JPH11162788A - Method for manufacturing electrical double-layer capacitor - Google Patents

Method for manufacturing electrical double-layer capacitor

Info

Publication number
JPH11162788A
JPH11162788A JP9324948A JP32494897A JPH11162788A JP H11162788 A JPH11162788 A JP H11162788A JP 9324948 A JP9324948 A JP 9324948A JP 32494897 A JP32494897 A JP 32494897A JP H11162788 A JPH11162788 A JP H11162788A
Authority
JP
Japan
Prior art keywords
separator
electrode body
double layer
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9324948A
Other languages
Japanese (ja)
Inventor
Manabu Kazuhara
学 数原
Kazuya Hiratsuka
和也 平塚
Katsuharu Ikeda
克治 池田
Takeshi Kawasato
健 河里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9324948A priority Critical patent/JPH11162788A/en
Publication of JPH11162788A publication Critical patent/JPH11162788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a voltage-retaining characteristic and charge/discharge cycle resistance by heat-treating a separator at a specific temperature before it is wound or laminated alternately for a plurality of times. SOLUTION: N-methyl-2-pyrrolidone solution including polyvinylidene is added to an activated charcoal powder and carbon black, thus preparing slurry. Then, the slurry is coated on both surfaces of an aluminum foil and is press- rolled after drying, and a strip electrode body is manufactured and is rolled, thus manufacturing an electrode body coil. The electrode body coil and a separator coil are used in a dry air with a dew point of -40 deg.C or less, the electrode body, a separator, the electrode body, the separator are overlapped in this order, and a plurality of aluminum lead terminals are electrically joined to a part that is not provided on an electrode layer and at the same time wound, thus forming an element. At this time, two separators are heated to 90-250 deg.C immediately before the electrode body and the separator are overlapped and wound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層キャパシ
タ、特に電圧保持性及び/又は電圧印加耐久性に優れた
電気二重層キャパシタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor excellent in voltage holding property and / or voltage application durability.

【0002】[0002]

【従来の技術】電気二重層キャパシタは、分極性電極と
電解液との界面に形成される電気二重層に電荷を蓄積す
ることを原理としており、電気二重層キャパシタの容量
密度を向上させるために、分極性電極には高比表面積の
活性炭、ポリアセン、カーボンブラック等の炭素材料等
が用いられている。分極性電極は、効率よく充放電する
ため、金属や黒鉛等の抵抗の低い層又は箔からなる集電
体と接合されている。集電体としては、通常電気化学的
に耐食性の高いアルミニウム等のバルブ金属、SUS3
04、SUS316L等のステンレス鋼等が使用されて
いる。
2. Description of the Related Art An electric double layer capacitor is based on the principle that electric charges are accumulated in an electric double layer formed at an interface between a polarizable electrode and an electrolytic solution. For the polarizable electrode, activated carbon having a high specific surface area, a carbon material such as polyacene or carbon black is used. The polarizable electrode is joined to a current collector made of a low-resistance layer or foil such as metal or graphite to efficiently charge and discharge. As a current collector, a valve metal such as aluminum, which has high electrochemical corrosion resistance, SUS3
04, SUS316L or other stainless steel is used.

【0003】電気二重層キャパシタの電解液としては有
機系電解液と水系電解液があるが、作動電圧が高く、充
電状態のエネルギ密度を大きくできることから、有機系
電解液を用いた電気二重層キャパシタが注目されてい
る。有機系電解液を用いる場合、電気二重層キャパシタ
セルの内部に水分が存在すると水分の電気分解により性
能が劣化するため、分極性電極を充分に脱水する必要が
あり、通常、減圧下で加熱する乾燥処理が施される。
[0003] Electrolyte for an electric double layer capacitor includes an organic electrolyte and an aqueous electrolyte. However, since the operating voltage is high and the energy density in the charged state can be increased, the electric double layer capacitor using the organic electrolyte is used. Is attracting attention. When an organic electrolytic solution is used, the presence of moisture inside the electric double layer capacitor cell deteriorates the performance due to the electrolysis of the moisture, so that the polarizable electrode needs to be sufficiently dehydrated, and is usually heated under reduced pressure. A drying process is performed.

【0004】従来、電気二重層キャパシタのセパレータ
としては電解紙、ポリエチレン不織布、ポリプロピレン
不織布、ポリエステル不織布、クラフト紙、マニラ麻シ
ート、ガラス繊維シート等が使用されている(特開平1
−283811、特開平1−304719等)。セパレ
ータの役割は、分極性電極間を電気的に絶縁する一方、
充放電に伴う電解液中のイオンの移動を円滑化すること
にある。
Conventionally, electrolytic paper, polyethylene non-woven fabric, polypropylene non-woven fabric, polyester non-woven fabric, kraft paper, manila hemp sheet, glass fiber sheet and the like have been used as separators for electric double layer capacitors (Japanese Patent Laid-Open Publication No. Hei 1 (1999)).
-283811, JP-A-1-304719, etc.). The role of the separator is to electrically insulate between the polarizable electrodes,
It is to smooth the movement of ions in the electrolytic solution due to charge and discharge.

【0005】近年、大電流充放電用の電気二重層キャパ
シタが注目されている。この場合、セパレータとしては
電解液の吸液性と保液性、強度、電圧印加耐久性、電圧
保持性、耐熱性等の特性に優れ、かつ容積効率を高める
ために薄膜であることが好ましい。
In recent years, an electric double layer capacitor for charging and discharging a large current has attracted attention. In this case, the separator is preferably a thin film in order to excel in properties such as the liquid absorbing property and liquid retaining property, strength, voltage application durability, voltage holding property, and heat resistance of the electrolytic solution and to increase the volumetric efficiency.

【0006】ところが、上記の公知のセパレータではそ
れらすべてを満足するものは得られていない。また、電
極の揮発成分を素子の状態で加熱乾燥して除去するため
には、セパレータの耐熱性は160℃以上であることが
好ましいが、ポリエチレン不織布、ポリプロピレン不織
布等では耐熱性が不充分であり、キャパシタの電圧印加
耐久性が劣る問題があった。ポリエステル不織布は比較
的耐熱性はあるものの強度が不充分であり、また電気抵
抗が高い難点がある。
[0006] However, none of the above-mentioned known separators satisfies all of them. Further, in order to remove the volatile components of the electrodes by heating and drying in the state of the element, the heat resistance of the separator is preferably 160 ° C. or higher, but the heat resistance of polyethylene nonwoven fabric, polypropylene nonwoven fabric, etc. is insufficient. In addition, there is a problem that the voltage application durability of the capacitor is inferior. Polyester nonwoven fabrics have relatively low heat resistance but insufficient strength and high electrical resistance.

【0007】このなかで、ガラス繊維シートは電気抵抗
が低く耐熱性が300℃以上ときわめて高く、電圧保持
性や電圧印加耐久性も良好であるが、強度が低いためセ
パレータの厚さを例えば100μm以下に薄く成形加工
することが困難である。また引っ張り強度が弱くて巻回
するのが困難であり、巻回型キャパシタ用のセパレータ
として使用するのは困難である。
Among them, the glass fiber sheet has low electric resistance and extremely high heat resistance of 300 ° C. or more, and has good voltage holding property and voltage application durability. However, since the strength is low, the thickness of the separator is, for example, 100 μm. It is difficult to form a thin film below. In addition, it is difficult to wind the wire due to its low tensile strength, and it is difficult to use it as a separator for a wound capacitor.

【0008】クラフト紙又はマニラ麻紙等を原料とする
電解紙はアルミニウム電解コンデンサでは多用されてお
り、電気抵抗がやや高いものの耐熱性は120〜200
℃程度であり強度も充分に強い。しかし、非水電解液使
用電気二重層キャパシタのセパレータとして使用すると
電圧保持性や電圧印加耐久性の点で問題がある。
[0008] Electrolytic paper made from kraft paper or manila hemp paper is widely used in aluminum electrolytic capacitors, and although the electric resistance is somewhat high, the heat resistance is 120 to 200.
It is about ℃ and the strength is strong enough. However, when used as a separator of an electric double layer capacitor using a non-aqueous electrolyte, there is a problem in terms of voltage retention and voltage application durability.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来技術に
おける上記問題点を解消し、電圧保持性が良好で、充放
電サイクル耐久性に優れ、長期にわたって安定的に作動
する電気二重層キャパシタを提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides an electric double layer capacitor having good voltage holding properties, excellent charge / discharge cycle durability, and stable operation for a long period of time. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明は、炭素材料を主
成分とする分極性電極を集電体と一体化してなる電極体
を正極体及び負極体とし、該正極体と該負極体とをセル
ロース系セパレータを介在させて巻回又は複数交互に積
層して素子を形成し、該素子に有機電解液を含浸させて
密封外装する電気二重層キャパシタの製造方法におい
て、巻回又は複数交互に積層する前に前記セパレータを
90〜250℃で熱処理することを特徴とする電気二重
層キャパシタの製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a positive electrode body and a negative electrode body in which an electrode body obtained by integrating a polarizable electrode mainly composed of a carbon material with a current collector is provided. In a method for manufacturing an electric double layer capacitor in which a device is formed by winding or alternately laminating a plurality of such materials with a cellulose-based separator interposed therebetween, and impregnating the device with an organic electrolytic solution and sealingly encasing the same, the device is wound or alternately wound. The present invention provides a method for manufacturing an electric double layer capacitor, wherein the separator is heat-treated at 90 to 250 ° C. before stacking.

【0011】本明細書において、炭素材料を主成分とす
る分極性電極を集電体と一体化したものを電極体とい
い、これを正極側に用いる場合は正極体、負極側に用い
る場合は負極体という。また、長尺状の電極体シートを
巻回してなるロール状物を電極体コイルといい、該電極
体コイルを正極に使用する場合は正極体コイル、負極に
使用する場合は負極体コイルという。また、セパレータ
コイルについても同様の定義とする。
In the present specification, an electrode body in which a polarizable electrode mainly composed of a carbon material is integrated with a current collector is called an electrode body. When this is used for the positive electrode side, it is used for the positive electrode body. It is called a negative electrode body. A roll formed by winding a long electrode body sheet is called an electrode body coil. When the electrode body coil is used for a positive electrode, it is called a positive electrode body coil. When it is used for a negative electrode, it is called a negative electrode body coil. The same definition applies to the separator coil.

【0012】従来は、正極体と負極体とをセパレータを
介して巻回又は複数交互に積層して素子を形成した後
に、加熱又は真空加熱により素子中の水分等の揮発成分
を除去していた。ところが、キャパシタ1個あたりの容
量を大きくするために、素子を大きくした場合、短時間
の加熱処理では素子中の揮発成分の除去が困難であるこ
とがわかった。大きな素子では、素子内部からの揮発成
分の拡散脱離が遅いためと推察される。
Conventionally, after forming a device by winding or alternately laminating a positive electrode body and a negative electrode body via a separator, a volatile component such as moisture in the device is removed by heating or vacuum heating. . However, it has been found that when the element is made large in order to increase the capacity per one capacitor, it is difficult to remove volatile components in the element by a short heat treatment. It is presumed that the diffusion and desorption of volatile components from inside the device are slow in a large device.

【0013】本発明者らは、セパレータとして使用しう
る各種セルロース系材料について、大気中及び窒素雰囲
気中で熱重量分析と示差熱分析(TG−DTA)を行っ
た結果、セパレータに含まれる2〜8重量%の水分は1
00℃以上で脱離すること、各種セルロースの熱分解は
約230〜250℃から開始し、280〜320℃で顕
著になること、セルロースは大気中では約340℃で燃
焼すること等が判明し、本発明に至った。
The present inventors conducted a thermogravimetric analysis and a differential thermal analysis (TG-DTA) on various cellulosic materials that can be used as a separator in the air and in a nitrogen atmosphere. 8% water by weight is 1
It has been found that desorption occurs at a temperature of 00 ° C or higher, thermal decomposition of various celluloses starts at about 230 to 250 ° C, becomes remarkable at 280 to 320 ° C, and that cellulose burns at about 340 ° C in the atmosphere. This has led to the present invention.

【0014】本発明において、セパレータの熱処理温度
が90℃未満であると、セパレータ中の水分を充分に除
去できないため、電気二重層キャパシタの性能が充放電
サイクルにより劣化しやすい。250℃を超えるとセパ
レータ自体が熱分解するため、セパレータの強度が低下
したり水分が発生する。好ましくは熱処理温度は120
〜220℃である。また、熱処理時間は熱処理温度との
関係により適宜選定されるが、通常、3秒以上であるこ
とが好ましい。
In the present invention, if the heat treatment temperature of the separator is lower than 90 ° C., the water in the separator cannot be sufficiently removed, so that the performance of the electric double layer capacitor is liable to be deteriorated by the charge / discharge cycle. If the temperature exceeds 250 ° C., the separator itself is thermally decomposed, so that the strength of the separator is reduced or moisture is generated. Preferably the heat treatment temperature is 120
220220 ° C. The heat treatment time is appropriately selected depending on the relationship with the heat treatment temperature, but is usually preferably 3 seconds or more.

【0015】セパレータの熱処理の方法としては、加熱
したヒーターにセパレータを接触させたり、セパレータ
に赤外線を照射したり、加熱空気による熱処理等の方法
が適宜選択される。セパレータはセパレータコイルとし
て入手されるが、巻回された状態では脱水するための加
熱に長時間必要である。セパレータは緊密に重なってい
ない状態で加熱すると効果的に短時間で脱水できるので
好ましい。
As a method of heat treatment of the separator, a method such as contacting the separator with a heated heater, irradiating the separator with infrared rays, or heat treatment with heated air is appropriately selected. The separator is obtained as a separator coil, but in a wound state, heating for dehydration requires a long time. It is preferable to heat the separator in a state where it does not overlap tightly, because it can be effectively dewatered in a short time.

【0016】具体的には、例えばセパレータコイルの一
部を広げ、広げた部分を加熱し、加熱しおわった部分か
ら再度巻き直して脱水されたセパレータコイルを作製し
たり、あらかじめセパレータコイルからシートを複数枚
切断し、このセパレータシートどうしが緊密に重ならな
いように例えば耐熱性スペーサ網を介在させて加熱して
脱水した後、使用してもよい。
Specifically, for example, a part of the separator coil is spread, the spread part is heated, and the heated part is re-wound to produce a dewatered separator coil. A plurality of sheets may be cut and heated so that the separator sheets are not closely overlapped with each other, for example, heated with a heat-resistant spacer mesh interposed therebetween to be dehydrated and then used.

【0017】また、以下のような方法も好ましい。ま
ず、分極性電極を集電体と一体化させて長尺状の電極体
を2本作製し、これを巻回して正極体コイルと負極体コ
イルとする。正極体コイル、負極体コイル及び2つのセ
パレータコイルから同時に連続的に正極体シート、負極
体シート、及び2枚のセパレータシートを供給し、この
4枚の長尺状シートを、正極体と負極体の間にセパレー
タが介在されるように、正極体/セパレータ/負極体/
セパレータの順又はセパレータ/正極体/セパレータ/
負極体の順に重ねて巻回して素子を形成するが、この4
枚の長尺状シートを重ねる直前にセパレータを加熱する
工程をいれる。
The following method is also preferable. First, a polarizable electrode is integrated with a current collector to produce two long electrode bodies, which are wound to form a positive electrode coil and a negative electrode coil. The positive electrode body sheet, the negative electrode body sheet and the two separator sheets are simultaneously and continuously supplied from the positive electrode body coil, the negative electrode body coil and the two separator coils. The positive electrode body / separator / negative body /
Separator order or separator / positive body / separator /
The element is formed by winding in a stacked manner in the order of the negative electrode body.
A step of heating the separator immediately before stacking the long sheets is included.

【0018】この場合のセパレータの加熱方法として
は、連続的に供給されるセパレータシートを例えば加熱
された金属に所定時間接触させて加熱すると効果的にセ
パレータの水分を除去できるので好ましい。この場合、
熱処理時間は3〜60秒程度が好ましい。セパレータを
接触させる金属の形状は平板状でもロール状でもよい。
As a method of heating the separator in this case, it is preferable that the separator sheet continuously supplied is heated, for example, in contact with a heated metal for a predetermined period of time, because the water content of the separator can be effectively removed. in this case,
The heat treatment time is preferably about 3 to 60 seconds. The shape of the metal contacting the separator may be a flat plate or a roll.

【0019】また、セパレータの加熱は減圧下で行う
と、より効果的に水分等の除去ができるが、装置、プロ
セスは複雑になる。減圧乾燥であれば、90℃未満の温
度でも水分等の除去ができるが、水分などの除去に時間
を要するので好ましくない。
When the separator is heated under reduced pressure, moisture and the like can be more effectively removed, but the apparatus and process become complicated. Drying under reduced pressure can remove moisture and the like even at a temperature lower than 90 ° C., but it is not preferable because it takes time to remove the moisture and the like.

【0020】また、正極体と負極体とをセパレータを介
して連続的に巻回又は複数積層して素子を形成する工程
は、露点−40℃以下の乾燥雰囲気中で行うことが好ま
しい。露点−60℃以下であるとさらに好ましい。露点
−40℃以下の乾燥雰囲気中で素子を形成すると、形成
後の素子の吸水を効果的に防止できる。雰囲気は乾燥空
気でも窒素等の不活性ガスでもよい。
Preferably, the step of continuously winding or laminating a plurality of positive and negative electrode bodies via a separator to form an element is performed in a dry atmosphere having a dew point of -40 ° C. or less. More preferably, the dew point is −60 ° C. or lower. When the element is formed in a dry atmosphere having a dew point of −40 ° C. or lower, water absorption of the element after formation can be effectively prevented. The atmosphere may be dry air or an inert gas such as nitrogen.

【0021】本発明におけるセパレータはセルロース系
の材料からなるセパレータであるが、具体的にはセルロ
ース系電解紙、レーヨン繊維からなる抄紙、セルロース
とガラス繊維の混抄紙等が使用できる。特に天然植物繊
維セルロースであるクラフト紙、マニラ麻、又は人造繊
維であるレーヨンのいずれかからなることが好ましい。
The separator in the present invention is a separator made of a cellulosic material, and specific examples thereof include cellulosic electrolytic paper, paper made of rayon fiber, and mixed paper of cellulose and glass fiber. In particular, it is preferably made of any of kraft paper, manila hemp, which is a natural vegetable fiber cellulose, and rayon, which is an artificial fiber.

【0022】クラフト紙及びマニラ麻紙はα−セルロー
ス(C6105n を主成分として約88〜96重量
%含有し、残りがペントサン、リグニン等からなる。レ
ーヨン紙は再生セルロースから作られる人造繊維抄紙で
ある。レーヨン紙を用いると特にシート強度が強く、2
0〜40μmの薄膜セパレータを工業的に製造でき、ま
た電解液を含浸させると低抵抗となるので特に好まし
い。
Kraft paper and Manila hemp paper contain about 88 to 96% by weight of α-cellulose (C 6 H 10 O 5 ) n as a main component, and the rest consists of pentosan, lignin and the like. Rayon paper is an artificial fiber paper made from regenerated cellulose. When rayon paper is used, the sheet strength is particularly high and 2
A thin film separator having a thickness of 0 to 40 μm can be industrially manufactured, and impregnation with an electrolytic solution is particularly preferable because the resistance becomes low.

【0023】本発明におけるセパレータの厚さは20〜
100μmが好ましい。20μm未満であると、ショー
トを起こしやすく、電気二重層キャパシタの漏れ電流が
大きくなって電圧保持性が低下したり、またセパレータ
の機械的強度が不足しやすい。100μmを超えると、
セパレータの占める体積が大きく、単位体積あたりのエ
ネルギー密度が低下したり、セパレータ部分の電気抵抗
が不必要に高くなってキャパシタの出力密度が低下しが
ちなので好ましくない。特には30〜70μmが好適で
ある。
The thickness of the separator in the present invention is 20 to
100 μm is preferred. If it is less than 20 μm, a short circuit is likely to occur, the leakage current of the electric double layer capacitor is increased, the voltage holding property is reduced, and the mechanical strength of the separator is apt to be insufficient. If it exceeds 100 μm,
Since the volume occupied by the separator is large, the energy density per unit volume is reduced, and the electrical resistance of the separator part is unnecessarily increased, so that the output density of the capacitor is apt to be reduced. In particular, 30 to 70 μm is preferable.

【0024】本発明におけるセパレータは、ショート防
止等のために必要に応じて2〜3枚重ねで使用してもよ
い。セパレータコイルを使用して電気二重層キャパシタ
を製造する場合は、2〜3枚重ねで巻回されているセパ
レータコイルを使用することが好ましい。
The separators of the present invention may be used in layers of two or three as necessary to prevent short circuits and the like. When an electric double layer capacitor is manufactured by using a separator coil, it is preferable to use a separator coil wound by stacking two to three sheets.

【0025】本発明におけるセルロース系セパレータは
親水性であるため、市販品を購入した段階では約2〜8
重量%の水分を含む。非水電解液を使用する電気二重層
キャパシタでは、電圧印加耐久性を確保するためには電
解液中の水分は300ppm以下、特には50ppm以
下であることが好ましい。
Since the cellulosic separator in the present invention is hydrophilic, it is about 2 to 8 when a commercially available product is purchased.
Contains water by weight. In an electric double layer capacitor using a non-aqueous electrolyte, the water content in the electrolyte is preferably 300 ppm or less, particularly preferably 50 ppm or less in order to ensure the durability against voltage application.

【0026】本発明における炭素質電極としては主に高
比表面積の炭素材料が主成分として使用されるが、該炭
素材料は通常粉末状であるため、例えばポリテトラフル
オロエチレン(以下、PTFEという)等の含フッ素樹
脂を含む結合材と混合してシート状の電極に成形し、導
電性接着層を介して集電体と電気的に接続させて電極体
を形成している。また、ポリフッ化ビニリデン等からな
る結合材と該結合材が可溶な溶媒とからなる溶液に炭素
材料を分散させてスラリとなし、これを集電体に塗布、
乾燥して電極体を形成する方法もある。
As the carbonaceous electrode in the present invention, a carbon material having a high specific surface area is mainly used as a main component. Since the carbon material is usually in a powder form, for example, polytetrafluoroethylene (hereinafter referred to as PTFE) is used. The mixture is mixed with a binder containing a fluorine-containing resin such as described above, formed into a sheet-like electrode, and electrically connected to a current collector through a conductive adhesive layer to form an electrode body. Further, a carbon material is dispersed in a solution containing a binder made of polyvinylidene fluoride or the like and a solvent in which the binder is soluble to form a slurry, which is applied to a current collector,
There is also a method of drying to form an electrode body.

【0027】上記の導電性接着剤としては種々のものが
使用できるが、コロイダルグラファイトを導電材とし、
熱硬化性の樹脂、例えばポリイミド樹脂、ポリアミドイ
ミド樹脂等をバインダとする導電性接着剤が特に耐熱
性、耐酸化性に優れ、接合力が強いので好ましい。
Various conductive adhesives can be used as the conductive adhesive. Colloidal graphite is used as a conductive material.
A conductive adhesive using a thermosetting resin, for example, a polyimide resin, a polyamideimide resin, or the like as a binder is preferable because it is particularly excellent in heat resistance and oxidation resistance and has strong bonding strength.

【0028】本発明における分極性電極は、抵抗を低く
するためにカーボンブラックや黒鉛等の導電材を含んで
もよい。導電材は分極性電極中に3〜30重量%含まれ
ることが好ましい。上記の方法で電極体を作製するとき
は、導電材は炭素材料とPTFEとを混練するときに加
えることが好ましい。
The polarizable electrode in the present invention may contain a conductive material such as carbon black or graphite in order to reduce the resistance. The conductive material is preferably contained in the polarizable electrode in an amount of 3 to 30% by weight. When the electrode body is manufactured by the above method, the conductive material is preferably added when kneading the carbon material and PTFE.

【0029】本発明の電気二重層キャパシタに使用され
る有機電解液は特に限定されず、公知の有機溶媒にイオ
ン解離性の塩類を含む有機電解液を使用できる。なかで
もR1234+ 、R1234+ (ただ
し、R1 、R2 、R3 、R4はアルキル基で、それぞれ
同じでも異なっていてもよい)等で表される第4級オニ
ウムカチオンと、BF4 -、PF6 -、ClO4 -、CF3
3 -等のアニオンとからなる塩を有機溶媒に溶解させた
有機電解液を使用するのが好ましい。
The organic electrolyte used for the electric double layer capacitor of the present invention is not particularly limited, and any known organic solvent containing an ion-dissociable salt can be used. Among them, R 1 R 2 R 3 R 4 N + , R 1 R 2 R 3 R 4 P + (where R 1 , R 2 , R 3 , and R 4 are alkyl groups, which may be the same or different. ), BF 4 , PF 6 , ClO 4 , CF 3 S
O 3 - is preferable to use salts of organic electrolyte dissolved in an organic solvent consisting of an anion such as.

【0030】上記有機溶媒としては、プロピレンカーボ
ネート、ブチレンカーボネート、ジエチルカーボネート
等のカーボネート類、γ−ブチロラクトン等のラクトン
類、スルホラン、又はこれらの混合溶媒が好ましく使用
できる。
As the organic solvent, carbonates such as propylene carbonate, butylene carbonate and diethyl carbonate, lactones such as γ-butyrolactone, sulfolane, and a mixed solvent thereof can be preferably used.

【0031】本発明の電気二重層キャパシタの炭素質電
極からなる分極性電極は、電気化学的に不活性な高比表
面積の材料であれば使用できるが、比表面積が大きい活
性炭粉末を主成分とするのが好ましい。また、活性炭粉
末以外の、カーボンブラック、ポリアセン、金属微粒
子、導電性金属酸化物微粒子等の700m2 /g以上の
大比表面積の材料も同様に使用できる。
The polarizable electrode comprising the carbonaceous electrode of the electric double layer capacitor of the present invention can be used as long as it is an electrochemically inactive material having a high specific surface area. Is preferred. In addition, materials having a large specific surface area of 700 m 2 / g or more, such as carbon black, polyacene, metal fine particles, and conductive metal oxide fine particles, other than activated carbon powder, can also be used.

【0032】本発明において、正極体と負極体とをセパ
レータを介在させて巻回した素子は有底円筒型のケース
に収容し、複数積層した素子は有底角型のケースに収容
して正極端子と負極端子を有する蓋体を取り付け、レー
ザー溶接等により封口することが好ましい。このとき、
ケースの材質としてはアルミニウム等の金属が好まし
い。
In the present invention, an element obtained by winding a positive electrode body and a negative electrode body with a separator interposed therebetween is housed in a bottomed cylindrical case, and a plurality of stacked elements are housed in a bottomed square case, and It is preferable to attach a lid having a terminal and a negative electrode terminal, and seal it by laser welding or the like. At this time,
The case is preferably made of a metal such as aluminum.

【0033】[0033]

【実施例】以下に実施例(例1〜2)及び比較例(例3
〜5)により本発明を具体的に説明するが、本発明はこ
れらに限定されない。
The following examples (Examples 1 and 2) and comparative examples (Example 3)
The present invention will be specifically described with reference to (5), but the present invention is not limited to these.

【0034】[例1]比表面積1800m2 /g、平均
粒径8μmの高純度活性炭粉末80重量部及びカーボン
ブラック12重量部に、ポリフッ化ビニリデン8重量部
を含むN−メチル−2−ピロリドン溶液100重量部を
加えてボールミルにて混合し、固形分濃度26重量%の
スラリを調製した。
Example 1 N-methyl-2-pyrrolidone solution containing 8 parts by weight of polyvinylidene fluoride in 80 parts by weight of high-purity activated carbon powder having a specific surface area of 1800 m 2 / g and an average particle diameter of 8 μm and 12 parts by weight of carbon black 100 parts by weight were added and mixed by a ball mill to prepare a slurry having a solid concentration of 26% by weight.

【0035】幅11cm、厚さ30μmで両面を粗面化
された長尺状のアルミニウム箔の両面に一方の端部より
幅10cmにわたってこのスラリを塗布し、電極層を形
成した。これを120℃で30分乾燥後プレス圧延し、
さらに180℃で30分乾燥させてプレス圧延して厚さ
130μmの帯状電極体を2本作製し、巻回して2本の
電極体コイルを作製した。
The slurry was applied to both sides of a long aluminum foil having a width of 11 cm and a thickness of 30 μm and roughened on both sides over a width of 10 cm from one end to form an electrode layer. This is press-rolled after drying at 120 ° C. for 30 minutes,
It was further dried at 180 ° C. for 30 minutes, pressed and rolled to produce two 130 μm-thick strip-shaped electrode bodies, and wound to produce two electrode body coils.

【0036】セパレータとしては、厚さ35μm、含有
水分4.3重量%、目付量13g/m2 の幅10.8c
mのレーヨン紙からなるセパレータコイルを使用した。
As the separator, a thickness of 35 μm, a water content of 4.3% by weight, a basis weight of 13 g / m 2 and a width of 10.8 c
m, a separator coil made of rayon paper was used.

【0037】露点−50℃の乾燥空気中で、電極体コイ
ル2本とセパレータコイル2本を用い、電極体/セパレ
ータ/電極体/セパレータの順に重ねて、複数のアルミ
ニウムリード端子を電極層を設けていない部分に電気的
に接合しながら巻回して素子を形成した。
In dry air at a dew point of -50 ° C., two electrode coils and two separator coils are used, and an electrode layer is formed by stacking a plurality of aluminum lead terminals in the order of electrode body / separator / electrode body / separator. The element was formed by being wound while being electrically connected to a portion that was not formed.

【0038】このとき、電極体とセパレータを重ねて巻
回する直前に2枚のセパレータが加熱されるように、1
50℃に加熱されたステンレス鋼ロールを2個配置し、
セパレータがステンレス鋼ロールに10秒間接触するよ
うにした。その後、190℃で5時間素子を真空乾燥し
て不純物を除去した。ステンレス鋼ロールに接触した直
後のセパレータをサンプリングすると、セパレータ中の
水分は0.15重量%であった。
At this time, the two separators are heated so that the two separators are heated immediately before the electrode body and the separator are wound one upon another.
Two stainless steel rolls heated to 50 ° C are arranged,
The separator was in contact with the stainless steel roll for 10 seconds. Thereafter, the element was vacuum-dried at 190 ° C. for 5 hours to remove impurities. When the separator immediately after contact with the stainless steel roll was sampled, the water content in the separator was 0.15% by weight.

【0039】ケースとしては円筒型アルミニウムケース
を用い、2つの端子を有する絶縁性樹脂からなる円盤状
封口体を上蓋とした。巻回素子の2枚の電極体から引き
出されたリード端子をそれぞれまとめて封口体の端子に
かしめ接合し、次いで1.5mol/lの(C25
3 (CH3 )NBF4 を溶解したプロピレンカーボネー
ト溶液を電解液として巻回素子に真空含浸させ、ケース
に収容し、封口体をかぶせ、上縁部をカール封口して直
径51mm、高さ125mmの円筒型電気二重層キャパ
シタを作製した。
As the case, a cylindrical aluminum case was used, and a disc-shaped sealing body made of an insulating resin having two terminals was used as an upper lid. The lead terminals pulled out from the two electrode bodies of the wound element are each joined together by caulking to the terminal of the sealing body, and then 1.5 mol / l of (C 2 H 5 )
3 A propylene carbonate solution in which (CH 3 ) NBF 4 is dissolved is impregnated in a wound element as an electrolytic solution by vacuum impregnation, accommodated in a case, covered with a sealing body, and curled at the upper edge to have a diameter of 51 mm and a height of 125 mm. A cylindrical electric double layer capacitor was manufactured.

【0040】得られた電気二重層キャパシタの初期の放
電容量及び内部抵抗を測定した後、45℃の恒温槽中で
0〜2.5Vの範囲で50Aの定電流による充放電を5
万サイクル繰り返し、5万サイクル後の放電容量及び内
部抵抗を測定し、性能変化を観察することにより電気二
重層キャパシタの長期的な作動信頼性を加速的に評価し
た。初期容量は1500F、初期内部抵抗は2.3mm
Ωであり、サイクル試験後の容量は1300F、内部抵
抗は2.8mmΩであった。また、この電気二重層キャ
パシタを25℃で2.5Vで100時間充電した後、2
5℃で開路状態とし、30日間放置した後の保持電圧を
測定すると2.0Vであった。
After measuring the initial discharge capacity and the internal resistance of the obtained electric double layer capacitor, charging and discharging with a constant current of 50 A in a range of 0 to 2.5 V in a constant temperature bath at 45 ° C. was performed for 5 minutes.
The discharge capacity and the internal resistance after 50,000 cycles were measured repeatedly, and the performance change was observed to accelerately evaluate the long-term operation reliability of the electric double layer capacitor. The initial capacity is 1500F and the initial internal resistance is 2.3mm
Ω, the capacity after the cycle test was 1300 F, and the internal resistance was 2.8 mmΩ. After charging this electric double layer capacitor at 25 ° C. and 2.5 V for 100 hours,
The holding voltage after leaving the circuit open at 5 ° C. for 30 days was 2.0 V.

【0041】[例2]比表面積1800m2 /g、平均
粒径10μmの高純度活性炭粉末80重量部、カーボン
ブラック10重量部、PTFE粉末10重量部を混合し
た後、エタノールを滴下しつつ混練し、ロール圧延して
厚さ130μmのシート電極を作製した。これを200
℃で30分乾燥してエタノールを除去し、厚さ40μm
のアルミニウム箔集電体の両面に導電性接着剤を用いて
接合し、さらに230℃で30分加熱して導電性接着剤
を熱硬化させ、プレスして厚さ260μmの電極体を作
製した。
Example 2 80 parts by weight of a high-purity activated carbon powder having a specific surface area of 1800 m 2 / g and an average particle diameter of 10 μm, 10 parts by weight of carbon black, and 10 parts by weight of PTFE powder were mixed, and kneaded while adding ethanol dropwise. Then, a sheet electrode having a thickness of 130 μm was produced by roll rolling. This is 200
Dry at 30 ° C. for 30 minutes to remove ethanol, thickness 40 μm
Was bonded to both sides of the aluminum foil current collector using a conductive adhesive, and further heated at 230 ° C. for 30 minutes to thermally cure the conductive adhesive and pressed to produce an electrode body having a thickness of 260 μm.

【0042】セパレータとしては、厚さ75μm、水分
3.6重量%、目付量33g/m2の、クラフト紙とマ
ニラ麻紙との混抄紙からなるシートを用いた。このシー
トから幅68mm、長さ130mmの矩形のセパレータ
56枚を切り出し、各セパレータの間にはポリエステル
網をスペーサ網として配置し、180℃で1時間熱風乾
燥した。熱風乾燥後のセパレータ中の水分は0.1重量
%以下であった。
As the separator, a sheet made of a mixed paper of kraft paper and manila hemp paper having a thickness of 75 μm, a water content of 3.6% by weight, and a basis weight of 33 g / m 2 was used. From this sheet, 56 rectangular separators having a width of 68 mm and a length of 130 mm were cut out, and a polyester net was arranged as a spacer net between the separators, followed by hot-air drying at 180 ° C. for 1 hour. The moisture in the separator after hot-air drying was 0.1% by weight or less.

【0043】上記の電極体構成の有効電極面積6.5c
m×12cmの54枚の電極体を得て、このうち27枚
を正極体、残りの27枚を負極体とし、上記セパレータ
を介して交互に積層して素子を得た。この積層体素子を
高さ13cm、幅7cm、厚さ2.2cmの有底角型ア
ルミニウムケースに収容し、正極端子と負極端子を有す
るアルミニウム上蓋を用いてレーザー溶接封口し、注液
口を開けた状態で200℃で5時間真空乾燥して不純物
を除去した。次いで、1.5mol/lの(C25
3 (CH3 )NPF6 のプロピレンカーボネート溶液を
電解液として素子に真空含浸させた後、注液口に安全弁
を配置して幅7cm、高さ15cm、厚さ2.2cmの
角型電気二重層キャパシタとした。
The effective electrode area 6.5c of the above-described electrode body configuration
Fifty-four mx12 cm electrode bodies were obtained, of which 27 were used as a positive electrode body and the remaining 27 were used as a negative electrode body. This laminated element was housed in a bottomed rectangular aluminum case having a height of 13 cm, a width of 7 cm, and a thickness of 2.2 cm, and was sealed by laser welding using an aluminum top lid having a positive electrode terminal and a negative electrode terminal, and a liquid inlet was opened. Vacuum drying was performed at 200 ° C. for 5 hours to remove impurities. Then, 1.5 mol / l of (C 2 H 5 )
After the element was vacuum impregnated with a propylene carbonate solution of 3 (CH 3 ) NPF 6 as an electrolytic solution, a safety valve was disposed at an injection port to form a square electric double layer having a width of 7 cm, a height of 15 cm, and a thickness of 2.2 cm. A capacitor was used.

【0044】得られた電気二重層キャパシタの初期の放
電容量は1600F、内部抵抗は2.2mΩであった。
2.5Vで100時間充電した後の漏れ電流は0.5m
Aであった。2.5Vで100時間充電した後、25℃
で開路状態とし、30日間放置した後のキャパシタの保
持電圧は2.2Vであった。また、例1と同様に充放電
サイクルを行ったところ、5万サイクル後の容量は15
00F、内部抵抗は2.5mmΩであった。
The initial discharge capacity of the obtained electric double layer capacitor was 1600 F, and the internal resistance was 2.2 mΩ.
Leakage current after charging at 2.5V for 100 hours is 0.5m
A. After charging at 2.5V for 100 hours, 25 ℃
, And the holding voltage of the capacitor after standing for 30 days was 2.2 V. When the charge and discharge cycle was performed in the same manner as in Example 1, the capacity after 50,000 cycles was 15
00F, the internal resistance was 2.5 mmΩ.

【0045】[例3]セパレータを予備加熱することを
行わなかった他は例1と同様にして電気二重層キャパシ
タ素子を作製し、性能を評価した。初期容量は1500
F、初期内部抵抗は2.3mmΩであり、2.5Vで1
00時間充電した後、25℃で開路状態とし、30日間
放置した後のキャパシタの保持電圧は0.8Vであっ
た。また、例1と同様に充放電サイクルを行ったとこ
ろ、5万サイクル後の容量は850F、内部抵抗は7.
6mmΩであった。
Example 3 An electric double layer capacitor element was manufactured in the same manner as in Example 1 except that the separator was not preheated, and the performance was evaluated. Initial capacity is 1500
F, the initial internal resistance is 2.3 mmΩ, and 1 at 2.5 V
After the battery was charged for 00 hours, the circuit was opened at 25 ° C., and the storage voltage of the capacitor after standing for 30 days was 0.8V. When the charge and discharge cycle was performed in the same manner as in Example 1, the capacity after 50,000 cycles was 850F, and the internal resistance was 7.
It was 6 mmΩ.

【0046】[例4]セパレータを予備加熱することを
行わなかった他は例2と同様にして電気二重層キャパシ
タ素子を作製し、性能を評価した。初期容量は1600
F、初期内部抵抗は2.2mmΩであり、2.5Vで1
00時間充電した後、25℃で開路状態とし、30日間
放置した後のキャパシタの保持電圧は1.0Vであっ
た。また、例1と同様に充放電サイクルを行ったとこ
ろ、5万サイクル後の容量は700F、内部抵抗は5.
3mmΩであった。
Example 4 An electric double layer capacitor element was manufactured in the same manner as in Example 2 except that the separator was not preheated, and the performance was evaluated. Initial capacity is 1600
F, the initial internal resistance is 2.2 mmΩ, and 1 at 2.5 V
After the battery was charged for 00 hours, the circuit was opened at 25 ° C., and after being left for 30 days, the holding voltage of the capacitor was 1.0 V. When the charge and discharge cycle was performed in the same manner as in Example 1, the capacity after 50,000 cycles was 700 F, and the internal resistance was 5.
It was 3 mmΩ.

【0047】[例5]セパレータの予備加熱乾燥を70
℃で行った他は例1と同様にして電気二重層キャパシタ
素子を作製し、性能を評価した。初期容量は1500
F、初期内部抵抗は2.3mmΩであり、2.5Vで1
00時間充電した後、25℃で開路状態とし、30日間
放置した後のキャパシタの保持電圧は1.2Vであっ
た。また、例1と同様に充放電サイクルを行ったとこ
ろ、5万サイクル後の容量は900F、内部抵抗は5.
5mmΩであった。
[Example 5] Preliminary heating and drying of the separator
An electric double layer capacitor element was prepared in the same manner as in Example 1 except that the test was carried out at a temperature of ° C, and the performance was evaluated. Initial capacity is 1500
F, the initial internal resistance is 2.3 mmΩ, and 1 at 2.5 V
After charging for 00 hours, the circuit was opened at 25 ° C., and after being left for 30 days, the holding voltage of the capacitor was 1.2 V. When the charge and discharge cycle was performed in the same manner as in Example 1, the capacity after 50,000 cycles was 900 F, and the internal resistance was 5.
It was 5 mmΩ.

【0048】[0048]

【発明の効果】本発明による電気二重層キャパシタは、
大電流密度で充放電サイクルを繰り返しても、作動性能
が安定しており、電圧保持性が優れている。
The electric double layer capacitor according to the present invention has the following features.
Even if the charge and discharge cycle is repeated at a large current density, the operation performance is stable and the voltage holding property is excellent.

フロントページの続き (72)発明者 河里 健 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内Continued on the front page (72) Inventor Takeshi Kawari 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa-ken Asahi Glass Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭素材料を主成分とする分極性電極を集電
体と一体化してなる電極体を正極体及び負極体とし、該
正極体と該負極体とをセルロース系セパレータを介在さ
せて巻回又は複数交互に積層して素子を形成し、該素子
に有機電解液を含浸させて密封外装する電気二重層キャ
パシタの製造方法において、巻回又は複数交互に積層す
る前に前記セパレータを90〜250℃で熱処理するこ
とを特徴とする電気二重層キャパシタの製造方法。
An electrode body obtained by integrating a polarizable electrode mainly composed of a carbon material with a current collector as a positive electrode body and a negative electrode body, and the positive electrode body and the negative electrode body are interposed with a cellulose-based separator. In a method for manufacturing an electric double layer capacitor in which a device is formed by winding or laminating a plurality of layers alternately and impregnating the device with an organic electrolyte solution and sealingly encasing the separator, the separator may be 90 degrees before the winding or a plurality of layers are laminated alternately. A method for producing an electric double layer capacitor, comprising heat-treating at -250 ° C.
【請求項2】セパレータが、クラフト紙、マニラ麻又は
レーヨンからなる請求項1記載の電気二重層キャパシタ
の製造方法。
2. The method according to claim 1, wherein the separator is made of kraft paper, manila hemp or rayon.
【請求項3】露点−40℃以下の乾燥雰囲気中で正極体
と負極体とが連続的に巻回又は複数交互に積層されて素
子が形成される請求項1又は2記載の電気二重層キャパ
シタの製造方法。
3. The electric double layer capacitor according to claim 1, wherein the element is formed by continuously winding or alternately laminating a plurality of positive electrode bodies and a plurality of negative electrode bodies in a dry atmosphere having a dew point of −40 ° C. or less. Manufacturing method.
【請求項4】前記素子が、正極体コイル、負極体コイル
及び2つのセパレータコイルから同時に連続的に供給さ
れる4枚の長尺状シートを、正極体/セパレータ/負極
体/セパレータの順又はセパレータ/正極体/セパレー
タ/負極体の順に重ねて巻回してなる素子であり、セパ
レータは前記4枚の長尺状シートを重ねる直前に熱処理
される請求項1、2又は3記載の電気二重層キャパシタ
の製造方法。
4. The device according to claim 1, wherein four long sheets continuously and simultaneously supplied from the positive electrode coil, the negative electrode coil and the two separator coils are arranged in the order of positive electrode / separator / negative electrode / separator. 4. The electric double layer according to claim 1, wherein the device is a device which is wound in a sequence of separator / cathode / separator / negative body, and wherein the separator is heat-treated immediately before stacking the four long sheets. 5. A method for manufacturing a capacitor.
【請求項5】セパレータを、加熱した金属に3〜60秒
接触することにより熱処理する請求項4記載の電気二重
層キャパシタの製造方法。
5. The method for manufacturing an electric double layer capacitor according to claim 4, wherein the separator is heat-treated by contacting the heated metal for 3 to 60 seconds.
JP9324948A 1997-11-26 1997-11-26 Method for manufacturing electrical double-layer capacitor Pending JPH11162788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9324948A JPH11162788A (en) 1997-11-26 1997-11-26 Method for manufacturing electrical double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9324948A JPH11162788A (en) 1997-11-26 1997-11-26 Method for manufacturing electrical double-layer capacitor

Publications (1)

Publication Number Publication Date
JPH11162788A true JPH11162788A (en) 1999-06-18

Family

ID=18171424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9324948A Pending JPH11162788A (en) 1997-11-26 1997-11-26 Method for manufacturing electrical double-layer capacitor

Country Status (1)

Country Link
JP (1) JPH11162788A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211116A (en) * 2007-02-28 2008-09-11 Seiko Instruments Inc Electric double layer capacitor
JP2009088301A (en) * 2007-09-29 2009-04-23 Nippon Chemicon Corp Electrolytic capacitor
JP2013105839A (en) * 2011-11-11 2013-05-30 Taiyo Yuden Co Ltd Lithium ion capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830120A (en) * 1981-08-17 1983-02-22 松下電器産業株式会社 Electric doulbe layer capacitor
JPS58188627A (en) * 1982-04-30 1983-11-04 Toray Ind Inc Preparation of polypropylene film
JPS6015912A (en) * 1983-07-07 1985-01-26 シ−ケ−デイ株式会社 Method of winding capacitor element electrode foil
JPS6037113A (en) * 1983-08-09 1985-02-26 松下電器産業株式会社 Method of producing electritic double layer capacitor
JPS62281412A (en) * 1986-05-30 1987-12-07 Toshiba Corp Manufacture of foil-wound winding
JPH0945586A (en) * 1995-07-31 1997-02-14 Matsushita Electric Ind Co Ltd Electic double layer capacitor
JPH09129509A (en) * 1995-10-31 1997-05-16 Honda Motor Co Ltd Electric double layer capacitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830120A (en) * 1981-08-17 1983-02-22 松下電器産業株式会社 Electric doulbe layer capacitor
JPS58188627A (en) * 1982-04-30 1983-11-04 Toray Ind Inc Preparation of polypropylene film
JPS6015912A (en) * 1983-07-07 1985-01-26 シ−ケ−デイ株式会社 Method of winding capacitor element electrode foil
JPS6037113A (en) * 1983-08-09 1985-02-26 松下電器産業株式会社 Method of producing electritic double layer capacitor
JPS62281412A (en) * 1986-05-30 1987-12-07 Toshiba Corp Manufacture of foil-wound winding
JPH0945586A (en) * 1995-07-31 1997-02-14 Matsushita Electric Ind Co Ltd Electic double layer capacitor
JPH09129509A (en) * 1995-10-31 1997-05-16 Honda Motor Co Ltd Electric double layer capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211116A (en) * 2007-02-28 2008-09-11 Seiko Instruments Inc Electric double layer capacitor
JP2009088301A (en) * 2007-09-29 2009-04-23 Nippon Chemicon Corp Electrolytic capacitor
JP2013105839A (en) * 2011-11-11 2013-05-30 Taiyo Yuden Co Ltd Lithium ion capacitor
US8885325B2 (en) 2011-11-11 2014-11-11 Taiyo Yuden Co., Ltd. Lithium ion capacitor

Similar Documents

Publication Publication Date Title
WO2013073526A1 (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
WO2000016354A1 (en) Method for manufacturing large-capacity electric double-layer capacitor
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
US20080112112A1 (en) Electric double-layer capacitor
KR101635763B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP2003197487A (en) Electric double-layer capacitor
JP4623840B2 (en) Manufacturing method of electric double layer capacitor
US6898067B1 (en) Electric double-layer capacitor
JP3721642B2 (en) Manufacturing method of large-capacity electric double layer capacitor
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JPWO2008018326A1 (en) Non-aqueous electrolyte for electric double layer capacitor and electric double layer capacitor using the same
KR101860755B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JPH11162788A (en) Method for manufacturing electrical double-layer capacitor
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JPH09270370A (en) Electric double layer capacitor and its manufacturing method
KR101494622B1 (en) Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite
JP2014521231A5 (en)
JP2014521231A (en) Energy storage device, inorganic gel electrolyte, and method thereof
KR101493976B1 (en) Manufacturing method of Asymmetrical Super Capacitor with Cylindrical Type
KR101936044B1 (en) Supercapacitor electrode for high temperature, manufactureing method of the electrode, and Supercapacitor for high temperature using the electrode
JP4026806B2 (en) Electric double layer capacitor
JP2004335702A (en) Electric double layer capacitor
JPH01223714A (en) Electric double-layer capacitor
JPS6037113A (en) Method of producing electritic double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711