JPH0153863B2 - - Google Patents

Info

Publication number
JPH0153863B2
JPH0153863B2 JP58185179A JP18517983A JPH0153863B2 JP H0153863 B2 JPH0153863 B2 JP H0153863B2 JP 58185179 A JP58185179 A JP 58185179A JP 18517983 A JP18517983 A JP 18517983A JP H0153863 B2 JPH0153863 B2 JP H0153863B2
Authority
JP
Japan
Prior art keywords
reaction
diethanolamine
iminodiacetate
catalyst
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58185179A
Other languages
Japanese (ja)
Other versions
JPS6078948A (en
Inventor
Hideyuki Nishibayashi
Hiromi Yokoyama
Takakyo Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58185179A priority Critical patent/JPS6078948A/en
Priority to GB08425097A priority patent/GB2148287B/en
Publication of JPS6078948A publication Critical patent/JPS6078948A/en
Priority to US06/863,718 priority patent/US4782183A/en
Publication of JPH0153863B2 publication Critical patent/JPH0153863B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はジエタノールアミンからイミノジ酢酸
塩を製造する新規な方法に関する。さらに詳しく
はジエタノールアミンをアルカリ金属の水酸化物
の存在下、反応させて、イミノジ酢酸塩を製造す
るに際しての特徴ある反応条件、添加物および触
媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new process for producing iminodiacetate from diethanolamine. More specifically, the present invention relates to characteristic reaction conditions, additives, and catalysts for producing iminodiacetate by reacting diethanolamine in the presence of an alkali metal hydroxide.

ジエタノールアミンよりイミノジ酢酸ソーダの
生成はたとえば次に示すような反応式〔1〕に従
つて進み、イミノジ酢酸ソーダよりイミノジ酢酸
の生成は反応式〔2〕に従つて進む。
For example, the production of sodium iminodiacetate from diethanolamine proceeds according to reaction formula [1] shown below, and the production of iminodiacetic acid from sodium iminodiacetate proceeds according to reaction formula [2].

イミノジ酢酸塩は通常中和してイミノジ酢酸と
し、キレート作用を利用した種々の用途のほか、
農薬、医薬等の原料として幅広く使用されてい
る。
Iminodiacetate is usually neutralized to form iminodiacetic acid, and is used for various purposes utilizing its chelating action.
It is widely used as a raw material for agricultural chemicals, medicines, etc.

イミノジ酢酸塩の工業的製法として、今日、青
酸とホルムアルデヒドを主原料とした方法が一般
的に知られている。しかしながら、青酸は猛毒ガ
スであるため製造設備、取扱い、立地面で大きな
制約を受け、しかも青酸の大半がアクリロニトリ
ル製造時の副生物として得られるため原料の安定
確保の面でも大きな問題があつた。
As an industrial method for producing iminodiacetates, a method using hydrocyanic acid and formaldehyde as main raw materials is generally known today. However, since hydrocyanic acid is a highly poisonous gas, there are major restrictions in terms of production equipment, handling, and location.Furthermore, since most of the hydrocyanic acid is obtained as a by-product during the production of acrylonitrile, there are also major problems in securing a stable supply of raw materials.

一方、ジエタノールアミンを苛性アルカリ中で
酸化的脱水素してイミノジ酢酸塩を製造する方法
は、米国特許第2384817号および米国特許3842081
号等に開示されている。米国特許2384817号は1
級アルコール類を強アルカリで脱水素してカルボ
ン酸塩を作る方法においてカドミウムを触媒とし
て使用する特許である。
On the other hand, a method for producing iminodiacetate by oxidative dehydrogenation of diethanolamine in caustic alkali is disclosed in US Pat. No. 2,384,817 and US Pat. No. 3,842,081.
Disclosed in the No. US Patent No. 2384817 is 1
This patent uses cadmium as a catalyst in a method of dehydrogenating alcohols with a strong alkali to produce carboxylic acid salts.

又、米国特許第3842081号実施例1で開示され
ている方法は、ジエタノールアミンを酸化カドミ
ウム触媒存在下で、高温、短時間反応を行うこと
によりイミノジ酢酸ソーダの収率を84.5%得てい
る。
Further, in the method disclosed in Example 1 of US Pat. No. 3,842,081, a yield of sodium iminodiacetate of 84.5% is obtained by reacting diethanolamine in the presence of a cadmium oxide catalyst at high temperature for a short period of time.

しかしながら、両特許は共に触媒としてカドミ
ウムを使用するため、有毒物であるカドミウムが
製品中に混入したり、あるいは廃水として河川に
流出した場合には大きな社会問題を引き起こすた
め、カドミウムを工業用触媒として使用するには
問題がある。
However, since both patents use cadmium as a catalyst, cadmium, which is a toxic substance, may mix into products or cause major social problems if it flows into rivers as wastewater, so cadmium is not used as an industrial catalyst. I have a problem using it.

本発明者らは、青酸を使用しないイミノジ酢酸
塩の製造方法として、ジエタノールアミンの酸化
的脱水素法について、鋭意研究した結果、毒性面
で問題のあるカドミウム化合物を使用せずに高収
率でイミノジ酢酸塩を製造する新規な方法を見い
出し、本願発明を完成した。
The present inventors have conducted intensive research on the oxidative dehydrogenation method of diethanolamine as a method for producing iminodiacetate without using hydrocyanic acid. We have discovered a new method for producing acetate and completed the present invention.

本発明は、ジエタノールアミンをアルカリ金属
の水酸化物、銅含有触媒および水の存在下で反応
せしめ、イミノジ酢酸塩を高収率で製造する方法
に関するものである。
The present invention relates to a method for producing iminodiacetate in high yield by reacting diethanolamine in the presence of an alkali metal hydroxide, a copper-containing catalyst, and water.

本発明の特徴は、ジエタノールアミンからイミ
ノジ酢酸塩を製造するに際し、カドミウム触媒を
使用せずに、安全な銅含有触媒をアルカリ金属の
水酸化物の水溶液中で120〜220℃という非常に温
和な条件で使用することにより、イミノジ酢酸塩
収率をジエタノールアミン基準で90〜95モル%ま
で高めた点にある。本願発明の実施により、従来
法と比較して、イミノジ酢酸塩の収率向上、温和
な反応条件等が可能となつた。その結果、イミノ
ジ酢酸塩の大巾な製造コストの削減が可能とな
り、工業的実施が容易なジエタノールアミンの酸
化的脱水素法による画期的なイミノジ酢酸塩製造
法を完成したものである。
A feature of the present invention is that when producing iminodiacetate from diethanolamine, a safe copper-containing catalyst is used in an aqueous solution of an alkali metal hydroxide under very mild conditions of 120 to 220°C without using a cadmium catalyst. By using this method, the yield of iminodiacetate was increased to 90 to 95 mol% based on diethanolamine. By carrying out the present invention, it has become possible to improve the yield of iminodiacetate and to use milder reaction conditions as compared to conventional methods. As a result, we have completed a revolutionary method for producing iminodiacetate using oxidative dehydrogenation of diethanolamine, which enables a significant reduction in the production cost of iminodiacetate and is easy to implement industrially.

本発明の一実施態様を示せば、本発明の方法に
用いれる触媒は銅を必須成分として含有するもの
である。触媒は、そのまま又は耐アルカリ性の担
体に担持して使用することができる。触媒の使用
量はジエタノールアミンに対して1〜70重量%、
好ましくは10〜30重量%の範囲である。触媒の形
態は特に限定するものではないが、金属銅を空
気、酸素中又は適当な酸化剤で表面を酸化した
後、水素雰囲気で還元したもの、ラネー銅をアル
カリで展開した後、水洗したもの、蟻酸銅その他
の銅塩を熱分解して作つたもの等の銅を活性化し
たものが好適に用いられる。
In one embodiment of the present invention, the catalyst used in the method of the present invention contains copper as an essential component. The catalyst can be used as it is or supported on an alkali-resistant carrier. The amount of catalyst used is 1 to 70% by weight based on diethanolamine.
Preferably it is in the range of 10 to 30% by weight. The form of the catalyst is not particularly limited, but metal copper whose surface has been oxidized in air, oxygen or with an appropriate oxidizing agent and then reduced in a hydrogen atmosphere, and Raney copper which has been developed with an alkali and then washed with water. Copper activated materials, such as those made by thermally decomposing copper formate and other copper salts, are preferably used.

触媒は通常反応による活性低下が低いので、く
り返し使用が可能であるが、一過で使用すること
もできる。
Since the activity of the catalyst usually decreases little due to reaction, it can be used repeatedly, but it can also be used once.

本発明の反応での水は、当初イミノ基の分解を
促進すると考えられていたが、本願発明の温和な
反応条件ではイミノ基の分解が非常に少なく、む
しろジエタノールアミンとアルカリ金属の水酸化
物を均一系で反応できるメリツトがあり、高収率
のイミノジ酢酸塩を得るために不可欠なものであ
る。反応に用いられる水量はジエタノールアミン
に対し10重量%以上、好ましくは100〜500重量%
の範囲である。
Water in the reaction of the present invention was initially thought to promote the decomposition of imino groups, but under the mild reaction conditions of the present invention, the decomposition of imino groups was very small, and rather it promoted the decomposition of diethanolamine and alkali metal hydroxide. It has the advantage of being able to react in a homogeneous system, which is essential for obtaining iminodiacetates in high yields. The amount of water used in the reaction is 10% by weight or more, preferably 100 to 500% by weight based on diethanolamine.
is within the range of

本発明で使用するアルカリ金属の水酸化物とし
ては、水酸化リチウム、水酸化ナトリウム、水酸
化カリウム、水酸化ルビジウム、水酸化セシウム
を含む。これらの中で特に水酸化ナトリウムおよ
び水酸化カリウムが好適に使用される。アルカリ
金属の水酸化物の使用量は反応に使用するジエタ
ノールアミンの転化率相当当量以上、好ましくは
1.0〜2.0当量の範囲である。アルカリ金属の水酸
化物はフレーク、粉末、ペレツト等およびそれら
の水溶液のいずれも用いることができるが、一般
に取扱い面で有利なアルカリ金属の水溶液が好適
に使用される。
The alkali metal hydroxide used in the present invention includes lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, sodium hydroxide and potassium hydroxide are particularly preferably used. The amount of alkali metal hydroxide used is at least the equivalent of the conversion rate of diethanolamine used in the reaction, preferably
It is in the range of 1.0 to 2.0 equivalents. As the alkali metal hydroxide, any of flakes, powders, pellets, etc. and aqueous solutions thereof can be used, but aqueous solutions of alkali metals are generally preferably used because they are convenient in terms of handling.

ジエタノールアミンはイミノジ酢酸塩への不純
物の混入を避けるため高純度のものが好ましい。
純度について特に限定するものではないが、通常
96重量%以上、好ましくは99重量%以上のものが
用いられる。
Diethanolamine is preferably of high purity in order to avoid contamination of the iminodiacetate with impurities.
There are no particular restrictions on purity, but usually
The amount used is 96% by weight or more, preferably 99% by weight or more.

反応温度はジエタノールアミンのNH基、イミ
ノジ酢酸塩のNH基の熱分解及び水素化分解を防
ぐため220℃以下の温度、通常120〜220℃、好ま
しくは140〜190℃の温度範囲で行なわれる。又、
銅触媒は220℃を超えた温度から一部表面がシン
タリングを起こし、表面積が減少して触媒活性が
低下しはじめるため、触媒をくり返し使用する場
合には220℃以下の温度がより好ましい。
The reaction temperature is 220°C or lower, usually 120 to 220°C, preferably 140 to 190°C, in order to prevent thermal decomposition and hydrogenolysis of the NH group of diethanolamine and the NH group of iminodiacetate. or,
When the temperature exceeds 220°C, some of the surface of the copper catalyst starts to sinter, the surface area decreases, and the catalytic activity begins to decline. Therefore, if the catalyst is to be used repeatedly, a temperature of 220°C or lower is more preferable.

反応圧力は、酸化的脱水素反応であるため、で
きるだけ反応圧力を下げる方が反応速度の面から
好ましい。通常、反応を液相で進めるための最低
圧以上、好ましくは0〜20Kg/cm2Gさらに好まし
くは5〜15Kg/cm2Gの範囲である。
Since the reaction is an oxidative dehydrogenation reaction, it is preferable to lower the reaction pressure as much as possible from the viewpoint of reaction rate. Usually, the pressure is higher than the minimum pressure for proceeding the reaction in a liquid phase, preferably in the range of 0 to 20 kg/cm 2 G, more preferably 5 to 15 kg/cm 2 G.

反応時間は適宜に選べるが、反応温度、触媒
量、反応圧力によつて決る。例えば、反応温度
170℃、反応圧力10Kg/cm2G、ジエタノールアミ
ンに対し10重量%の触媒量の場合には4〜6時間
である。
The reaction time can be selected as appropriate and depends on the reaction temperature, amount of catalyst, and reaction pressure. For example, reaction temperature
In the case of 170° C., reaction pressure of 10 Kg/cm 2 G, and a catalyst amount of 10% by weight based on diethanolamine, the reaction time is 4 to 6 hours.

反応形式はバツチ、セミバツチ、連続反応いず
れの方法も用いることができる。
As for the reaction format, any of batch, semi-batch and continuous reaction methods can be used.

以下、実施例をあげて、本発明の実施の態様を
具体的に例示して説明する。本発明はこれらの実
施例に限定されるものではない。
Hereinafter, embodiments of the present invention will be specifically illustrated and explained with reference to Examples. The present invention is not limited to these examples.

ここでジエタノールアミンの転化率、イミノジ
酢酸塩の選択率は次の式から導き出される。
Here, the conversion rate of diethanolamine and the selectivity of iminodiacetate are derived from the following equation.

ジエタノールアミンの転化率(%)=反応したジエタノ
ールアミンのモル数/反応に供したジエタノールアミン
のモル数×100 イミノジ酢酸塩の選択率(%)=生成したイミノジ酢酸
塩のモル数/反応したジエタノールアミンのモル数×10
0 実施例 1 ジエタノールアミン80.0g、水酸化ナトリウム
64g、水170.0gおよび展開ラネー銅8.0gを500
mlのオートクレーブに仕込み、水素ガスで3回内
部置換した後、反応温度170℃、反応圧力9Kg/
cm2gで、水素の発生がなくなるまで反応を行なつ
た。反応に要した時間は170℃に昇温後4.5時間で
あつた。反応終了後、反応液を取り出し分析を行
なつたところ、ジエタノールアミンの転化率は
97.5モル%、イミノジ酢酸塩の選択率は95.7モル
%であつた。
Conversion rate of diethanolamine (%) = Number of moles of diethanolamine reacted / Number of moles of diethanolamine subjected to reaction x 100 Selectivity of iminodiacetate (%) = Number of moles of iminodiacetate produced / Number of moles of diethanolamine reacted ×10
0 Example 1 Diethanolamine 80.0g, sodium hydroxide
64g, water 170.0g and expanded Raney copper 8.0g to 500
ml autoclave, and after internally purging with hydrogen gas three times, the reaction temperature was 170℃, and the reaction pressure was 9Kg/
cm 2 g, and the reaction was carried out until no more hydrogen was evolved. The time required for the reaction was 4.5 hours after the temperature was raised to 170°C. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of diethanolamine was found to be
The selectivity for iminodiacetate was 95.7 mol%.

実施例 2 ジエタノールアミン80.0g、水酸化ナトリウム
64.0g、水170gおよびギ酸銅を水素気流中200℃
3時間熱分解して得た金属銅8.0gを500mlのオー
トクレーブに仕込み、水素ガスで3回内部置換し
た後、反応温度170℃、反応圧力9Kg/cm2gで、
水素の発生がなくなるまで反応を行なつた。反応
に要した時間は170℃に昇温後6.5時間であつた。
反応終了後、反応液を取り出し分析を行なつたと
ころジエタノールアミンの転化率は97.0モル%、
イミノジ酢酸塩の選択率は94.8モル%であつた。
Example 2 Diethanolamine 80.0g, sodium hydroxide
64.0g, water 170g and copper formate at 200℃ in a hydrogen stream
8.0 g of metallic copper obtained by thermal decomposition for 3 hours was charged into a 500 ml autoclave, and after internal displacement with hydrogen gas three times, the reaction temperature was 170°C and the reaction pressure was 9 kg/cm 2 g.
The reaction was continued until no hydrogen was produced. The time required for the reaction was 6.5 hours after the temperature was raised to 170°C.
After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of diethanolamine was 97.0 mol%.
The selectivity of iminodiacetate was 94.8 mol%.

実施例 3 ジエタノールアミン80.0g、水酸化カリウム
89.8g、水170.0gおよび展開ラネー銅8.0gを500
mlのオートクレーブに仕込み、水素ガスで3回内
部置換した後、反応温度170℃、反応圧力9Kg/
cm2gで、水素の発生がなくなるまで反応を行なつ
た。反応に要した時間は170℃に昇温後4.3時間で
あつた。反応終了後、反応液を取り出し分析を行
なつたところ、ジエタノールアミンの転化率は
98.0モル%、イミノジ酢酸塩の選択率は95.4モル
%であつた。
Example 3 Diethanolamine 80.0g, potassium hydroxide
89.8g, water 170.0g and developed Raney copper 8.0g to 500
ml autoclave, and after internally purging with hydrogen gas three times, the reaction temperature was 170℃, and the reaction pressure was 9Kg/
cm 2 g, and the reaction was carried out until no more hydrogen was evolved. The time required for the reaction was 4.3 hours after the temperature was raised to 170°C. After the reaction was completed, the reaction solution was taken out and analyzed, and the conversion rate of diethanolamine was found to be
The selectivity for iminodiacetate was 98.0 mol% and 95.4 mol%.

Claims (1)

【特許請求の範囲】[Claims] 1 ジエタノールアミンをアルカリ金属の水酸化
物、水および銅含有触媒の共存下で反応させるこ
とを特徴とするイミノジ酢酸塩の製造方法。
1. A method for producing iminodiacetate, which comprises reacting diethanolamine in the coexistence of an alkali metal hydroxide, water, and a copper-containing catalyst.
JP58185179A 1983-10-05 1983-10-05 Production of iminodiacetate Granted JPS6078948A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58185179A JPS6078948A (en) 1983-10-05 1983-10-05 Production of iminodiacetate
GB08425097A GB2148287B (en) 1983-10-05 1984-10-04 Preparation of aminocarboxylic acid salts from amino alcohols
US06/863,718 US4782183A (en) 1983-10-05 1986-05-16 Method for manufacture of amino-carboxylic acid salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58185179A JPS6078948A (en) 1983-10-05 1983-10-05 Production of iminodiacetate

Publications (2)

Publication Number Publication Date
JPS6078948A JPS6078948A (en) 1985-05-04
JPH0153863B2 true JPH0153863B2 (en) 1989-11-15

Family

ID=16166218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58185179A Granted JPS6078948A (en) 1983-10-05 1983-10-05 Production of iminodiacetate

Country Status (1)

Country Link
JP (1) JPS6078948A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220055A (en) * 1990-10-23 1993-06-15 Nippon Shokubai Co., Ltd. Process for producing aminocarboxylic acid salts
KR970009569B1 (en) * 1990-11-27 1997-06-14 닛뽕 쇼꾸 바이가가꾸 고오교 가부시끼가이샤 Process for producing aminocarboxylates
US9062278B2 (en) 2010-02-19 2015-06-23 Basf Se Preparing ether carboxylates
KR101802915B1 (en) * 2010-02-19 2017-11-30 바스프 에스이 Method for the production of ether carboxylates
JP6553988B2 (en) * 2015-08-28 2019-07-31 株式会社日本触媒 Method for producing aminocarboxylic acid salt

Also Published As

Publication number Publication date
JPS6078948A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
US4593123A (en) Process for the production of acrylamide and methacrylamide
JP2916256B2 (en) Method for producing aminocarboxylate
JPH0153863B2 (en)
GB2055829A (en) Preparation of carboxylic acids from aldehydes
CN112441966A (en) Method for producing 2-chloro-3-trifluoromethylpyridine from 2,3, 6-trichloro-5-trifluoromethylpyridine
JPH03857B2 (en)
US5039648A (en) Process for the preparation of cobalt catalysts
JPH0153864B2 (en)
JP4164603B2 (en) Method for producing ε-caprolactam
US4048236A (en) Process for preparing o-alkoxy-p-allylphenols
JPH0441136B2 (en)
JP4026350B2 (en) Method for producing alkyl nitrite
JPH0153865B2 (en)
JPH0441137B2 (en)
JPH0153866B2 (en)
JPH10147557A (en) Production of n-alkyl-substituted aminoalkyne using heterogeneous reaction catalyst
JP2804877B2 (en) Production method of aminocarboxylate
JPH0237911B2 (en)
JPS6239542A (en) Production of malonic acid
JPH0798785B2 (en) Method for producing oximes
JPH0625090A (en) Production of neopentyl glycol hydroxypivarate
JP3282386B2 (en) Method for producing piperonal
JPH062716B2 (en) Method for producing aromatic secondary amino compound
US4482735A (en) Process for preparation of methyl methoxyacetate
US1829046A (en) Catalytic process of hydrogenating and dehydrogenating carbon compounds