JPH0153175B2 - - Google Patents

Info

Publication number
JPH0153175B2
JPH0153175B2 JP57071331A JP7133182A JPH0153175B2 JP H0153175 B2 JPH0153175 B2 JP H0153175B2 JP 57071331 A JP57071331 A JP 57071331A JP 7133182 A JP7133182 A JP 7133182A JP H0153175 B2 JPH0153175 B2 JP H0153175B2
Authority
JP
Japan
Prior art keywords
film
seconds
roll
oil
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57071331A
Other languages
Japanese (ja)
Other versions
JPS58188627A (en
Inventor
Megumi Tanaka
Masayuki Niizawa
Yoshinori Kotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57071331A priority Critical patent/JPS58188627A/en
Publication of JPS58188627A publication Critical patent/JPS58188627A/en
Publication of JPH0153175B2 publication Critical patent/JPH0153175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリプロピレンフイルムの製造方
法、特にコンデンサ用片面粗面化ポリプロピレン
フイルムの製造方法に関するものである。 従来、ポリプロピレンの粗面化されたフイルム
の製造方法としては、押出成形時における冷却工
程で徐冷により結晶化を早め、粗面化を行う方法
や冷却工程で一面は徐冷し他面を冷水やチルロー
ルでプレスする方法が知られている。 しかし、前者においては徐冷の条件によつては
冷却工程でチルロールへの粘着があり、密着ムラ
により粗面のバラツキが大きく安定した品質のも
のを得にくい。生長した大きな球晶が延伸によつ
て変形して潰れ、内部においては空胞が発生し、
表面においては表面粗度Raが0.5μ以上にも達す
る大きな凹凸を有するフイルムとなり、実質上フ
イルムの厚みが低下し絶縁破壊電圧の低下につな
がつていた。また、製膜工程上では冷却不足によ
る成形不良を伴う問題があり、厚みムラ悪化によ
る延伸時のフイルム破れを生ずるなどの欠点につ
ながつていた。 後者においては冷却時の水を均一で完全に揮散
する事が困難であり、揮散ムラがそのまま表面の
汚点となつて残り品質、外観を著しく悪化させて
いた。また、フイルター等で除去されなかつた水
中の不純物が付着することによる絶縁欠陥を発生
したりする欠点もあつた。 本発明は、上記欠点を解消すると共に絶縁破壊
電圧を向上せしめ、延伸時のフイルム破れのない
品質の優れた粗面化二軸延伸ポリプロピレンフイ
ルムの製造方法を提供するものである。 上記目的を達成するため、本発明はつぎの構成
からなる。すなわち、溶融押出しされたポリプロ
ピレンのシートの一方の面を、表面温度が60℃以
下のロールに9〜1秒間接触させて急冷した後、
次いで反対面を表面温度が90〜125℃のロールに
2秒以上接触させて加熱し、しかる後二軸方向に
延伸することを特徴とするコンデンサ用片面粗面
化ポリプロピレンフイルムの製造方法を特徴とす
るものである。 ここで用いられるポリプロピレンは、とくに限
定されるものではないが、アイソタクチツク度
(以下、,という)が96%以上のものが好ま
しい。,が96%未満であると、延伸フイルム
において、結晶性が劣りフイルムの腰が弱く、フ
イルムの表面同志がくつつき、悪条件ではブロツ
キングしてくつつき破れとなつたり、製品巾にス
リツトする工程においてフイルムの滑り不良やシ
ワが発生して作業性を大巾に低下させるので好ま
しくない。 このポリプロピレンは、溶融されてスリツト状
の口金から周知の方法でシート状に押し出され
る。 押し出されたシートは、その一方の面を、表面
温度が60℃以下のロールに9〜1秒間、好ましく
は表面温度が30℃以下のロールに5〜1.5秒間接
触させて急冷した後、反対面を、表面温度が90〜
125℃、好ましくは110〜120℃のロールに2秒以
上、好ましくは4秒以上接触させて加熱する。 なお、口金から押し出すシートの厚さは特に限
定されるものではないが、二軸延伸後のフイルム
の厚さが6〜25μ、好ましくは8〜20μとなるよ
うに選定するのが望ましい。 急冷時間が10秒をこえ、強制加熱の温度が90℃
2秒未満であると、両面平滑に近いフイルムとな
り満足な粗面を得ることができず、粗面化フイル
ムとして好ましくない。すなわち、フイルムの面
が平滑であると、フイルム同志重ね合した時に、
フイルム面間の空隙が小さく、絶縁油を含浸させ
る工程において、いわゆる毛細管現象における絶
縁油の含浸効率が劣るため十分な油含浸ができな
くなり、コンデンサとして用いたときのコロナ発
生時に対する破壊を早め、瞬時破壊をならしめ、
油含浸フイルムとして実用上使用できない。 また、急冷時間が1秒以下では冷却むらが生じ
て好ましくない。 また、強制加熱の温度が125℃をこえると、加
熱された金属ロールに粘着が生じ、表面粗度
Ra0.5μ以上の凹凸の大きなフイルムとなり絶縁
破壊電圧の低下が著しい。工程上においてもロー
ル粘着による表面欠点が目立つ様になつて品質の
不合格率が増し収率が大巾に低下する。このよう
に、粗面が大きくなりすぎてもコンデンサ特性上
のみならず工程上にも悪影響を及ぼす。 上記のようにして加熱されたシートを、次いで
二軸方向へ延伸する。 二軸方向への延伸は、同時または逐次など周知
の延伸法を適用することができ、延伸温度150〜
165度、延伸倍率4.0〜10.0倍が望ましい。 このようにして延伸された二軸延伸フイルム
は、ロールに接触して急冷された面(以下、A面
という)の表面粗度Raが0.15μ以下の平滑面とな
り、他方の面(以下、B面という)の表面粗度
Raが0.25〜0.5μの粗面となるが、フイルムの実質
的な厚さの低下は少ない。 表面粗度と、浸油係数、絶縁破壊電圧との関係
を図面に基づいて説明する。 第1図において、実線は、A面の表面粗度と浸
油係数の関係、点線は、A面の表面粗度と絶縁破
壊電圧の関係を各々示し、また、図中a,b,c
は、B面の表面粗度を各々0.4〜0.5μ,0.25〜
0.35μ,0.2μ以下とした場合を示すものである。 第1図から明らかなように、油含浸性を満足す
るに必要な浸油係数10%以上を得るにはB面
0.25μ以上の粗面構造が必要であり、一方、絶縁
破壊電圧500V/μ以上を得るにはA面0.15μ以下
の平滑な表面を有することが必要であることがわ
かる。 なお、(a)なる範囲のフイルムは、30℃に冷却さ
れたチルロールに2.0秒接触急冷後110〜120℃に
加熱されたロールに6.0秒以上の接触で得たシー
トを二軸延伸装置を用いて縦方向に155℃で4.5倍
延伸後更に160℃で横方向に7.0倍にて逐次二軸延
伸により得ることができる。同様に(b)なるフルム
は、30℃のチルロールに2.0秒接触急冷後110〜
120℃に加熱されたロールに2.0秒〜6.0秒の接触
で得たシートを上記と同条件で延伸する。(c)なる
フイルムは、30℃のチルロールに10.0秒接触急冷
後110〜120℃に加熱されたロールに6.0秒以上の
接触で得たシートを同様の延伸により得る事がで
きる。 以上述べたように、本発明の方法は、延伸性が
良好で、しかも絶縁破壊電圧と浸油性が共に優れ
たフイルムが得られるという効果を奏するもので
ある。 本発明における特性の測定法、効果の評価法は
次の通りである。 (1) 表面粗度;Ra JIS―B―0601 (2) 油含浸度; 油含浸を表わす方法として浸油係数を想定し浸
油係数は次の方法で行つた。 構 成:(Al箔/フイルム/フイルム/フイル
ム)×2 リート線:挿入方法 フイルム:100mm巾 Al箔:6μ厚み 80mm巾 上記構成で静電容量が0.2μFになる様にコンデ
ンサーを作製する。まず20℃.1kHzの条件下で
該コンデンサの正確な静電容量CpをGR製キヤパ
シタンスブリツジにて測定した後60℃にて真空乾
燥を行い後真空含浸する。この時、絶縁油として
は日石オイルSを用いた。 絶縁油が含浸された後のコンデンサーの静電容
量Cを前記方法で測定し、次式にて浸油係数とし
て表わし含浸効果の目安とした。 浸油係数=C―Cp/Cp×100(%) 実用上問題のない油含浸効果としては浸油係数
10%以上は必要である。 (3) 表面欠点 品質管理の基準として白筋及び斑点状で発生す
る白濁ムラ表面欠点を汚れとして目視判定と濁度
変動率で判定した。ここでいう濁度変動率は
ASTM―D―1003―61Tに準じ、フイルムの全
巾方向を測定した濁度値を次式にて表わしたもの
である。 濁度変動率=最高濁度―最低濁度/平均濁度×100(%) 〇:全く汚れのないもので濁度変動率が30%以下
のもの。 △:汚れのないもので濁度変動率が31〜50%のも
の。 ×:帯状、斑点状のよごれのあるもので濁度変動
率が50%を超えるもの。 (4) 絶越破壊電圧 JIS―C―2330に準じDCでのフイルムシート状
での絶縁破壊電圧を測定した。 つぎに実施例により、本発明の実施態様を説明
する。 実施例 1 メルトインデツクス1.7,.97.6%の結晶
性ポリプロピレンをダイ300mm、リツプ間隙1.0mm
のTダイより押出温度250℃にて溶融押出して、
シート溶融体とし、10m/分の引取り速度で30℃
に冷却されたチルロールに2.0秒接触急冷後、120
℃にて加熱されたロールに2.0秒強制加熱した後、
この原反を二軸延伸装置で延伸温度150℃〜155℃
で45秒間予備加熱後、縦方向に5.0倍、延伸温度
160〜165℃で横方向に7.0倍にて逐次二軸延伸を
行い、14μの延伸フイルムとした。フイルム特性
は表1に示す通り、シート成形性も良好で、延伸
しやすいもので有効な粗面を得ることができ、油
含浸も良好で絶縁破壊電圧も高く十分使用できる
ものであつた。 比較例 1 溶融シートを95℃のチルロールに接触させなが
ら徐冷したこと以外は実施例1と同様とし、得ら
れた特性を表1に示した。 比較例 2 溶融シートを30℃のチルロールに10秒間接触
後、120℃で強制加熱を行つた以外は実施例1と
同様とし、得られた特性を表1に示した。 比較例1及び2によれば、延伸性、絶縁破壊電
圧、油含浸性のすべてを満足するものを得ること
ができなかつた。
The present invention relates to a method for manufacturing a polypropylene film, and particularly to a method for manufacturing a polypropylene film with a roughened surface on one side for use in capacitors. Conventionally, methods for manufacturing roughened polypropylene films include slow cooling during extrusion molding to speed up crystallization and surface roughening, or slow cooling on one side and cold water on the other side during the cooling process. A method of pressing with a chill roll or a chill roll is known. However, in the former case, depending on the slow cooling conditions, there may be adhesion to the chill roll during the cooling process, and uneven adhesion causes large variations in the rough surface, making it difficult to obtain stable quality. The grown large spherulites are deformed and crushed by stretching, and vacuoles are generated inside.
On the surface, the film had large irregularities with a surface roughness Ra of 0.5μ or more, which substantially reduced the film thickness and led to a reduction in dielectric breakdown voltage. In addition, in the film forming process, there is a problem with poor molding due to insufficient cooling, leading to defects such as film tearing during stretching due to worsening of thickness unevenness. In the latter case, it is difficult to uniformly and completely volatilize the water during cooling, and the uneven volatilization remains as stains on the surface, significantly deteriorating the quality and appearance. Another drawback was that impurities in the water that were not removed by a filter or the like could adhere, resulting in insulation defects. The present invention solves the above-mentioned drawbacks, improves the dielectric breakdown voltage, and provides a method for producing an excellent quality roughened biaxially stretched polypropylene film that is free from tearing during stretching. In order to achieve the above object, the present invention consists of the following configuration. That is, one side of the melt-extruded polypropylene sheet is brought into contact with a roll whose surface temperature is 60°C or less for 9 to 1 seconds to rapidly cool it, and then
A method for producing a single-sided roughened polypropylene film for capacitors, characterized in that the opposite side is then brought into contact with a roll having a surface temperature of 90 to 125°C for 2 seconds or more to heat it, and then stretched in biaxial directions. It is something to do. The polypropylene used here is not particularly limited, but preferably has an isotactic degree (hereinafter referred to as ,) of 96% or more. If the . This is undesirable because it causes slippage and wrinkles, which greatly reduces workability. This polypropylene is melted and extruded into a sheet through a slit-shaped die in a known manner. The extruded sheet is quenched by contacting one side with a roll with a surface temperature of 60°C or less for 9 to 1 seconds, preferably with a roll with a surface temperature of 30°C or less for 5 to 1.5 seconds, and then the opposite side is cooled. , the surface temperature is 90~
It is heated by contacting it with a roll at 125°C, preferably 110 to 120°C, for 2 seconds or more, preferably 4 seconds or more. The thickness of the sheet extruded from the die is not particularly limited, but it is desirably selected so that the thickness of the film after biaxial stretching is 6 to 25 microns, preferably 8 to 20 microns. Rapid cooling time exceeds 10 seconds, forced heating temperature reaches 90℃
If the heating time is less than 2 seconds, the film becomes nearly smooth on both sides, making it impossible to obtain a satisfactory rough surface, which is not preferable as a roughened film. In other words, if the surface of the film is smooth, when the films are overlapped,
The gap between the film surfaces is small, and in the process of impregnating the film with insulating oil, the impregnation efficiency of the insulating oil due to so-called capillary action is poor, making it impossible to achieve sufficient oil impregnation. Cause instant destruction,
It cannot be used practically as an oil-impregnated film. Moreover, if the quenching time is less than 1 second, uneven cooling will occur, which is not preferable. In addition, if the temperature of forced heating exceeds 125℃, the heated metal roll will become sticky and the surface roughness will increase.
This results in a film with large irregularities of Ra0.5μ or more, resulting in a significant drop in dielectric breakdown voltage. Also in the process, surface defects due to roll adhesion become noticeable, the quality failure rate increases, and the yield drops significantly. In this way, if the rough surface becomes too large, it will have an adverse effect not only on the capacitor characteristics but also on the process. The sheet heated as described above is then stretched biaxially. For biaxial stretching, well-known stretching methods such as simultaneous or sequential stretching can be applied, and the stretching temperature is 150~150°C.
165 degrees and a stretching ratio of 4.0 to 10.0 times are desirable. The biaxially stretched film thus stretched has a smooth surface with a surface roughness Ra of 0.15μ or less on the surface that was rapidly cooled in contact with the roll (hereinafter referred to as A surface), and the other surface (hereinafter referred to as B surface) has a surface roughness Ra of 0.15μ or less. surface roughness
Although the surface becomes rough with Ra of 0.25 to 0.5μ, there is little reduction in the substantial thickness of the film. The relationship between surface roughness, oil immersion coefficient, and dielectric breakdown voltage will be explained based on the drawings. In Fig. 1, the solid line shows the relationship between the surface roughness of side A and the oil immersion coefficient, and the dotted line shows the relationship between the surface roughness of side A and dielectric breakdown voltage.
The surface roughness of surface B is 0.4~0.5μ and 0.25~, respectively.
This shows the case where it is 0.35μ, 0.2μ or less. As is clear from Figure 1, in order to obtain an oil permeability coefficient of 10% or more necessary to satisfy oil permeability,
It can be seen that a rough surface structure of 0.25μ or more is required, and on the other hand, to obtain a dielectric breakdown voltage of 500V/μ or more, it is necessary to have a smooth surface of 0.15μ or less on the A side. In addition, the film in the range (a) is obtained by contacting a chill roll cooled to 30°C for 2.0 seconds, rapidly cooling it, and then contacting a roll heated to 110 to 120°C for 6.0 seconds or more, using a biaxial stretching device. It can be obtained by successive biaxial stretching at 160°C and 7.0 times in the transverse direction after stretching 4.5 times in the machine direction at 155°C. Similarly, the flume (b) was cooled by contact with a chill roll at 30℃ for 2.0 seconds and then heated to 110~
The sheet obtained by contacting a roll heated to 120°C for 2.0 seconds to 6.0 seconds is stretched under the same conditions as above. The film (c) can be obtained by similarly stretching a sheet obtained by contacting a chill roll at 30°C for 10.0 seconds to quench, and then contacting a roll heated to 110 to 120°C for 6.0 seconds or more. As described above, the method of the present invention has the effect of producing a film that has good stretchability and is also excellent in both dielectric breakdown voltage and oil permeability. The methods for measuring characteristics and evaluating effects in the present invention are as follows. (1) Surface roughness; Ra JIS-B-0601 (2) Degree of oil impregnation; The oil impregnation coefficient was assumed to be a method of expressing oil impregnation, and the oil absorption coefficient was determined by the following method. Composition: (Al foil/film/film/film) x 2 Riet wire: Insertion method Film: 100mm width Al foil: 6μ thickness 80mm width Create a capacitor with the above configuration so that the capacitance is 0.2μF. First, 20℃. The accurate capacitance C p of the capacitor was measured using a capacitance bridge manufactured by GR under the condition of 1 kHz, and then vacuum dried at 60° C. and then vacuum impregnated. At this time, Nisseki Oil S was used as the insulating oil. The capacitance C of the capacitor after being impregnated with insulating oil was measured by the method described above, and was expressed as an oil immersion coefficient using the following formula, which was used as a measure of the impregnation effect. Oil immersion coefficient = C - C p / C p × 100 (%) Oil immersion coefficient is an oil impregnation effect that has no practical problems.
10% or more is required. (3) Surface defects As a standard for quality control, surface defects such as white streaks and specks of white turbidity were judged as stains by visual inspection and turbidity fluctuation rate. The turbidity fluctuation rate here is
According to ASTM-D-1003-61T, the turbidity value measured in the entire width direction of the film is expressed by the following formula. Turbidity fluctuation rate = Maximum turbidity - Minimum turbidity / Average turbidity x 100 (%) 〇: Completely clean and turbidity fluctuation rate of 30% or less. △: Clean and turbidity fluctuation rate is 31 to 50%. ×: Items with band-like or spot-like dirt and turbidity fluctuation rate exceeding 50%. (4) Breakdown voltage The breakdown voltage of the film sheet was measured at DC according to JIS-C-2330. Next, embodiments of the present invention will be described with reference to Examples. Example 1 Melt index 1.7,. 97.6% crystalline polypropylene die 300mm, lip gap 1.0mm
Melt extrusion from a T-die at an extrusion temperature of 250℃,
As a sheet melt, at 30℃ at a drawing speed of 10m/min.
After 2.0 seconds of contact with a chill roll cooled to 120
After forced heating for 2.0 seconds on a roll heated at ℃,
This original fabric is stretched with a biaxial stretching device at a temperature of 150℃ to 155℃.
After preheating for 45 seconds at
Successive biaxial stretching was performed at 160 to 165° C. at 7.0 times in the transverse direction to obtain a stretched film of 14 μm. As for the film properties, as shown in Table 1, it had good sheet formability, was easy to stretch, an effective rough surface could be obtained, had good oil impregnation, and had a high dielectric breakdown voltage, so it could be used satisfactorily. Comparative Example 1 The procedure was the same as in Example 1 except that the molten sheet was slowly cooled while being brought into contact with a chill roll at 95° C., and the properties obtained are shown in Table 1. Comparative Example 2 The procedure was the same as in Example 1 except that the molten sheet was brought into contact with a chill roll at 30° C. for 10 seconds and then forcedly heated at 120° C. The properties obtained are shown in Table 1. According to Comparative Examples 1 and 2, it was not possible to obtain a film that satisfied all of stretchability, dielectric breakdown voltage, and oil impregnation properties.

【表】 ドラム面をいう。
比較例 3 溶融シートを30℃のチルロールで急冷後、130
℃で強制加熱を行うこと以外は実施例1と同様と
し、得られた特性を表2に示した。このフイルム
は、表面粘着による欠点が生じ、又密着ムラを示
す粗面のバラツキが大きい。 比較例 4 溶融シートを30℃のチルロールで急冷後、80℃
で強制加熱を行うこと以外は実施例1と同様と
し、得られた特性を表2に示した。 これによれば、粗面効果が期待できず油含浸性
を満足するものではなかつた。
[Front] Refers to the drum surface.
Comparative Example 3 After rapidly cooling the molten sheet with a chill roll at 30℃,
The procedure was the same as in Example 1 except that forced heating was performed at .degree. C., and the obtained characteristics are shown in Table 2. This film suffers from defects due to surface adhesion, and also has large variations in the rough surface indicating uneven adhesion. Comparative Example 4 After rapidly cooling the molten sheet with a chill roll at 30°C, it was heated to 80°C.
The procedure was the same as in Example 1 except that forced heating was performed at . The characteristics obtained are shown in Table 2. According to this, no roughening effect could be expected and the oil impregnability was not satisfactory.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、フイルムの表面粗度と浸油係数およ
び絶縁破壊電圧との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the surface roughness of the film, the oil immersion coefficient, and the dielectric breakdown voltage.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融押出しされたポリプロピレンのシートの
一方の面を、表面温度が60℃以下のロールに9〜
1秒間接触させて急冷した後、次いで反対面を表
面温度が90〜125℃のロールに2秒以上接触させ
て加熱し、しかる後二軸方向に延伸することを特
徴とするコンデンサ用片面粗面化ポリプロピレン
フイルムの製造方法。
1. Place one side of the melt-extruded polypropylene sheet on a roll with a surface temperature of 60℃ or less.
A single-sided rough surface for a capacitor, characterized in that after being brought into contact for 1 second and rapidly cooled, the opposite side is then brought into contact with a roll having a surface temperature of 90 to 125°C for 2 seconds or more to heat it, and then stretched in biaxial directions. A method for manufacturing polypropylene film.
JP57071331A 1982-04-30 1982-04-30 Preparation of polypropylene film Granted JPS58188627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071331A JPS58188627A (en) 1982-04-30 1982-04-30 Preparation of polypropylene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071331A JPS58188627A (en) 1982-04-30 1982-04-30 Preparation of polypropylene film

Publications (2)

Publication Number Publication Date
JPS58188627A JPS58188627A (en) 1983-11-04
JPH0153175B2 true JPH0153175B2 (en) 1989-11-13

Family

ID=13457441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071331A Granted JPS58188627A (en) 1982-04-30 1982-04-30 Preparation of polypropylene film

Country Status (1)

Country Link
JP (1) JPS58188627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415544U (en) * 1990-05-29 1992-02-07

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197025A (en) * 1982-05-12 1983-11-16 Honshu Paper Co Ltd Manufacture of rough surfaced biaxially-oriented polypropylene film
US5476709A (en) * 1992-06-15 1995-12-19 Mitsui Toatsu Chemicals, Inc. Polymeric insulating material and formed article making use of the material
JPH11162788A (en) * 1997-11-26 1999-06-18 Asahi Glass Co Ltd Method for manufacturing electrical double-layer capacitor
CN110893676B (en) * 2019-12-12 2021-07-23 深圳市合丰嘉大科技有限公司 Corona treatment machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415544U (en) * 1990-05-29 1992-02-07

Also Published As

Publication number Publication date
JPS58188627A (en) 1983-11-04

Similar Documents

Publication Publication Date Title
JPS6056101B2 (en) Manufacturing method of polyester film
JP3752747B2 (en) condenser
JP2725298B2 (en) Method for producing microporous film
JPH0153175B2 (en)
JPS6040383B2 (en) Polypropylene composite biaxially stretched film
US3217073A (en) Process for the manufacture of biaxially oriented polypropylene film
JPH04453B2 (en)
JPS5936851B2 (en) Manufacturing method of polyester film
US5833904A (en) Process for the production of biaxially stretched films and apparatus for carrying out the process
KR20000011090A (en) Vertical extension method of synthetic resin film by at least two steps and plastic film and equipment thereby
JP2001048998A (en) Biaxially oriented polypropylene film
JPH10156938A (en) Polypropylene film and capacitor using the same as dielectric
JPH034372B2 (en)
EP0098572B1 (en) Acrylonitrile polymer film and process for preparing same
JP3799685B2 (en) Metallized biaxially oriented polypropylene film and condenser
JPH0716920A (en) Method for successively biaxial orientation of crystalline polymer film
JPH0224206B2 (en)
KR100277013B1 (en) Method for producing polyester sheet
CN115782149A (en) Biaxially oriented polypropylene high-temperature-resistant coarsening film and preparation method thereof
JPS6131236A (en) Manufacture of superthin film
JPS6320690B2 (en)
JPS60143521A (en) Insulating material for oil-immersed cable
JP3849830B2 (en) Polyester film for metal bonding
JPH0696694B2 (en) Polypropylene film for adhesive tape
JP2000500085A (en) Method for producing biaxially oriented polyester film