such as paints, printing materials, and adhesives. Next, the present invention will be specifically explained using reference examples and examples, but it goes without saying that the present invention is not limited to these examples. In the text, parts represent parts by weight unless otherwise specified. Reference Example 1 Diglycidyl ether of bisphenol A (epoxy equivalent: 187 g/eq., viscosity: 12,700 cp/25°C) was placed in a reactor equipped with a stirrer, a thermometer, and a reflux condenser.
(2.0 mol), 165 parts (1.5 mol) of resorcin, and 397 parts of methyl isobutyl ketone (hereinafter referred to as MIBK), and the temperature was raised to 100°C. Tori-n at the same temperature
- After adding 0.4 parts of butylamine, the temperature is raised to reflux temperature, and the temperature is kept under reflux for 7 hours.
Then, by distilling off MIBK from the reaction mixture, the softening point was 94°C and the epoxy equivalent was 950g/eq. epoxy resin was obtained. Dissolve 570 parts of the above epoxy resin in 263 parts of butyl acetate, and dissolve 43.5 parts of acrylic acid and 4.4 parts of triethylamine.
parts, after adding 0.3 parts of methylhydroquinone, 110 parts
The temperature was raised to ℃. By keeping the mixture at the same temperature for 4 hours, a composition (A) having an acid value of 0.6 and a viscosity of 500 ps/25°C was obtained. Reference Example 2 In a reactor similar to Reference Example 1, diglycidyl ether of bisphenol A (epoxy equivalent: 187 g/e
q. , viscosity 12,700 cp/25℃) was charged, and after heating to 60℃, 135 parts (1.23
mol) and dissolve. After adding 0.5 part of tri-n-butylamine at the same temperature, the temperature was raised to 100°C and kept at the same temperature for 5 hours, resulting in a softening point of 65°C and an epoxy equivalent of 450 g/eq. epoxy resin was obtained. Next, 450 parts of this epoxy resin was melted at about 100°C, and 72 parts of acrylic acid and triethylamine were added to it.
After adding 2.6 parts and 0.2 parts of methylhydroquinone, 120
Composition (B) with an acid value of 0.2 and a softening point of 72°C was obtained by raising the temperature to ℃ and keeping it at the same temperature for 3 hours.
I got it. Reference Example 3 In a reactor similar to Reference Example 1, 600 parts of bisphenol A solid epoxy resin (epoxy equivalent: 975 g/eq., softening point: 100°C) was dissolved in 276 parts of butyl acetate.
45 parts of acrylic acid, 4.6 parts of triethylamine, and 0.3 parts of methylhydroquinone were added. After that, the temperature was raised to 110℃ and kept at the same temperature for about 6 hours, resulting in a composition with an acid value of 0.8 and a viscosity of 495ps/25℃.
I got (C). Reference Example 4 In a reactor similar to Reference Example 1, diglycidyl ether of resorcinol (epoxy equivalent: 131 g/eq., viscosity:
440cp/25℃) 350 parts and 92 parts of resorcinol and
Add 189 parts of MIBK and raise the temperature to 100℃. After adding 0.5 part of tri-n-butylamine at the same temperature, the temperature was raised to reflux temperature, and 4 parts of tri-n-butylamine was added under reflux.
By incubating for an hour and then distilling off MIBK from the reaction mixture, the softening point is 62℃, the epoxy equivalent is
500g/eq. epoxy resin was obtained. Further, 500 parts of the obtained epoxy resin was melted at about 100°C, 69 parts of acrylic acid, 3 parts of triethylamine, and 0.2 parts of methylhydroquinone were added thereto, the temperature was raised to 120°C, and the temperature was kept at the same temperature for about 3 hours. A composition (D) having an acid value of 0.5 and a softening point of 73° C. was obtained by keeping the mixture warm for hours. Example To 70 parts of compositions (A) to (D) obtained in Reference Examples 1 to 4 (in terms of solid content), 30 parts of 1,4-butanediol diacrylate, Irgakiure 651 (manufactured by Ciba Geigy) 3 of the resin was added and thoroughly dissolved and mixed to obtain a resin composition. The composition was applied to a mild steel plate to a film thickness of 20 to 25 μm, and after curing under the following conditions, the physical properties were examined and the results are shown in Table 2. Curing conditions: Lamp type Metal halide lamp Lamp input 120W/cm Irradiation distance 15cm Conveyor speed 10m/min Number of irradiations 3 times Post-processing (baking) 100℃ x 50 minutes

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 分子内に平均1個より多くのエポキシ基を有
するエポキシ化合物と不飽和一塩基酸とを反応さ
せて得られる不飽和エポキシエステル樹脂を含有
してなる重合性組成物において、該エポキシ化合
物が、(A)多核二価フエノールとエピハロヒドリン
より得られるエポキシ化合物と、(B)単核二価フエ
ノールとを、モル比で(A):(B)=1〜1.9:1の範
囲で反応させることにより得られるエポキシ化合
物であることを特徴とする重合性樹脂組成物。
1. A polymerizable composition containing an unsaturated epoxy ester resin obtained by reacting an epoxy compound having an average of more than one epoxy group in the molecule with an unsaturated monobasic acid, in which the epoxy compound By reacting (A) an epoxy compound obtained from polynuclear divalent phenol and epihalohydrin with (B) mononuclear divalent phenol in a molar ratio of (A):(B) = 1 to 1.9:1. A polymerizable resin composition characterized by being an epoxy compound obtained.
JP16856184A 1984-08-10 1984-08-10 Polymerizable resin composition Granted JPS6147716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16856184A JPS6147716A (en) 1984-08-10 1984-08-10 Polymerizable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16856184A JPS6147716A (en) 1984-08-10 1984-08-10 Polymerizable resin composition

Publications (2)

Publication Number Publication Date
JPS6147716A JPS6147716A (en) 1986-03-08
JPH0153966B2 true JPH0153966B2 (en) 1989-11-16

Family

ID=15870310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16856184A Granted JPS6147716A (en) 1984-08-10 1984-08-10 Polymerizable resin composition

Country Status (1)

Country Link
JP (1) JPS6147716A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713754B2 (en) * 2001-03-29 2011-06-29 太陽ホールディングス株式会社 Photocurable thermosetting resin composition and cured product thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217515A (en) * 1975-07-30 1977-02-09 Bayer Ag Coating composite and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217515A (en) * 1975-07-30 1977-02-09 Bayer Ag Coating composite and production thereof

Also Published As

Publication number Publication date
JPS6147716A (en) 1986-03-08

Similar Documents

Publication Publication Date Title
US3397254A (en) Carboxy terminated polyesters prepared from tribasic acid anhydrides and hydroxy terminated polyesters
US4387204A (en) Self-crosslinkable monomer composition containing alkenylphenyl substituted acrylates or methacrylates
JP3474708B2 (en) Thermosetting powder coating
US4383091A (en) Urethane modified polymers having hydroxyl groups
US6710139B2 (en) Epoxy or phenolic functional polyester or polyether
CA1182946A (en) Reactive hardenable binder mixture, process for preparing hardened products and use of the mixture for the preparation of coatings
US2908663A (en) Epoxide-anhydride-hydroxy polymer compositions and method of making same
US20020128428A1 (en) Epoxy resins and process for making the same
JPH0153967B2 (en)
JPH0153966B2 (en)
US4187257A (en) Radiation curable vinyl ester resin
US4303576A (en) Stabilized polyester compositions
US3960981A (en) Mixtures of vinyl ester resins
JPH10168158A (en) Production of highly polymeric epoxy resin
JPS6335609A (en) Production of curable resin composition having ethylenically unsaturated group
US4108844A (en) Photosensitive polyesters
JPH0569816B2 (en)
JP4068406B2 (en) Polymerizable compound, method for producing the compound, polymerizable composition containing the compound, cured product obtained by curing the composition, and method for producing the cured product
JPS5930866A (en) Active energy beam-curable coating composition
JPS5853644B2 (en) Photocurable heat-resistant resin composition
JPS6289719A (en) Novel vinyl ester resin and production thereof
JPS6228972B2 (en)
JPS58191773A (en) Ink composition curable with active energy ray
JPS6368627A (en) Photocurable resin composition
JPH08277319A (en) Epoxy resin containing radically polymerizable unsaturated group