JPH0151540B2 - - Google Patents

Info

Publication number
JPH0151540B2
JPH0151540B2 JP16088679A JP16088679A JPH0151540B2 JP H0151540 B2 JPH0151540 B2 JP H0151540B2 JP 16088679 A JP16088679 A JP 16088679A JP 16088679 A JP16088679 A JP 16088679A JP H0151540 B2 JPH0151540 B2 JP H0151540B2
Authority
JP
Japan
Prior art keywords
loss
magnetic
magnetic field
amorphous alloy
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16088679A
Other languages
Japanese (ja)
Other versions
JPS5684450A (en
Inventor
Hiroyasu Fujimori
Hiroaki Morita
Hideki Yoshimoto
Takeshi Masumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP16088679A priority Critical patent/JPS5684450A/en
Publication of JPS5684450A publication Critical patent/JPS5684450A/en
Publication of JPH0151540B2 publication Critical patent/JPH0151540B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、交流損失の小さい非晶質合金薄帯の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an amorphous alloy ribbon with low AC loss.

通常原子配列構造に周期性のない合金は非晶質
合金と称せられ、この合金を製造するためには急
冷させることが一般的に必要であるため通常薄帯
状態で製造される。
Generally, alloys without periodicity in their atomic arrangement structure are called amorphous alloys, and since rapid cooling is generally required to produce these alloys, they are usually produced in the form of ribbons.

この非晶質合金のうち強磁性を有するものは磁
気的に等方性ならびに均質性に富んでいるため、
外部磁場による磁壁移動ならびに磁化回転が極め
て容易であり、透過率の大きい良好な軟磁性を示
すことが良く知られている。
Among these amorphous alloys, those with ferromagnetism are highly magnetically isotropic and homogeneous, so
It is well known that domain wall movement and magnetization rotation by an external magnetic field are extremely easy, and that it exhibits good soft magnetism with high transmittance.

第1図はFe−Co−Ni系合金元素に半金属であ
るSiあるいはBを含有させてなる非晶質合金の磁
気特性とFe、Co、Niの含有量との関係を示す模
式図である。同図によればFeサイトのイに示す
斜線で囲む領域は飽和磁束密度Bsが1.6T
(16000G)以上のフエライト(Bs<6000G)、78
パーマロイ(Bs8000G)より高く、さらに最大
磁束密度Bmが1.5〜1.6T(15000〜16000G)で使
用したときの1Kg当りの鉄損Wはケイ素鋼よりも
一桁小さく、電力用トランス、電源用小型トラン
ス、インダクター等に使用することができ、また
この領域の合金は磁歪λが30×10-6以上と大きい
ため歪センサ等に使用することができると考えら
れる。一方Coサイトのロに示す斜線で囲む領域
では磁歪λ0であり、透磁率μが非常に高く、
磁気ヘツド、磁気シールド、トランス等に使用す
ることができると考えられている。しかしながら
後述するように非晶質合金は熱安定性に劣るとい
う欠点を有しており、特性が経時的に変化する恐
れがあるため上記電気機器への実用化が遅れてい
る。
Figure 1 is a schematic diagram showing the relationship between the magnetic properties and the content of Fe, Co, and Ni in an amorphous alloy made by adding semimetal Si or B to an Fe-Co-Ni alloy element. . According to the same figure, the saturation magnetic flux density Bs of the region surrounded by diagonal lines shown in A of the Fe site is 1.6T.
(16000G) or more ferrite (Bs<6000G), 78
It is higher than permalloy (Bs8000G), and when used at a maximum magnetic flux density Bm of 1.5 to 1.6T (15000 to 16000G), the iron loss W per 1 kg is one order of magnitude lower than silicon steel, making it suitable for power transformers and small transformers for power supplies. , inductors, etc., and since the magnetostriction λ of alloys in this region is as large as 30×10 -6 or more, it is thought that they can be used for strain sensors, etc. On the other hand, in the area surrounded by diagonal lines shown in (b) of the Co site, the magnetostriction is λ0, and the magnetic permeability μ is very high.
It is believed that it can be used in magnetic heads, magnetic shields, transformers, etc. However, as will be described later, amorphous alloys have the disadvantage of poor thermal stability, and their properties may change over time, which has delayed their practical application to the above-mentioned electrical devices.

ところで非晶質合金の磁気的な等方性ならびに
均質性は必ずしも完全なものでなく、例えば液体
急冷法によつて製造された非晶質磁性合金薄帯に
あつては凝固過程で導入される内部応力のため、
場所的に不均一な巨視的磁気異方性が存在してお
り、このため磁気特性が悪化している。
However, the magnetic isotropy and homogeneity of amorphous alloys are not necessarily perfect; for example, in the case of amorphous magnetic alloy ribbons produced by liquid quenching, magnetic isotropy and homogeneity are introduced during the solidification process. Due to internal stress,
There is a locally non-uniform macroscopic magnetic anisotropy, which deteriorates the magnetic properties.

このような磁気特性の悪化を改善するため、例
えば非晶質合金薄帯材料の長手方向と外部磁界が
一致するような状態で磁界中焼鈍を施すことによ
つて均質な一軸誘導磁気異方性を生じさせる高透
磁率アモルフアス合金の磁気特性改質方法が特開
昭51−73923号により開示されており、またキユ
ーリー点以上の温度から急冷することによつて異
方性を小さくし、直流磁気特性を優れたものにす
る方法が特開昭53−43028号により開示されてい
る。
In order to improve such deterioration of magnetic properties, for example, by annealing in a magnetic field in a state where the longitudinal direction of the amorphous alloy ribbon material coincides with the external magnetic field, it is possible to obtain homogeneous uniaxially induced magnetic anisotropy. A method for modifying the magnetic properties of a high magnetic permeability amorphous alloy that produces A method for improving the properties is disclosed in JP-A-53-43028.

しかしながら、上記両方法、特に磁界中で焼鈍
する方法によれば、非晶質合金薄帯の板厚が30μ
m前後と薄く、かつ抵抗率が100〜200μΩcmと従
来の非晶質合金よりも数倍以上高いことから、交
流磁界下での渦電流による損失は非常に小さくな
ると想定される。しかしながらケイ素鋼の渦電流
損失に比べるとこのような処理を施した非晶質合
金の渦電流損失はなお非常に小さいとはいえ、比
抵抗と板厚より算出される古典的渦電流損失値よ
りはるかに大きくなつており、この事実は従来の
磁気特性の改善方法が未だ充分満足される方法で
はないことを示唆している。
However, according to both of the above methods, especially the method of annealing in a magnetic field, the thickness of the amorphous alloy ribbon is 30 μm.
Since it is thin (around 100 µm) and has a resistivity of 100 to 200 μΩcm, which is several times higher than conventional amorphous alloys, it is expected that losses due to eddy currents under an alternating magnetic field will be extremely small. However, although the eddy current loss of amorphous alloys treated in this way is still very small compared to the eddy current loss of silicon steel, it is still lower than the classical eddy current loss value calculated from resistivity and plate thickness. This fact suggests that conventional methods of improving magnetic properties are still not fully satisfactory.

すなわち前記特開昭51−73923号に記載の方法
によれば非常に大きな180゜磁区が発生するために
直流磁気特性、特に保磁力が小さくなり、角形比
は大きくなる等磁気特性の改善は著しいが、交流
磁気特性、特に交流損失は大きな180゜磁区の運動
に伴なう余分の渦電流損失のために充分改善され
ていないという欠点がある。
That is, according to the method described in JP-A-51-73923, a very large 180° magnetic domain is generated, so the direct current magnetic properties, especially the coercive force, become small, the squareness ratio becomes large, etc., and the improvement in magnetic properties is remarkable. However, the AC magnetic properties, especially the AC loss, have the disadvantage that they have not been sufficiently improved due to the extra eddy current loss associated with the large 180° magnetic domain motion.

本発明は、このような従来の前記非晶質の磁気
特性改善方法の有する欠点を克服した非晶質合金
の磁気特性の改善方法、特に交流損失の小さい非
晶質合金薄帯の製造方法を提供することを目的と
している。
The present invention provides a method for improving the magnetic properties of an amorphous alloy that overcomes the drawbacks of the conventional methods for improving the magnetic properties of an amorphous material, and in particular a method for producing an amorphous alloy ribbon with low AC loss. is intended to provide.

この目的を実現するものとして、この発明は、
Fe−Co−Si−B系およびFe−Cr−Si−B系の非
晶質合金薄帯を磁場中において、熱処理するに当
り、その薄帯の長手方向と磁場方向とを斜めにし
て、かつその薄帯の結晶化温度より低い温度で熱
処理することを特徴とする交流損失の小さい非晶
質合金薄帯の製造方法を提供する。
To achieve this purpose, this invention:
When heat-treating Fe-Co-Si-B system and Fe-Cr-Si-B system amorphous alloy ribbons in a magnetic field, the longitudinal direction of the ribbons and the direction of the magnetic field are oblique, and Provided is a method for producing an amorphous alloy ribbon with low AC loss, which is characterized by heat treatment at a temperature lower than the crystallization temperature of the ribbon.

すなわち、本発明者等は、斜磁場中で軟磁性非
晶質合金薄帯を焼鈍することにより磁区が細分化
されて渦電流損失を改善することができることを
新規に知見して本発明を完成したのである。
That is, the present inventors completed the present invention based on the new finding that by annealing a soft magnetic amorphous alloy ribbon in an oblique magnetic field, the magnetic domains are subdivided and eddy current loss can be improved. That's what I did.

なお、交流磁界下での1サイクル(f)あたりの交
流損失W/fは磁区構造を考慮しない場合には異
常渦電流損失Waと古典的渦電流Welとヒステリ
シス損失Whとの和で表わされるが、磁区構造を
考慮に入れた場合は異常渦電流損失Waと古典的
渦電流損失Welを区別せずWaとWelとの和の損
失を渦電流損失Weと呼ぶことができ、上述の渦
電流損失とはWeを意味することとする。
Note that the AC loss W/f per cycle (f) under an AC magnetic field is expressed as the sum of the abnormal eddy current loss Wa, the classical eddy current Wel, and the hysteresis loss Wh, if the magnetic domain structure is not considered. , when the magnetic domain structure is taken into consideration, the sum of Wa and Wel can be called eddy current loss We without distinguishing between abnormal eddy current loss Wa and classical eddy current loss Wel, and the above eddy current loss shall mean We.

第2図は本発明の方法に用いることのできる磁
場中熱処理装置の模式縦断面説明図であり、たと
えば1はヘルムホルツコイルでそのコイル間隔は
20cmとし、2は磁場無誘導のニクロム線加熱焼鈍
炉であり、この炉中に石英管中に真空封入された
薄帯試料3を装入することができる。
FIG. 2 is a schematic vertical cross-sectional view of a magnetic field heat treatment apparatus that can be used in the method of the present invention. For example, 1 is a Helmholtz coil, and the coil spacing is
20 cm, and 2 is a nichrome wire heating annealing furnace without magnetic field induction, into which a thin strip sample 3 vacuum-sealed in a quartz tube can be charged.

次にこの発明の実施例を示し、さらに詳しくこ
の発明について説明する。
Next, examples of the present invention will be shown and the present invention will be explained in more detail.

(実施例) 第2図に示した装置において、ヘルムホルツコ
イル4に直流電流DCを流し、中心附近の磁場を
100Oeに保つた状態で磁場方向に対してθを0゜か
ら90゜の間に種々変化させて熱処理を施した。熱
処理は薄帯試料の結晶化温度(結晶化転移点)よ
りも低い350℃に45分間保持し、その後8℃/
minの速度で冷却することにより実施した。次に
冷却後交流損失を測定した。
(Example) In the device shown in Fig. 2, a direct current DC is passed through the Helmholtz coil 4, and the magnetic field near the center is
Heat treatment was performed while maintaining the magnetic field at 100 Oe while varying θ between 0° and 90° with respect to the magnetic field direction. The heat treatment was held at 350℃, which is lower than the crystallization temperature (crystallization transition point) of the ribbon sample, for 45 minutes, and then heated at 8℃/
This was done by cooling at a rate of min. Next, the AC loss after cooling was measured.

非晶質合金薄帯の製造装置である片ロールを用
いて溶融状態から急冷、凝固させて製造した
Fe72Co8Si5B15(原子%で実質的にFe72%、Co8
%、Si5%、B15%よりなる合金を意味する)非
晶質合金薄帯は飽和磁束密度Bsは1.65T、キユー
リー点Tcは470℃、結晶化転移点Txは490℃であ
るが、この薄帯(幅1mm、厚さ約30μm、長さ20
cm)を100Hzと5000Hzの周波数下で、かつ薄帯試
料の長手方向を磁場方向に対して0゜、30゜、60゜、
90゜の角度θにそれぞれ変化させたときの最大磁
束密度Bm(T)と交流損失W/f(mW・sec/
Kg)との関係は第3図に示す通りとなつた。同図
よりθが30゜、60゜のときは0゜、90゜のときと比較し
て同一磁束密度を得るための交流損失が少なくな
つていることが判る。第4図は第3図と同一組成
で同一熱処理をした非晶質合金薄帯の直流磁界下
および500Hzの交流磁界下での保磁力ならびに損
失と角度θとの関係を示した図である。同図より
直流磁界下での保磁力Hcは0゜から75゜まで殆んど
変化しないが、ヒステリシス損失Whはθが30゜あ
たりに最小値が僅かに認められ、θが60゜乃至90゜
となるに伴れて大きくなることが判る。500Hzの
交流磁界下ではθが大きくなるに伴つて保磁力
Hc、全損失Wとも小さくなり、60゜〜75゜附近に最
小値がはつきり認められ、さらにθが大になるに
従つて、保磁力Hc、全損失Wともに急激に大き
くなる。なおこれらの測定はほぼループが飽和し
た状態で行なつたので必ずしも最大磁束密度は等
しくない。
Manufactured by rapidly cooling and solidifying from a molten state using a single roll, which is a manufacturing device for amorphous alloy ribbon.
Fe 72 Co 8 Si 5 B 15 (substantially Fe72%, Co8 in atomic %)
%, Si5%, B15%)) The amorphous alloy ribbon has a saturation magnetic flux density Bs of 1.65T, a Curie point Tc of 470°C, and a crystallization transition point Tx of 490°C. Band (width 1mm, thickness approx. 30μm, length 20
cm) under frequencies of 100Hz and 5000Hz, and the longitudinal direction of the ribbon sample is 0°, 30°, 60° with respect to the magnetic field direction.
Maximum magnetic flux density Bm (T) and AC loss W/f (mW・sec/
The relationship with Kg) was as shown in Figure 3. From the figure, it can be seen that when θ is 30° and 60°, the AC loss required to obtain the same magnetic flux density is smaller than when θ is 0° and 90°. FIG. 4 is a diagram showing the relationship between coercive force and loss and angle θ under a DC magnetic field and an AC magnetic field at 500 Hz for an amorphous alloy ribbon having the same composition and the same heat treatment as in FIG. 3. From the same figure, the coercive force Hc under a DC magnetic field hardly changes from 0° to 75°, but the hysteresis loss Wh has a slight minimum value when θ is around 30°, and when θ is between 60° and 90°. It can be seen that it increases as the value increases. Under a 500Hz AC magnetic field, as θ increases, the coercive force decreases.
Both Hc and total loss W become small, reaching a minimum value around 60° to 75°, and as θ becomes larger, both coercive force Hc and total loss W suddenly increase. Note that these measurements were performed with the loop almost saturated, so the maximum magnetic flux densities are not necessarily equal.

同一薄帯についてついて最大磁束密度を
5000G、10000Gと一定とした場合の1サイクル
当りの損失W/f(mW・sec/Kg)と角度θとの
関係を示したものが第5図である。同図によれば
100Hzの場合にはθが30゜〜75゜附近で全損失Wが
小さくなつているが、1000Hz、5000Hzと周波数が
大きくなるにつれθが60゜〜75゜附近で最小値を示
すことが判る。
The maximum magnetic flux density for the same ribbon is
FIG. 5 shows the relationship between the loss W/f (mW·sec/Kg) per cycle and the angle θ when the losses are constant at 5000G and 10000G. According to the same figure
In the case of 100 Hz, the total loss W becomes small when θ is around 30° to 75°, but as the frequency increases to 1000 Hz and 5000 Hz, it shows a minimum value when θ is around 60° to 75°.

以上のことから、薄帯試料の結晶化温度よりも
低い温度においてθに角度を与えて薄帯の長手方
向と磁場方向とを斜めにして磁場中焼鈍を施す
と、従来のθが0゜での磁場中焼鈍施した場合に比
較して、交流特性、特に交流損失が改善されるこ
とが判り、その改善の程度は、100Hz、5000Hzの
場合最大磁束密度が1.0Tのとき30〜40%程度で
あり、本発明の効果は非常に大きい。
From the above, if annealing is performed in a magnetic field at a temperature lower than the crystallization temperature of the ribbon sample by giving an angle to θ and making the longitudinal direction of the ribbon oblique to the magnetic field direction, the conventional θ will be 0°. It was found that AC characteristics, especially AC loss, were improved compared to annealing in a magnetic field, and the degree of improvement was about 30 to 40% when the maximum magnetic flux density was 1.0T at 100Hz and 5000Hz. Therefore, the effects of the present invention are very large.

第6図は交流損失の周波数依存性をFe73.3Co4.7
Si10B12非晶質合金薄帯について調べた結果を示
す図である。従来の熱処理方法(θ=0゜での磁場
中冷却)で得られる損失に比べて、θ=45゜、
60゜、90゜の磁場中で熱処理し冷却した場合にはい
づれも損失が低下していることが判る。そのと
き、低周波領域より高周波領域の損失の改善が著
しいことも判る。また、第7図は、キユーリー点
(Tc)が結晶化転晶点(Tx)よりもかなり低く
なるようにCrを添加したFe77Cr2B12.5Si8.5をTc近
傍で焼鈍したときのHcとBrの変化を示したもの
である。この第7図より明らかなように、Tc直
下ないしそれよりも若干高い温度で焼鈍すれば
Hcが大巾に低下することがわかる。結晶化温度
よりも低い温度で熱処理することが高透磁率特性
を得るのに有効であることがわかる。このよう
に、本発明で知見した交流損失の改善方法は、低
周波領域の損失に対しても有効であると同様に高
周波領域の損失に対してもさらに大きな有効性を
示すものと云える。
Figure 6 shows the frequency dependence of AC loss Fe 73.3 Co 4.7
FIG. 2 is a diagram showing the results of an investigation on a Si 10 B 12 amorphous alloy ribbon. Compared to the loss obtained with the conventional heat treatment method (cooling in a magnetic field at θ = 0°),
It can be seen that the loss decreases in both cases of heat treatment and cooling in magnetic fields of 60° and 90°. At this time, it can also be seen that the improvement in loss in the high frequency range is more remarkable than in the low frequency range. Furthermore, Figure 7 shows the Hc and This shows the change in Br. As is clear from Figure 7, if annealing is performed at a temperature just below Tc or slightly higher than
It can be seen that Hc drops significantly. It can be seen that heat treatment at a temperature lower than the crystallization temperature is effective in obtaining high magnetic permeability characteristics. In this way, it can be said that the method for improving AC loss discovered in the present invention is as effective against loss in the low frequency range as it is even more effective against loss in the high frequency range.

以上の結果からみて、次のように考察すること
が可能となる。すなわち、一般に抵抗率のそれほ
ど高くない金属系軟磁性材料の交流損失の大部分
は渦電流によるものであり、この渦電流は磁壁が
動く時に磁壁附近で集中的に発生し、ジユール熱
となつて消費されることが知られている。この磁
壁移動に関する基本的な解明は、R.H.PryとC.P.
Beanにより行なわれ、渦電流による損失は単位
体積中の磁壁数に依存し、磁壁が多いほど渦電流
損失は小さくなることが彼等によつてJ.Appl.
Phys.vol29、No.3、p.532(1958)で発表されてい
る。
In view of the above results, the following considerations can be made. In other words, in general, most of the AC loss in metallic soft magnetic materials that do not have very high resistivity is due to eddy currents, and when the domain walls move, these eddy currents are generated intensively near the domain walls and become Joule heat. known to be consumed. The basic elucidation of this domain wall movement is based on RHPry and CP.
They reported in J. Appl.
Published in Phys.vol29, No.3, p.532 (1958).

そこで本発明によれば、磁区を細分化させるこ
とができるので渦電流損失を減少させ、引いては
全体の交流損失を改善することができると推考さ
れる。
Therefore, according to the present invention, it is possible to subdivide the magnetic domain, thereby reducing the eddy current loss, and it is thought that the overall AC loss can be improved.

すなわち本発明によれば、 Fe−Co−Si−B系およびFe−Cr−Si−B系の非
晶質合金薄帯材料を材料長手方向と外部磁界方向
とを一致させない状態で、大部分あるいは全部の
磁化ベクトルを外部磁場方向に固着させながら結
晶化温度よりも低い温度において熱処理すること
により誘導磁気異方性を誘発させ、熱処理後外部
磁場を取り去つたとき静磁エネルギーが減少する
ため多数の微小磁区が発生することにより交流磁
界下での渦電流損失が低減すると考えることがで
きる。
That is, according to the present invention, Fe-Co-Si-B-based and Fe-Cr-Si-B-based amorphous alloy ribbon materials are mostly or By heat-treating at a temperature lower than the crystallization temperature while fixing all magnetization vectors in the direction of the external magnetic field, induced magnetic anisotropy is induced, and when the external magnetic field is removed after heat treatment, the magnetostatic energy decreases, resulting in a large number of It can be considered that the generation of minute magnetic domains reduces eddy current loss under an alternating magnetic field.

なお、本発明において対象とすることのできる
非晶質合金は、Fe、SiおよびB、さらにCoまた
はCrを主要元素とし、必要により非晶質化能を
有する半金属のなかから選ばれる1種又は2種以
上を含み、さらに他の金属を非晶質合金を得るこ
とのできる範囲内で含有する非晶質合金であつ
て、飽和磁束密度Bs4000G以上の強磁性合金とす
ることができる。本発明の対象とすることのでき
る非晶質合金の成分元素は前記の如くであるが、
その組成、製造される方法あるいは材料形状につ
いては特に限定する必要はない。
The amorphous alloy that can be used in the present invention is one selected from metalloids containing Fe, Si, and B, as well as Co or Cr as main elements and, if necessary, having the ability to become amorphous. Alternatively, it can be an amorphous alloy that contains two or more kinds of metals and further contains other metals within a range that allows an amorphous alloy to be obtained, and can be a ferromagnetic alloy with a saturation magnetic flux density of Bs4000G or more. The constituent elements of the amorphous alloy that can be the subject of the present invention are as described above,
There is no need to particularly limit the composition, manufacturing method, or material shape.

以上詳しく説明した通り、本発明により、交流
損失の小さいFe−Co−Si−B系およびFe−Cr−
Si−B系の非晶質合金薄帯を製造することができ
る。
As explained in detail above, according to the present invention, Fe-Co-Si-B system and Fe-Cr-
A Si-B based amorphous alloy ribbon can be produced.

本発明によれば、薄帯材料をトロイダル形状に
したコアおよび薄帯材料から閉回路状に打抜いた
コアの交流損失を低減させることが充分予期され
る。なお、この場合の磁場焼鈍の磁場方向はコア
の閉磁路に沿つた方向と一致させないようにす
る。
According to the present invention, it is fully expected that the AC loss of a core made of a thin ribbon material in a toroidal shape and a core punched in a closed circuit shape from a thin ribbon material will be reduced. In this case, the magnetic field direction of magnetic field annealing is made not to coincide with the direction along the closed magnetic path of the core.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−Co−Ni系非晶質合金のFe、Co、
Niの含有量と磁気特性との関係を示した図であ
り、第2図は本発明に用いることのできる磁場中
熱処理装置の一例を示した模式断面説明図および
第3図はFe72Co8Si5B15非晶質合金薄帯の諸交流
磁界ならびに薄帯長手方向との諸角度θにおける
最大磁束密度Bm(T)と交流損失W/f(mW・
sec/Kg)との関係を示した図である。第4図は
第3図と同一薄帯の交流磁界下あるいは直流磁界
下での角度θと保磁力ならびに損失との関係を示
した図である。第5図は前記同一合金薄帯の諸交
流磁界ならびに最大磁束密度Bm1.0Tあるいは
0.5Tにおける角度θと損失W/fとの関係を示
した図であり、第6図はFe73.3Co4.7Si10B12非晶質
合金薄帯を角度θ=0゜、45゜、60゜、90゜の磁場中熱
処理した場合の交流損失W/fの周波数依存性を
示した図である。第7図は、Fe77Cr2B12.5Si8.5
晶質合金薄帯の結晶化温度以下での温度での焼鈍
時のHcとBrの変化を示した図である。 1……ヘルムホルツコイル、2……焼鈍炉、3
……薄帯試料、DC……直流。
Figure 1 shows the Fe-Co-Ni amorphous alloy Fe, Co,
2 is a diagram showing the relationship between Ni content and magnetic properties, FIG. 2 is a schematic cross-sectional explanatory diagram showing an example of a heat treatment apparatus in a magnetic field that can be used in the present invention, and FIG. 3 is a diagram showing the relationship between Ni content and magnetic properties. Maximum magnetic flux density Bm ( T) and AC loss W/f (mW・
sec/Kg). FIG. 4 is a diagram showing the relationship between angle θ, coercive force, and loss for the same ribbon as in FIG. 3 under an alternating current magnetic field or a direct current magnetic field. Figure 5 shows various alternating current magnetic fields and maximum magnetic flux density Bm1.0T or
This is a diagram showing the relationship between angle θ and loss W/f at 0.5T. Figure 6 shows the relationship between Fe 73.3 Co 4.7 Si 10 B 12 amorphous alloy ribbon at angles θ=0°, 45°, and 60°. , 90° is a diagram showing the frequency dependence of AC loss W/f in the case of heat treatment in a magnetic field of 90°. FIG. 7 is a diagram showing changes in Hc and Br during annealing of a Fe 77 Cr 2 B 12.5 Si 8.5 amorphous alloy ribbon at a temperature below the crystallization temperature. 1... Helmholtz coil, 2... Annealing furnace, 3
...Thin strip sample, DC...Direct current.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe−Co−Si−B系およびFe−Cr−Si−B系
の非晶質合金薄帯を磁場中において熱処理するに
当り、その薄帯の長手方向と磁場方向とを斜めに
して、かつその薄帯の結晶化温度より低い温度で
熱処理することを特徴とする交流損失の小さい非
晶質合金薄帯の製造方法。
1. When heat-treating Fe-Co-Si-B-based and Fe-Cr-Si-B-based amorphous alloy ribbons in a magnetic field, the longitudinal direction of the ribbon is oblique to the direction of the magnetic field, and A method for producing an amorphous alloy ribbon with low AC loss, characterized by heat treatment at a temperature lower than the crystallization temperature of the ribbon.
JP16088679A 1979-12-13 1979-12-13 Manufacture of noncrystalline alloy thin strip of small alternate current loss Granted JPS5684450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16088679A JPS5684450A (en) 1979-12-13 1979-12-13 Manufacture of noncrystalline alloy thin strip of small alternate current loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16088679A JPS5684450A (en) 1979-12-13 1979-12-13 Manufacture of noncrystalline alloy thin strip of small alternate current loss

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9047684A Division JPS59211530A (en) 1984-05-07 1984-05-07 Production of amorphous fe-co-si-b alloy light-gage strip having small ac loss

Publications (2)

Publication Number Publication Date
JPS5684450A JPS5684450A (en) 1981-07-09
JPH0151540B2 true JPH0151540B2 (en) 1989-11-06

Family

ID=15724484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16088679A Granted JPS5684450A (en) 1979-12-13 1979-12-13 Manufacture of noncrystalline alloy thin strip of small alternate current loss

Country Status (1)

Country Link
JP (1) JPS5684450A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698577B2 (en) * 1986-02-24 1998-01-19 株式会社東芝 Manufacturing method of high permeability core
CN113755713A (en) * 2020-07-17 2021-12-07 英迪那米(徐州)半导体科技有限公司 Preparation method of yttrium oxide dispersion strengthened copper alloy
CN113652616B (en) * 2021-07-01 2022-08-09 中国电子科技集团公司第九研究所 High-performance soft magnetic amorphous coating and preparation method thereof

Also Published As

Publication number Publication date
JPS5684450A (en) 1981-07-09

Similar Documents

Publication Publication Date Title
EP3522186B1 (en) Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
Mitera et al. Effect of silicon addition on the magnetic properties of Fe‐B‐C amorphous alloys
JPS5933183B2 (en) Low loss amorphous alloy
Li et al. Core loss analysis of Finemet type nanocrystalline alloy ribbon with different thickness
KR20170103845A (en) Magnetic core based on a nanocrystalline magnetic alloy background
US4475962A (en) Annealing method for amorphous magnetic alloy
Bertotti et al. Measurement and prediction of dynamic loop shapes and power losses in soft magnetic materials
JP2011102438A (en) Iron-based amorphous alloy having linear bh loop
JPS6132388B2 (en)
JPS6133058B2 (en)
JPH08188858A (en) Glass alloy having permimber characteristic
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
Lambri et al. Magnetic behavior in commercial iron-silicon alloys controlled by the dislocation dynamics at temperatures below 420 K
JPS6332244B2 (en)
JPH0151540B2 (en)
Tsuya et al. Ribbon-form sendust alloy
JPH0277555A (en) Fe-base soft-magnetic alloy
JPS59211530A (en) Production of amorphous fe-co-si-b alloy light-gage strip having small ac loss
JPS61261451A (en) Magnetic material and its production
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPH0549742B2 (en)
Luborsky et al. Engineering magnetic properties of Fe-Ni-B amorphous alloys
Fujimori et al. Anomalous eddy current loss in amorphous magnetic thin sheets and its improvement
JPS6133242B2 (en)
Chang et al. Effect of uneven surface on magnetic properties of Fe-based amorphous transformer