JPH0151849B2 - - Google Patents

Info

Publication number
JPH0151849B2
JPH0151849B2 JP3550487A JP3550487A JPH0151849B2 JP H0151849 B2 JPH0151849 B2 JP H0151849B2 JP 3550487 A JP3550487 A JP 3550487A JP 3550487 A JP3550487 A JP 3550487A JP H0151849 B2 JPH0151849 B2 JP H0151849B2
Authority
JP
Japan
Prior art keywords
ion
needle
ion source
electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3550487A
Other languages
Japanese (ja)
Other versions
JPS62188127A (en
Inventor
Hifumi Tamura
Tooru Ishitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3550487A priority Critical patent/JPS62188127A/en
Publication of JPS62188127A publication Critical patent/JPS62188127A/en
Publication of JPH0151849B2 publication Critical patent/JPH0151849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 本発明は高輝度の金属成分イオンビームを引き
出すためのイオン源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion source for extracting a high-intensity metal component ion beam.

最近、イオンビームを利用したサブミクロン計
測および加工が微細構造製作技術分野に広く使わ
れるようになつてきた。このような応用分野に対
して、現在主としてデユオプラズマトロン型イオ
ン源が利用されている。
Recently, submicron measurement and processing using ion beams has become widely used in the field of microstructure fabrication technology. Duoplasmatron ion sources are currently mainly used for such application fields.

第1図に従来のデユオプラズマトロン型イオン
源の原理構成を示す。従来、イオン源は、ホロカ
ソード1、中間電極2、アノード3、引出電極
4、マグネツト5、放電安定化抵抗6、放電々源
7および加速電源8より構成されている。
FIG. 1 shows the principle configuration of a conventional dual plasmatron ion source. Conventionally, an ion source is composed of a hollow cathode 1, an intermediate electrode 2, an anode 3, an extraction electrode 4, a magnet 5, a discharge stabilizing resistor 6, a discharge source 7, and an accelerating power source 8.

動作原理は、次の通りである。先ずイオン源部
1,2,3および4を高真空に排気し、次にカソ
ード1、中間電極2、アノード3のつくる空間に
取り出すイオン種に相当するガスを導入し、放
電々源7により、カソード1とアノード3の間に
電圧を印加し、放電を発生させ、この空間にプラ
ズマを生成させる。中間電極2とアノード3との
間にマグネツトSにより軸方向磁場が印加してあ
り、これによりプラズマがピンチされ、高密度化
される。最後に加速電源8により、引出し電極4
とアノード3の間にイオン引出し電圧を印加し、
イオンビーム9を取り出す。この場合、イオン源
の大きさは、アノード3の孔径により定まる。
The operating principle is as follows. First, the ion sources 1, 2, 3, and 4 are evacuated to a high vacuum, and then gas corresponding to the ion species to be taken out is introduced into the space created by the cathode 1, intermediate electrode 2, and anode 3, and the discharge source 7 is used to A voltage is applied between the cathode 1 and the anode 3 to generate discharge and generate plasma in this space. An axial magnetic field is applied between the intermediate electrode 2 and the anode 3 by a magnet S, thereby pinching the plasma and densifying it. Finally, the extraction electrode 4 is
Applying an ion extraction voltage between the anode 3 and the anode 3,
Take out the ion beam 9. In this case, the size of the ion source is determined by the pore diameter of the anode 3.

従来のイオン源の欠点は次の通りである。 The disadvantages of conventional ion sources are as follows.

(1) イオン源としての輝度(A/cm2・sr)が低
い。
(1) The brightness (A/cm 2 · sr) as an ion source is low.

(2) イオン源としての光源の大きさが大きい。(2) The size of the light source as an ion source is large.

(3) 高温に加熱することが困難なためイオン種に
制限がある。
(3) There are restrictions on ion species because it is difficult to heat to high temperatures.

(4) 単一金属イオン種の取り出しが困難である。(4) It is difficult to extract single metal ion species.

上記欠点(1)の輝度は、100〜200A/cm2・sr程度
であり、この値は本質的な限界値を示しており改
善の余地がない。欠点(2)は、アノード3の孔径の
機械加工精度(能力)により定まり、100μmが
限界となる。従来のイオン源では、ガス放電を利
用しているので、取り出せるイオン種に制限があ
る。欠点(3)は、この理由による。欠点(4)は従来の
ガス放電では、混合ガスを利用することが多く、
元素イオンの他にクラスタイオンや分子イオンが
混入する。したがつてイオン源として利用する場
合には質量分離が必要になる。
The luminance of the above drawback (1) is about 100 to 200 A/cm 2 ·sr, and this value represents an essential limit value and there is no room for improvement. Disadvantage (2) is determined by the machining accuracy (ability) of the hole diameter of the anode 3, and the limit is 100 μm. Conventional ion sources utilize gas discharge, which limits the types of ions that can be extracted. Disadvantage (3) is due to this reason. Disadvantage (4) is that conventional gas discharge often uses mixed gas;
In addition to elemental ions, cluster ions and molecular ions are mixed in. Therefore, when used as an ion source, mass separation is required.

従つて、本発明の目的は、上記従来のイオン源
の欠点を除去した高性能なイオン源を提供するこ
とにある。
Therefore, an object of the present invention is to provide a high-performance ion source that eliminates the drawbacks of the conventional ion sources.

本発明の特徴は、イオン化すべき物質の針状電
極先端へ供給される量を調整するため、針状電極
をその軸方向に移動させる手段を設けたイオン源
にある。イオン化すべき物質としては、金属およ
び化合物のすべてが対象となる。
A feature of the present invention is an ion source provided with means for moving the needle-like electrode in its axial direction in order to adjust the amount of the substance to be ionized supplied to the tip of the needle-like electrode. Substances to be ionized include all metals and compounds.

以下に実施例の詳細について述べる。 The details of the embodiment will be described below.

第2図に本発明の第1の実施例を示す。これは
仕事関数の大きい材料(例えばW、Mo、Ta、
Ir、Nb)を針状構造に形成し、この針の先端を
電子衝撃により加熱し、針の先端に付着している
イオン源材料によるイオンビームを取り出すもの
である。本イオン源は、針状電極14を上下に移
動させるための微動機構を備えた可動棒11、支
え12、可動棒11を可動させるためのベロー1
3、イオン源材料15を入れる容器16、電子銃
電極17、電子銃フイラメント18、イオン引出
し電極10、フイラメント電源22、電子加速電
源23およびイオン加速電源24により構成され
ている。
FIG. 2 shows a first embodiment of the present invention. This is a material with a large work function (e.g. W, Mo, Ta,
Ir, Nb) is formed into a needle-like structure, and the tip of the needle is heated by electron bombardment to extract an ion beam from the ion source material attached to the tip of the needle. This ion source includes a movable rod 11 equipped with a fine movement mechanism for moving the needle electrode 14 up and down, a support 12, and a bellows 1 for moving the movable rod 11.
3. It is composed of a container 16 containing an ion source material 15, an electron gun electrode 17, an electron gun filament 18, an ion extraction electrode 10, a filament power supply 22, an electron acceleration power supply 23, and an ion acceleration power supply 24.

本イオン源の動作原理は次の通りである。先ず
ネジ微動機構をもつ可動棒11とベローズ13に
より、針状電極14の先端部を容器16の底の孔
にしつかり押しつけた状態で硝酸セシウム
(CsNO3)、硫酸セシウム(Cs2SO4)、塩化セシウ
ム(CsCl)、セシウム(Cs)、ガリウム(Ga)、
バリウム(Ba)などのイオン源材料15を容器
16に入れ、フイラメント18をフイラメント電
源22により、約2700℃に加熱し、電子加速電圧
を電子加速電源23により徐々に供給する。これ
により針状電極14を電子衝撃により加熱し、イ
オン源材料15の一部(針状電極14の近傍)を
溶融状態に保つ。次にイオン加速電源24を働か
せ、イオン電流19を測定しながら針状電極14
を上部に微動させ、溶融したイオン源材料15を
針状電極14の先端に供給する。針状電極14
は、第2図に示すように、実効的に熱効果を高め
るために針状先端の近傍に細いくびれ20を入
れ、熱抵抗を大きくしている。針状電極14の先
端に供給されたイオン源材料15のイオン化は、
熱電離、電界電離および電子衝撃電離の重畳効果
によつて行なう。
The operating principle of this ion source is as follows. First, cesium nitrate (CsNO 3 ), cesium sulfate (Cs 2 SO 4 ), Cesium chloride (CsCl), cesium (Cs), gallium (Ga),
An ion source material 15 such as barium (Ba) is placed in a container 16, the filament 18 is heated to about 2700° C. by a filament power source 22, and an electron acceleration voltage is gradually supplied by an electron acceleration power source 23. Thereby, the needle electrode 14 is heated by electron impact, and a part of the ion source material 15 (near the needle electrode 14) is kept in a molten state. Next, the ion accelerating power source 24 is activated, and the needle electrode 14 is heated while measuring the ion current 19.
is slightly moved upward to supply the molten ion source material 15 to the tip of the needle electrode 14. Needle electrode 14
As shown in FIG. 2, in order to effectively enhance the thermal effect, a thin constriction 20 is inserted near the needle tip to increase thermal resistance. Ionization of the ion source material 15 supplied to the tip of the needle electrode 14 is as follows:
This is done by the superimposed effects of thermal ionization, field ionization, and electron impact ionization.

取り出しうるイオン量は、イオン加速電圧2
4、フイラメント電流および針状電極14の先端
形状などにより制御できるが、針状電極14の先
端の曲率半径を30μmにした場合、上記のCsCl、
CsNO3およびCS2SO4などで300μAを安定に取り
出すことができた。この値は、点イオン源として
は、サイズが従来の1/10に縮小され、電流密度が
約100倍に向上するものである。
The amount of ions that can be extracted is determined by the ion acceleration voltage 2
4. Although it can be controlled by the filament current and the shape of the tip of the needle electrode 14, when the radius of curvature of the tip of the needle electrode 14 is set to 30 μm, the above CsCl,
We were able to stably extract 300 μA from CsNO 3 and CS 2 SO 4 . This value means that, as a point ion source, the size is reduced to 1/10 of that of conventional sources, and the current density is improved approximately 100 times.

以上述べた如く、本発明によるイオン源は、次
のような特徴をもつものである。
As described above, the ion source according to the present invention has the following characteristics.

(1) 取り出すイオン種に制限がなく、任意イオン
種が安定に取り出せる。
(1) There are no restrictions on the ion species to be extracted, and any ion species can be stably extracted.

(2) 輝度の高い点イオン源ができる。(2) A point ion source with high brightness can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のイオン源の基本構成図、第2図
は本発明によるイオン源の基本構成図である。 10……引出し電極、11……可動棒、12…
…支え、13……ベロー、14……針状電極、1
5……イオン源材料、16……容器、17……電
子銃電極、18……電子銃フイラメント、19…
…イオンビーム、22……フイラメント電源、2
3……電子加速電源、24……イオン加速電源、
20……くびれ、29……電子線。
FIG. 1 is a basic configuration diagram of a conventional ion source, and FIG. 2 is a basic configuration diagram of an ion source according to the present invention. 10... Extraction electrode, 11... Movable rod, 12...
... Support, 13 ... Bellows, 14 ... Needle electrode, 1
5... Ion source material, 16... Container, 17... Electron gun electrode, 18... Electron gun filament, 19...
...Ion beam, 22...Filament power supply, 2
3...Electron acceleration power supply, 24...Ion acceleration power supply,
20...constriction, 29...electron beam.

Claims (1)

【特許請求の範囲】[Claims] 1 針状電極と、該針状電極の周囲にイオン化す
べき物質を溶融状態で保持し、かつ上記針状電極
が挿通せしめられている開孔を有する容器と、上
記針状電極の先端からイオンを引き出すためのイ
オン引出電極と、上記針状電極をその軸方向に移
動させることによつて、上記針状電極と上記開孔
との間〓をイオン源非動作時に閉塞せしめ、イオ
ン源動作時に開放せしめる手段とを有することを
特徴とするイオン源。
1 A needle-shaped electrode, a container surrounding the needle-shaped electrode that holds a substance to be ionized in a molten state, and having an opening into which the needle-shaped electrode is inserted, and a container that allows ions to flow from the tip of the needle-shaped electrode. By moving the ion extraction electrode for extracting the ion source and the needle electrode in the axial direction, the space between the needle electrode and the opening is closed when the ion source is not operating, and when the ion source is operating, the gap between the needle electrode and the opening is closed. An ion source comprising: means for opening the ion source.
JP3550487A 1987-02-20 1987-02-20 Ion source Granted JPS62188127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3550487A JPS62188127A (en) 1987-02-20 1987-02-20 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3550487A JPS62188127A (en) 1987-02-20 1987-02-20 Ion source

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2704684A Division JPS59160941A (en) 1984-02-17 1984-02-17 Ion source

Publications (2)

Publication Number Publication Date
JPS62188127A JPS62188127A (en) 1987-08-17
JPH0151849B2 true JPH0151849B2 (en) 1989-11-07

Family

ID=12443586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3550487A Granted JPS62188127A (en) 1987-02-20 1987-02-20 Ion source

Country Status (1)

Country Link
JP (1) JPS62188127A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727500B1 (en) * 2000-02-25 2004-04-27 Fei Company System for imaging a cross-section of a substrate
US6914386B2 (en) * 2003-06-20 2005-07-05 Applied Materials Israel, Ltd. Source of liquid metal ions and a method for controlling the source

Also Published As

Publication number Publication date
JPS62188127A (en) 1987-08-17

Similar Documents

Publication Publication Date Title
US4687938A (en) Ion source
JPH05171423A (en) Deflection electron gun device for vacuum deposition
GB1309423A (en) Field-emission cathodes and methods for preparing these cathodes
US3436584A (en) Electron emission source with sharply defined emitting area
GB1122438A (en) Ion cleaning and deposition apparatus
JPH01157046A (en) Vacuum arc ion source
JPH0151849B2 (en)
US3393339A (en) Sputtering ion source for producing an ion beam comprising ions of a solid material
JPS6363105B2 (en)
Chivers Freeman ion source: an overview
US4939425A (en) Four-electrode ion source
JPS6322405B2 (en)
US2677060A (en) Ion source
GB939081A (en) Improvements in or relating to the evaporation of metal/metalloid mixtures
GB1385325A (en) Device for separating isotopes
JP2627420B2 (en) Fast atom beam source
JPS593814B2 (en) solid ion source
JPH024979B2 (en)
JPH0145068Y2 (en)
RU1774391C (en) Duoplasma-type ion source
JPS58225537A (en) Ion source unit
JP2995581B2 (en) Liquid metal ion source
JPH06325712A (en) Ion source
JPS58135544A (en) Field ionization type ion source
JPH02152142A (en) Ionization method