JPH01500501A - Method and apparatus for manufacturing bent pipes - Google Patents

Method and apparatus for manufacturing bent pipes

Info

Publication number
JPH01500501A
JPH01500501A JP62504744A JP50474487A JPH01500501A JP H01500501 A JPH01500501 A JP H01500501A JP 62504744 A JP62504744 A JP 62504744A JP 50474487 A JP50474487 A JP 50474487A JP H01500501 A JPH01500501 A JP H01500501A
Authority
JP
Japan
Prior art keywords
tube
pipe
section
wall
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62504744A
Other languages
Japanese (ja)
Inventor
ファーガソン,ジェームス,マッケイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPH01500501A publication Critical patent/JPH01500501A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D9/00Bending tubes using mandrels or the like
    • B21D9/12Bending tubes using mandrels or the like by pushing over a curved mandrel; by pushing through a curved die

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Surgical Instruments (AREA)

Abstract

PCT No. PCT/GB87/00571 Sec. 371 Date Apr. 7, 1988 Sec. 102(e) Date Apr. 7, 1988 PCT Filed Aug. 13, 1987 PCT Pub. No. WO88/01207 PCT Pub. Date Feb. 25, 1988.A process for making a tube bend of a predetermined wall thickness from a length of straight tube comprises forming the straight tube to have a quasi-elliptical cross section and irregular wall thickness which has a maximum value on one side of the major axis of the quasi ellipse, expanding the quasi-elliptical tube to cause the wall thickness on the other side of the major axis to be reduced and bending the tube about an axis located on said other side of said major axis. Apparatus suitable for performing the process comprises a die (2) formed with an oblique inclined converging passage (3) of circular cross section at one end changing progressively to quasi-elliptical cross section at the other end and a curved mandrel (6) having a portion (8) which changes from quasi-elliptical cross section at the shank (7) to circular cross section at the curved portion (9).

Description

【発明の詳細な説明】 発明の名称 曲管を製造する方法および装置 本発明は金属直管から曲管を製造すること、特に、当業者に短半径曲管と呼ばれ る形式の曲管、すなわち、平均曲率半径が管の直径に対して短い曲管、たとえば 、平均曲率半径が管の公称直径の11/2に等しい曲管の製造に関する。[Detailed description of the invention] name of invention Method and apparatus for manufacturing bent pipes The present invention is directed to manufacturing bent pipes from straight metal pipes, and in particular, to manufacture bent pipes from metal straight pipes, which are referred to as short radius bent pipes by those skilled in the art. curved pipes of the type, i.e. curved pipes with a short average radius of curvature relative to the pipe diameter, e.g. , relates to the manufacture of curved pipes with an average radius of curvature equal to 11/2 of the nominal diameter of the pipe.

本明細書では、管なる用語がチューブとパイプを含んでいることは了解されたい 。It is to be understood that as used herein, the term pipe includes tubes and pipes. .

ここで用いる「公称壁厚」および「公称直径」なる表現は管製造業界で用いられ ているものであり、本明細書では、管f、確認するための壁厚および直径を意味 している。指定の公称寸法で販売される管は製造公差として知られる最大状態の 量だけ公称寸法とは異なった実際寸法のことがある。The expressions “nominal wall thickness” and “nominal diameter” used here are used in the tube manufacturing industry. Here, we mean the tube f, the wall thickness and diameter to confirm are doing. Tubes sold with specified nominal dimensions are subject to maximum conditions known as manufacturing tolerances. Actual dimensions may differ from nominal dimensions by an amount.

ここで述べるような短半径曲管は湾曲内側の長さと湾曲外側の長さとに大きな差 があり、成る長さの直管を必要な曲率半径にただ曲げただけでは許容曲管を得る ことはできない。湾曲した整形器まわりに曲げることによって普通の要領で曲げ 加工する場合、直管は通常はその中立軸線について湾曲する。したがって、湾曲 部内側の材料は厚くなりすぎるほど大きく長手方向に圧縮され、しわが寄ること が多く、一方、湾曲部の外側の材料は薄くなりすぎるほど大きく長手方向へ伸張 させられる。The short radius curved pipe described here has a large difference between the length inside the curve and the length outside the curve. Therefore, simply bending a straight pipe of the length to the required radius of curvature will result in an acceptable curved pipe. It is not possible. Bend in the normal manner by bending around a curved shaper When processed, straight pipes are usually curved about their neutral axis. Therefore, curved The material inside the section becomes too thick and compresses longitudinally so much that it wrinkles. On the other hand, the material on the outside of the curved part stretches so much in the longitudinal direction that it becomes too thin. I am made to do so.

このような短半径で多少とも一定の壁厚を有する曲管や他の所望の壁厚比率を有 する曲管の製造方法は周知である。Such as curved pipes with a more or less constant wall thickness at a minor radius or other desired wall thickness ratios. Methods for manufacturing bent pipes are well known.

従来公知の方法では、最終曲管の必要な公称内径よりも小さい公称内径の管を赤 熱状態で円形横断面の湾曲した偏心拡張マンドレルに押し付け、最終直径を作ろ うとしている曲管の公称内径に等しくする。この方法は米国特許第1,353, 714号の主題である。In the conventionally known method, a tube with a nominal inner diameter smaller than the required nominal inner diameter of the final bent tube is Press in hot state onto a curved eccentric expansion mandrel of circular cross section to create the final diameter. equal to the nominal inside diameter of the pipe you are trying to bend. This method is described in U.S. Patent No. 1,353, This is the subject of issue 714.

管および曲管は通常は規格寸法に作られ、上記の公知方法およびこれに基礎を置 いた他の後紐方法には次のような欠点がある。というのは、これら規格寸法のほ とんどすべての曲管を作るには、必要とするよシ小だなければならないのである 。また、管に実施する大きな拡張量は冷間性能を低下させる。これは、この方法 では、必要な拡張百分率が鋼のような管材料が冷間状態で耐えられる伸びを超え てしまうからである。したがって、鍛造温度、すなわち、赤熱状態で製造しなけ ればならない。また、これら公知の方法の多くは個別の作業を管に実施しなけれ ばならず、連続作業で曲管を作ることはできない。Pipes and pipe bends are usually made to standard dimensions using the known methods mentioned above and based thereon. Other methods of lacing have the following disadvantages: This is because most of these standard dimensions To make almost all curved pipes, the size needed must be small. . Additionally, large amounts of expansion performed on the tube reduce cold performance. This is how it works In this case, the required expansion percentage exceeds the elongation that the tubing material, such as steel, can withstand in cold conditions. This is because Therefore, it must be manufactured at forging temperature, i.e., in a red-hot state. Must be. Additionally, many of these known methods require separate operations to be performed on the pipe. Naturally, it is not possible to make bent pipes by continuous operation.

同じ直径、壁厚の直管から曲管を作シ、したがって、非標準の管を必要とせず、 より小さい拡張百分率を用いる方法および装置が本出願人の英国特許第775, 000号(米国特許第2,976.908号に相当する)の明細書に記載されて いる。Create bent pipes from straight pipes of the same diameter and wall thickness, thus eliminating the need for non-standard pipes. A method and apparatus using a smaller expansion percentage is disclosed in the applicant's British Patent No. 775, No. 000 (corresponding to U.S. Pat. No. 2,976.908) There is.

英国特許第775.000号の方法では、まず、管断片に半径方向内向きの圧縮 力を加える。この圧縮力は管の外面の円周方向において円周上の一点での最大値 から直径方向に反対側の点での最小値まで変化する。In the method of British Patent No. 775,000, the tube section is first compressed radially inwardly. Add force. This compressive force is the maximum value at one point on the circumference in the circumferential direction of the outer surface of the pipe. varies from to a minimum value at the diametrically opposite point.

こうして直径を減らした管に次に半径方向外向きの拡張力を加える。この拡張力 は管の内面の円周方向において先に加えた内向きの圧縮力が最小となる点での最 大値から直径方向に反対側で先に加えた内向きの圧縮力が最大となる点での最小 値まで変化する。(〜たがって、当初の直径寸法が回復するのに続いであるいは それと同時に、圧縮力および拡張力が最大となる直径方向に対向した点を通る管 の直径方向平面に対して直角でありかつ拡張力が最大と1する管の側にある軸線 について拡張作用が管を曲げる。この方法は好ましいものであり、圧縮作用と拡 張作用を逆の順序で実すしてもよい。The tube thus reduced in diameter is then subjected to a radially outward expansion force. This expansion power is the maximum point in the circumferential direction of the inner surface of the tube where the previously applied inward compressive force is the minimum. Minimum at the point where the previously applied inward compressive force is maximum on the diametrically opposite side from the maximum value It changes up to the value. (~Thus, following recovery of the original diameter dimension or At the same time, the tube passes through diametrically opposed points of maximum compression and expansion forces. axis perpendicular to the diametrical plane of and on the side of the tube where the expansion force is greatest The dilatory action bends the tube. This method is preferred and provides compression and expansion. The tensioning action may be carried out in the reverse order.

この方法は最初に小さい直径の管を使用する上記の方法の拡張百分率のほんの半 分の拡張百分率でよい。This method has only half the expansion percentage of the above method, which uses a smaller diameter tube initially. An expansion percentage of minutes is sufficient.

しかしながら、英国特許第775.000号の方法はこの方法を冷間で行なおう とするとそれができないという欠点を持つ。その理由を以下に説明する。However, the method of British Patent No. 775.000 allows this method to be carried out cold. The disadvantage is that it is not possible to do so. The reason for this will be explained below.

圧縮作業中、円周方向の管壁のほとんどすべての部分が圧縮され、湾曲部の内側 半分、すなわち、後に円周方向に拡張する必要のある曲げ軸線に隣接した半分を 形成することになっている管の半分の壁を当初含んでいる部分よりも厚くなり、 曲げ作業中に行なわれることになっている長手方向の圧縮中に当初の壁厚に増大 する当初の厚さよりも薄くなる。管のこの同じ半分部分を圧縮し、次いで当初の 厚さに拡張するに必要とする歪エネルギは余分なエネルギである。湾曲部の外側 半分を形成することになっている管の他の半分の壁厚は圧縮作用においてほぼ全 体にわたって増大し、前記外側半分の端までの管壁は当初の壁厚よりも厚くなる 。この壁厚の増大量は、管の前記半分に曲げ作用中になされる特別の長手方向伸 張量が所望の壁厚を生じさせることになるように減らさなければならない。余分 な厚みを与え、次いでそれを除くのに必要な歪エイ・ルギも余分な歪エネルギで ある。最後に、円周方向圧縮作業中に管の直径を減らす際、管壁はより小さい半 径に曲げられ、次いで管をその当初の直径に戻す際に、管壁は当初の半径に曲げ 戻され、これらの曲げ作業を行なうに必要な歪エネルギもまた余分な歪エネルギ である。これら余分な歪エネルギは、すべて、管の一端に加える推力(これは余 分な端推力と考えられる)によって管に雇えられる。英国特許第775,000 号の方法において管に加わる余端推力は管の金属を再分配し、管を曲げて所望の 壁厚とすることにのみ必要な歪エネルギプラス余分な歪エネルギを加えるに必要 な端推力である。この大量の余分な歪エネルギ、したがって、必要とする余分な 端推力のために、鋼のような材料に対して、この方法は冷間で行なうことはでき ない。During the compaction operation, almost all parts of the circumferential pipe wall are compressed, and the inside of the bend half, i.e. the half adjacent to the bending axis that will later need to be expanded circumferentially. The wall of the half of the tube that is to be formed is thicker than the part that originally contained it; Increase in the initial wall thickness during the longitudinal compression that is to be carried out during the bending operation becomes thinner than its original thickness. This same half section of tube is compressed and then the original The strain energy required to expand the thickness is extra energy. outside of curved part The wall thickness of the other half of the tube which is supposed to form one half is almost completely reduced in compression. increases across the body and the tube wall to the end of the outer half becomes thicker than the initial wall thickness . This increase in wall thickness is due to the extra longitudinal stretch made during the bending action on said half of the tube. The tension must be reduced to yield the desired wall thickness. extra The strain energy required to give a certain thickness and then remove it is also due to the extra strain energy. be. Finally, when reducing the tube diameter during circumferential compression operations, the tube wall When the tube is bent to its original diameter and then returned to its original diameter, the tube wall bends to its original radius. The strain energy required to perform these bending operations is also converted into excess strain energy. It is. All of this extra strain energy is due to the thrust applied to one end of the tube (this is the excess (considered to be a significant end thrust) is applied to the tube. British Patent No. 775,000 The extra end thrust applied to the tube in the method of No. 1 redistributes the metal in the tube and bends the tube into the desired shape. Add only the strain energy needed to the wall thickness plus the extra strain energy needed to This is an extreme thrust. This large amount of extra strain energy and therefore requires extra Due to the end thrust, this method cannot be performed cold on materials like steel. do not have.

管に加えなければならない全歪エネルギ(必要分子余分)が非常に高く、冷間状 態ではこの量の歪エネルギを生じさせるのに必要な管に加える端推力が管のコラ ム強度を超えてしまい、この方法を冷間で行なういかなる試みも管をつぶしてし まうことになり、また、管材料が受ける冷間作業量も過剰となり、最終曲管の強 度を損なってしまうからである。The total strain energy (necessary molecular excess) that must be applied to the tube is very high, and In this case, the end thrust applied to the tube to produce this amount of strain energy will cause the tube to collapse. The tube strength will be exceeded and any attempt to perform this method cold will result in the tube being crushed. In addition, the amount of cold work that the pipe material undergoes is excessive, and the strength of the final bent pipe is reduced. This is because you will lose your temper.

この方法を熱間方法として実施するには多くの欠陥を伴なう。たとえば、生産速 度が熱を管に供給できる速度によって制限を受け、鉄材料の最終曲管が厚くスケ ールで覆われ、通常これに引続いて熱処理を必要とし、ダイで最終形状に整形し 、必要な熱エネルギがかなりのものとなり、製造コストをかなシ高め、工具のた めに高価な耐熱材料を使用しなければならず、工程を開始するときに長い予備加 熱期間を必要とするのである。また、この機械での作業状態は不快である。これ らの欠点にもかかわらず、短半径曲管は多年にわたって熱間で作られてきた。冷 間で短半径曲管を製造する満足できる連続方法がなかったからである。Implementing this method as a hot method involves a number of deficiencies. For example, production speed The final curved pipe of ferrous material has a thicker scale and is limited by the rate at which heat can be delivered to the pipe. This usually requires subsequent heat treatment and shaping to the final shape with a die. , the thermal energy required is considerable, significantly increasing manufacturing costs and reducing tooling costs. expensive heat-resistant materials must be used for the It requires a heat period. Also, the working conditions with this machine are uncomfortable. this Despite these shortcomings, short radius curved pipes have been made hot for many years. cold There was no satisfactory continuous method of manufacturing short radius curved tubes between the two.

このような短半径曲管を連続作業で冷間製造するのを可能とするには、曲げつつ ある管に加える端推力を管のコラム強度内の値まで減らす必要がある。これは、 本発明の方法によれば、従来公知の方法の余分な歪エネルギをなくすかあるいは 無意味な値まで減らすことによって行なわれる。To be able to cold-manufacture such short-radius bent pipes in continuous operation, it is necessary to It is necessary to reduce the end thrust applied to a given tube to a value within the column strength of the tube. this is, According to the method of the present invention, the excess strain energy of previously known methods can be eliminated or This is done by reducing it to a meaningless value.

したがって、本発明の目的は管を作っている普通の金属材料のすべて、通常は鋼 に冷間で実施できる管曲げ方法およびこの方法を実施するための装置を提供する ことにある。Therefore, it is an object of the present invention to To provide a pipe bending method that can be carried out in the cold and an apparatus for carrying out this method. There is a particular thing.

寸た、本発明の目的は熱を加えることなく同じ直径、壁厚であり得る直管から所 与の直径、壁厚の曲管を製造する方法および装置を提供することにある。In short, it is an object of the present invention to remove straight pipes from straight pipes of the same diameter and wall thickness without applying heat. The object of the present invention is to provide a method and apparatus for manufacturing bent pipes of a given diameter and wall thickness.

本発明の方法は主として冷間方法を意図しているが、必要に応じて高温で実施し て、たとえば、標準の管を用いるという利点を保有すると共に実施に際して管に 対する端推力および作業を最小量で済ましながら特に脆い材料に湾曲部を形成す ることもできる。Although the method of the present invention is primarily intended as a cold method, it can be carried out at elevated temperatures if necessary. For example, while retaining the advantages of using standard tubing, Forming bends in particularly brittle materials with a minimum amount of end thrust and effort You can also

本発明による曲管製造方法は卒倒円形横断面の直管であって管壁の一部が不均一 な厚さを有し、卒倒円形横断面の長軸の片側において卑情円形の短軸が管壁と出 会う点で厚さ最大となり、前記点の各側で前記長軸が管壁と出会う2つの点の付 近の薄いところまで厚みが漸次に減じて行く直管を形成する段階と、前記長軸の 反対側における管壁の内面部分に成る大きさの半径方向の拡張力を加える段階と を包含し、この拡張力の大きさが管壁の前記内面部分を前記長軸から離れるよう に管が形成しようとしている曲管の必要な内部寸法および横断面形状を持つ位置 まで変位させるに充分なものであり、さらに、前記長軸から平行に隔たりかつ前 記長軸の前記反対側に位置する軸線まわりに管を曲げる段階を包含する。The method for manufacturing a bent pipe according to the present invention is a straight pipe with a circular cross section, and a part of the pipe wall is uneven. The thickness is so thick that the short axis of the obscene circular cross section meets the tube wall on one side of the long axis of the circular cross section. The thickness is maximum at the point where they meet, and the attachment of two points where said long axis meets the tube wall on each side of said point a step of forming a straight pipe whose thickness gradually decreases to a thinner point near the center; applying a radial expansion force of a magnitude that results in an inner surface of the tube wall on the opposite side; and the magnitude of this expansion force causes the inner surface portion of the tube wall to move away from the longitudinal axis. location with the required internal dimensions and cross-sectional shape of the curved pipe that the pipe is to form. and a space parallel to and in front of said long axis. bending the tube about an axis located on the opposite side of the longitudinal axis.

横断面の全周にわたってほぼ一定の壁厚を有する曲管を形成するために、準楕円 形の短軸が長軸の前記片側において管壁と出会う点における卒倒円形横断面の管 の最大厚さが、形成しようとしている湾曲部の壁厚に対して、形成しようとして いる湾曲部の外側における壁の平均長さ河中心線に沿った湾曲部の長さの比にほ ぼ等しい比になるようにしである。To form a curved tube with approximately constant wall thickness all around the cross-section, a quasi-ellipse A tube of circular cross-section at the point where the minor axis of the shape meets the tube wall on said one side of the major axis. The maximum thickness of the curved section to be formed is The average length of the wall on the outside of the curved area is approximately equal to the ratio of the length of the curved area along the river center line. The ratio should be approximately equal.

前記長軸の前記反対側における卒倒円形管の管壁部分は形成しようとしている湾 曲部の必要な壁厚にほぼ等しい厚さであると好ましい。The tube wall portion of the collapsed circular tube on the opposite side of the long axis corresponds to the bay to be formed. Preferably, the thickness is approximately equal to the required wall thickness of the bend.

特別の目的のために、たとえば、特殊な横断面形状の曲管を作ったり、異なった 直径、壁厚の管から特殊な直径壁厚の曲管を作ったりするために、前記長軸の前 記反対側の管壁は卒倒円形の短軸が前記長軸の前記反対側で管壁と出会う点で最 大となり、卑情円形の長軸が管と出会う点付近で前記薄い厚さのところまで前記 最初の点の各側において徐々に減少l〜て行く厚さを有するようにしてもよいし 、また、半径方向外向きの拡張力を前記長軸の前記反対側で管の内壁面部分に加 えてもよい。長軸の両側における管壁の2つの最大厚み寸法は互いに異なってい てもよい。For special purposes, for example, making curved pipes with special cross-sectional shapes or In order to make curved pipes with special diameter and wall thickness from pipes with different diameters and wall thicknesses, The tube wall on the opposite side has a maximum point at the point where the short axis of the apoptotic circle meets the tube wall on the opposite side of the long axis. It becomes larger and reaches the thinner thickness near the point where the long axis of the obscene circle meets the tube. It may have a thickness that gradually decreases l~ on each side of the initial point. , and applying a radially outward expansion force to the inner wall portion of the tube on the opposite side of the long axis. You can also The two maximum thickness dimensions of the tube wall on both sides of the long axis are different from each other. It's okay.

卑情円形の管は前記長軸の両側における壁部分のよシ大きい部分を形成しようと している湾曲部の管壁とほぼ同じ寸法、湾曲形状に湾曲させて形成すると好まし い。The circular tube is intended to form larger sections of the wall on both sides of the long axis. It is preferable to form the tube into a curved shape with approximately the same dimensions and curved shape as the pipe wall of the curved section. stomach.

管内壁面に加える拡張力は、通常は、円形横断面の曲管を得るようにするが、他 の横断面形状、たとえば、楕円横断面形状としてもよい。The expansion force applied to the inner wall of the pipe is usually set to obtain a curved pipe with a circular cross section, but other The cross-sectional shape may be, for example, an elliptical cross-sectional shape.

長軸の片側の胃壁が最大厚さ部分を有する卒倒円形横断面の管は管の製造中に最 初からこのような輪郭に形成してもよいし、あるいは、一定壁厚の円形管から形 成してもよい。後者の場合、円形管はその直径方向平面の片側の管壁部分((半 径方向、長手方向成分を有する徐々に変わる力を刃口えることによって非対称的 に圧縮し、それによって、との管壁部分は前記直径方向平面に向って変位し、長 袖が当初の円形管の前記直径方向平面と一致するか、あるいは、それに平行とな っている必要な卒倒円形の管となる。この作用によって、前記管壁部分は円周方 向に圧縮されて、卒倒円形の短幅が胃壁と出会う中心で最大となり、長軸が管壁 と出会う点旬近の薄い厚さまで最大厚さ点の各側で徐々に減少する量だけ厚くさ れる。Tubes with circular cross-sections in which the gastric wall on one side of the long axis has the greatest thickness are This profile may be formed from scratch, or it may be formed from a circular tube of constant wall thickness. may be completed. In the latter case, the circular tube has a wall section ((half) on one side of its diametrical plane). Asymmetrically created by applying gradually changing forces with radial and longitudinal components , whereby the tube wall portions of and are displaced towards said diametrical plane and elongated. The sleeves are aligned with or parallel to the diametric plane of the original circular tube. It becomes necessary to have a circular tube. Due to this action, the tube wall portion is It is compressed in the direction, and the short width of the apoptotic circle becomes maximum at the center where it meets the stomach wall, and the long axis is at the tube wall. thicken by an amount that gradually decreases on each side of the maximum thickness point until a thinner thickness near the point where it meets It will be done.

ここで用いる「卒倒円形横断面」なる用語は形状の点では楕円形によく以ている が、厳密には楕円形の数学的定義を満たさない横断面を意味する。ここで述べる 卑情円形はそれぞれが当初の管どほぼ同じ半径を有し、端のところで比較的短い 半径の短筒曲部分でつながった2つの円弧状部分で形成されていると好ましい。The term ``circular cross section'' used here often refers to an oval shape in terms of shape. However, strictly speaking, it means a cross section that does not satisfy the mathematical definition of an ellipse. described here Each round has approximately the same radius as the original tube, and is relatively short at the end. Preferably, it is formed of two arc-shaped parts connected by a short cylindrical curved part.

卒倒円形横断面の管は円形横断面の直管の、その直径方向平面の片側にある外面 部分を横方向移動しないように支持しながら前記直径方向平面の反対側における 管壁部分の外面に成る力を加え、この力を前記直径方向平面に向って前記管壁部 分を変位させて管を卒倒円形横断面とし、準楕円形の短軸が変位した管壁と出会 う前記部分の中心点で当初の厚さよシも大きい最大値を持ち、卑情円形の長軸が 管と出会う点付近で当初の管壁にほぼ等しい値まで前記最初の点の各側で徐々に 減って行く厚さを変位した壁に持たせるに充分な大きさ、向き、分布にすること によって形成することができる。A tube of circular cross section is the outer surface of a straight tube of circular cross section on one side of its diametrical plane. on the opposite side of said diametrical plane while supporting the part against lateral movement. applying a force to the outer surface of the tube wall portion and directing this force toward the diametrical plane of the tube wall portion; The tube is made into a flattened circular cross-section by displacing the length of the tube, and the short axis of the quasi-ellipse meets the displaced tube wall. At the center point of the above-mentioned part, the thickness has a maximum value that is larger than the original thickness, and the long axis of the obscene circle is Gradually on each side of said initial point up to a value approximately equal to the original tube wall near the point where it meets the tube. Sufficient size, orientation, and distribution to allow the displaced wall to have a decreasing thickness. can be formed by

あるいは、準肇円形の管は、たとえば、中実あるいは中空のビレットから押出し 成形することによって最初から形成してもよい。Alternatively, semi-circular tubes can be extruded from solid or hollow billets, e.g. It may also be formed from scratch by molding.

円周方向の伸張作用を行なうのに、前記長軸の前記片側における管壁部分の内面 を横方向移動しないように支持しながら前記長軸の反対側の管壁部分の内面に力 を加え、この力を前記長軸から離れる方向へ前記管壁部分を変位させるに充分な 大きさとすると共に、管壁の変位量が前記管壁部分の中心で最大となシ、との管 壁部分の端付近で小さな値まで徐々に大きさが減って行くような分布としてもよ い。the inner surface of the tube wall portion on said one side of said longitudinal axis for effecting a circumferential stretching action; A force is applied to the inner surface of the tube wall portion on the opposite side of the long axis while supporting the tube so that it does not move laterally. is applied, and this force is sufficient to displace the tube wall portion in a direction away from the longitudinal axis. The size of the pipe is such that the amount of displacement of the pipe wall is maximum at the center of the pipe wall portion. It is also possible to create a distribution in which the size gradually decreases to a small value near the edge of the wall. stomach.

時には、曲管がその円周方向に不均一な壁厚を持たなければならないこともある 。この場合、壁厚は湾曲部の内側で最小寸法となり、湾曲部の外側で最大寸法と なシ、中間位置での厚さが中間値とならなければならないこともある。このよう な形態の曲管を製造するには、2つの比率、すなわち、長手方向圧縮量対円周方 向伸張量(湾曲部の内側半分にわたる)の比と長手方向伸張量対円周方向圧縮量 (湾曲部の外側半分にわたる)の比は互いに等しく保つとよいが、湾曲部の外側 における管壁の平均曲げ半径対湾曲部の中心線での平均曲げ半径の比とは異なる 。もし前記2つの圧縮、伸張の比率が外壁対中心線の平均曲げ半径の前記比率よ シも小さいならば、湾曲部の壁は湾曲部の外側よシも内側で薄いことになる。圧 縮、伸張の前記2つの比率が外壁対中心線の平均曲げ半径の前記比率よりも大き い場合には、湾曲部の壁は外側よりも内側で厚いことになる。したがって、不均 一な壁厚を有する曲管を形成するには、まず管を、湾曲部の外側の壁厚が内側の 壁厚より大きいかあるいはそれに満たないかどうかに依存して、卑情円形の長軸 の片側において一定壁厚の曲管を形成するに必要な厚さよりも大きいかあるいは それに満たない最大厚さを有する単信円形横断面に形成する。Sometimes a curved pipe must have a non-uniform wall thickness around its circumference. . In this case, the wall thickness is the minimum dimension inside the curve and the maximum dimension outside the curve. However, the thickness at an intermediate position may have to be an intermediate value. like this In order to produce curved pipes of various shapes, two ratios are required: longitudinal compression versus circumferential compression. Ratio of longitudinal extension (over the inner half of the curve) and longitudinal extension to circumferential compression (over the outer half of the curve) should be kept equal to each other; is different from the ratio of the average bending radius of the tube wall to the average bending radius at the centerline of the bend at . If the ratio of the two compressions and extensions is less than the ratio of the average bending radius of the outer wall to the centerline. If the radius is also small, the wall of the curved part will be thinner on the inside than on the outside of the curved part. pressure The two ratios of contraction and expansion are larger than the ratio of the average bending radius of the outer wall to the center line. If this is the case, the walls of the curve will be thicker on the inside than on the outside. Therefore, the uneven To form a curved pipe with a uniform wall thickness, first the pipe is The long axis of the vulgar circle, depending on whether it is greater than or less than the wall thickness. greater than that required to form a curved pipe of constant wall thickness on one side of the Formed into a simplex circular cross section with a maximum thickness less than that.

たいていの目的のために、曲管を形成するのて用いようとしている直管は形成し ようとしている曲管と同じ公称直径、壁厚を有する。それにもがかわらず、特殊 な効果のため、たとえば、曲管の円周方向に壁厚の不均一な変化を生じさせるた めとか、あるいは便宜上、たとえば、所望直径の管がすぐには入手できない場合 とかには、所与の公称直径、壁厚の曲管あるいは許容範:囲の近似物を適当な円 周方向の伸張値および圧縮値を選ぶことによって異なった公称直径、壁厚の直管 から作ることができる。For most purposes, the straight pipe you intend to use will be formed into a bent pipe. It has the same nominal diameter and wall thickness as the bent pipe that is being used. Nevertheless, special For example, due to the effects of for convenience or convenience, e.g. when tubes of the desired diameter are not readily available. For example, a curved pipe of a given nominal diameter and wall thickness or an approximation of the tolerance range can be transformed into a suitable circle. Straight pipes of different nominal diameters and wall thicknesses by choosing circumferential extension and compression values It can be made from.

卒倒円形に最初から形成しない管では、管の成る部分を円周方向に圧縮し、長手 方向に伸張し、他の管部分を円周方向へ伸張し、長手方向に圧縮する作用は任意 所望の順序で連伏的に行なわれ得る。釧のようなより硬い材料の場合には、通常 は、伸張、曲げの作業とは別の作業として圧縮作業を行なうのが望ましい。これ によシ、管の端推力が管のコラム強度内で良好となる。成る状況では、これらの 作用のうちの成る作用を同時に行なってもよい。たとえば、まず管の前記一部分 を円周方向に圧縮し、次いでこの一部分を長手方向へ伸張し、管の他の部分に同 時に円周方向の伸張作用と長手方向の圧縮作用を与えると都合が良いことがわか った。あるいは、管の前記一部分を円周方向へ圧縮し、前記他の部分を円周方向 へ拡張する作用t−iず同時に行ない、管の前記一部分を長手方向へ伸張し、前 記他の管部分を長手方向へ圧縮する作用を同時にそして引続いて行なってもよい 。For tubes that are not formed from the beginning in a circular shape, the tube portion is compressed circumferentially and the longitudinal The action of stretching the pipe in the direction, stretching the other pipe parts in the circumferential direction, and compressing them in the longitudinal direction is arbitrary. They can be performed sequentially in any desired order. For harder materials such as chime, usually It is desirable to perform compression work as a separate work from stretching and bending work. this Therefore, the end thrust of the tube is good within the column strength of the tube. In situations where these Some of the actions may be performed simultaneously. For example, first the said section of the tube is compressed circumferentially, then this section is stretched longitudinally and the same is applied to the other section of the tube. It has been found that it is sometimes convenient to apply a stretching action in the circumferential direction and a compression action in the longitudinal direction. It was. Alternatively, said part of the tube is compressed circumferentially and said other part is compressed circumferentially. The action of expanding t-i is carried out at the same time, stretching said portion of the tube in the longitudinal direction and extending it forward. The action of longitudinally compressing the other tube sections may be carried out simultaneously and subsequently. .

管を圧縮、拡張、曲げるだめのエネルギを与えるに必要な力は管に端推力を加え て、半径方向の圧縮、拡張、曲げの力を与える半径方向、軸線方向成分を有する 長手方向の圧縮応力を管内に生じさせることによって発生させてもよいし、半径 方向の圧縮、拡張、曲げの力を与える半径方向、軸線方向成分を有する長手方向 引張応力を乗じさせる引張作用によって発生させてもよいし、管の端に加える推 力と管の別の部分に加える引張力の組み合わせによって発生させてもよい。The force required to provide the energy to compress, expand, and bend the tube applies an end thrust to the tube. has radial and axial components that provide radial compression, expansion, and bending forces. It can be generated by creating longitudinal compressive stress in the tube, or by creating a radial compressive stress in the tube. Longitudinal with radial and axial components giving compression, expansion and bending forces in the direction It can be generated by a tensile action that multiplies tensile stress, or by a thrust applied to the end of the pipe. It may also be generated by a combination of a force and a tensile force applied to another section of the tube.

この方法を実兄するだめの装置の一形態では、斜めの通路を形成したダイを使用 しており、この通路は一端から他端まで直径が尚曲させようとしている管の一端 に入るに充分な大きさとなっている円形横断面から円形端の軸線から偏った長軸 を有する卒倒円形の横断面まで徐々に変化し、卒倒円形の端の長さ、幅、偏り量 はこの方法の実施に必要な円周方向圧縮分布量を与えるに必要な寸法を有し、管 伸張、曲げ手段は斜めの伸張部分を有するマンドレルを包含し、この伸張部分は 一端から他端までダイ内で圧縮される管の内側輪郭に合った寸法の卒倒円横断面 から卒倒円形端の長軸の片側に中心が位置し、直径が形成しようとしている曲管 の公称内径にほぼ等しくなっている円形横断面まで徐々に変化し、また、マンド レルは形成しようとしている曲管のそれとほぼ同じ平均半径に湾曲した管曲げ部 分を有し、この管曲げ部分の曲率中心が管曲げ部分の単管円形端の長軸の、円形 横断面の端の中心と同じ側に位置しており、ダイおよびマンドレルがダイの斜め の通路およびマンドレルの斜めの伸張部分が同じ一般方向にイ頃斜するような向 きとなっている。One form of device that attempts to implement this method uses a die with diagonal passages. This passageway has a diameter that extends from one end to the other end of the tube that is being bent. A long axis offset from the axis of the circular end from a circular cross section that is large enough to enter the circular cross section. The length, width, and deviation of the edge of the circular shape gradually change until the cross section of the circular cross section with has the dimensions necessary to provide the circumferential compressive distribution necessary to carry out this method, and The stretching and bending means includes a mandrel having an oblique extension section, the extension section being A circular cross-section dimensioned to match the inner contour of the tube being compressed in the die from one end to the other. A curved pipe whose diameter is about to form, with the center located on one side of the long axis of the circular end gradually changes to a circular cross section that is approximately equal to the nominal internal diameter of the mandrel. A rail is a pipe bend that is curved to approximately the same average radius as that of the pipe to be formed. The center of curvature of this pipe bending part is a circular shape with the long axis of the single pipe circular end of the pipe bending part. It is located on the same side as the center of the edge of the cross section, and the die and mandrel are at an angle to the die. The passageways and diagonal extensions of the mandrel are oriented in the same general direction. It's a big deal.

以下、添伺図面に示す本発明を実施するだめの装置の一例を説明する。Hereinafter, an example of an apparatus for carrying out the present invention shown in the accompanying drawings will be described.

第1図は曲管に形成しようとしている直管を示す同第4図は全円周方向に一定の 壁厚を有する曲管を示す図である。Figure 1 shows a straight pipe that is to be formed into a curved pipe. Figure 4 shows a straight pipe that is to be formed into a curved pipe. FIG. 3 shows a curved pipe with wall thickness.

第5図は内側よシも外側で熱くなっている壁を有する曲管を示す図である。FIG. 5 shows a curved pipe having walls that are hot on the inside as well as on the outside.

第6図は本発明の方法を実施する装置の一実施例を示す図である。FIG. 6 is a diagram showing an embodiment of an apparatus for carrying out the method of the present invention.

第7図は第6図の7−7線に溢った図である。FIG. 7 is a diagram overflowing the line 7-7 of FIG.

第8図は第6図の8−8線に沿った断面図である。FIG. 8 is a sectional view taken along line 8--8 in FIG. 6.

第9図は第6図の9−9線に沿った断面図である。FIG. 9 is a sectional view taken along line 9--9 in FIG. 6.

図面において、RX rは、それぞれ、管1の外側、内側の半径を示している。In the drawings, RXr indicates the outer and inner radii of the tube 1, respectively.

R1は湾曲部の外側での管内壁面まで曲げ軸線口から測定した、管を湾曲させる 半径を示している(第4図参照)。XはXl、Xlにおいて管1の壁と交差する 直径方向平面を示している。R1 is the curve of the pipe, measured from the bending axis entrance to the inner wall surface of the pipe on the outside of the curved part. The radius is shown (see Figure 4). X intersects the wall of tube 1 at Xl, Xl A diametrical plane is shown.

軸線口まわりに湾曲部を形成する際に、曲げ軸線oに関して平面Xの外側、すな わち、遠い方の側に位置する管1の円弧χ1、A、Xlは円周方向圧縮作業およ び長手方向伸張作業を受けることになシ、曲げ@線0に関して平面Xの反対側、 すなわち、内側に位置する管1のχ1、B、Xlは円周方向伸張作業および長手 方向圧縮作業を受けることになる。社は湾曲部の平均曲率半径を示す。When forming a curved part around the axis opening, the outside of the plane X with respect to the bending axis o, i.e. That is, the arcs χ1, A, and Xl of the tube 1 located on the far side are subjected to circumferential compression work and The opposite side of the plane X with respect to the bend @ line 0, That is, χ1, B, and Xl of the tube 1 located inside the circumferential stretching operation and It will undergo directional compression work. sha indicates the average radius of curvature of the curved part.

特に第6図から第9図を診照して、2は斜めの収束する通路3を形成したダイを 示しており、この通路は一端で円形断面であり、その直径は管1を入れるに充分 な大きさとなっており、反対端の卒倒円形横断面までテーパが付いておシ(第7 図、第8図参照)、この準櫃円横断面の大きな半径をRにほぼ等しく保っている 。通路3の、そこに入る管1の円弧X1、B、Xlを受け入れるようになってい る側面4は管1の平面1に平行に留まり、管1の円弧XL A% Xlに受け入 れる通路3の側面5は平面Xに対して斜めになっておシ、管1をダイ2全通して 押したときに管1の円弧x1、A1X2を円周方向に圧縮するように作用する。In particular, referring to FIGS. 6 to 9, 2 shows a die forming oblique converging passages 3. The passage is of circular cross-section at one end and has a diameter sufficient to accommodate tube 1. It is large in size, and tapers to the circular cross section at the opposite end (7th (see Figure 8), the large radius of this quasi-circular cross section is kept approximately equal to R. . Passage 3 is adapted to receive arcs X1, B, and Xl of tube 1 entering it. The side surface 4 remains parallel to the plane 1 of the tube 1 and is received in the arc XL A% Xl of the tube 1. The side surface 5 of the passage 3 is oblique to the plane When pressed, it acts to compress the arcs x1 and A1X2 of the tube 1 in the circumferential direction.

6はマンドレルを示しており、とのマ:/ドレルはまっすぐな軸部7と、大部分 の長さにわたって単種円管の長軸(第3図)の反対側に受け入れ、伸張する準楕 円断面(第7図参照)となっているまっすぐl応伸張部8と、横断面直径が所望 内径の曲管を与えるようになっている曲げ部9とを有する。この曲げ部9は曲管 にヘッド部を残すとき(で曲管のはね戻りを許すことが必要と認められた場合に 半径R1またはR1よりやや小さい半径である外側半径に湾曲してもよい。伸張 部8の横断面は卒倒円横断面から円形横断面(ここでは、曲げ部9とつながる) まで変化する(第9図参照)。6 shows a mandrel, which has a straight shaft 7 and a large part. A quasi-ellipse that is received and extended on the opposite side of the long axis of a single circular tube (Fig. 3) over its length. A straight elastic extension 8 having a circular cross section (see Figure 7) and a cross-sectional diameter as desired. It has a bend 9 which is adapted to provide a curved tube with an inner diameter. This bent part 9 is a bent pipe. (If it is deemed necessary to allow the bent pipe to rebound) It may also be curved to an outer radius that is radius R1 or a radius slightly smaller than R1. stretching The cross section of part 8 changes from a faint circular cross section to a circular cross section (here, it connects to bending part 9) (See Figure 9).

しかしながら、ヘッドの卒倒円形部分の主要半径は全作業を通じてほぼrに等し い値に留まる。成る状況では、マンドレルの部分9のやや円形とは異なる形状は 管がマンドレルを出るときに管材料のはね戻り差を許すようになっていると望ま しいことがわかった。同様に、マンドレルの円形端の半径はrから少量だけ異な る半径、通常は、管がマンドレルを去るときに直径が小さくなる傾向を示す場合 には大きい半径を与えることがある。However, the main radius of the circular part of the head remains approximately equal to r throughout the entire operation. stays at a low value. In this situation, the slightly non-circular shape of part 9 of the mandrel is It is desirable to allow for differential rebound of the tubing material as it exits the mandrel. I found out something new. Similarly, the radius of the circular end of the mandrel differs from r by a small amount radius, usually when the tube shows a tendency to decrease in diameter as it leaves the mandrel may be given a large radius.

実際に、1で示すような直管はダイ2の円形端に導入され、このダイを通して押 される。ダイの卒倒円形端を出るにつれて、管は第3図に示す横断面を持つ。In fact, a straight tube as shown at 1 is introduced into the circular end of die 2 and pushed through this die. be done. Upon exiting the concave end of the die, the tube has the cross-section shown in FIG.

ダイ内では、管のダイ2の部分5と接触する部分は円周方向の圧縮を受け、一方 、管のダイ2の部分45と接、触する部分はほぼダイに入る前のままに留まる。Inside the die, the part of the tube in contact with the part 5 of the die 2 is subjected to circumferential compression, while , the portion of the tube that contacts and contacts portion 45 of die 2 remains approximately as it was before entering the die.

ダイの卒倒円形端を出た管は第6図に示す横断面全持つ。The tube exiting the round end of the die has the entire cross section shown in FIG.

すなわち、平面Xの片側の部分のみが実質的に圧縮される。こうして、余分な圧 縮は行なわれない。卑情円形断面の管は次にまっすぐな伸張部分に沿って押圧さ れ、その結果、平面Xの反対側の部分のみが実質的に伸張される。こうして、余 分な伸張は行なわれない。That is, only one side of plane X is substantially compressed. This way, the extra pressure No reduction is performed. The circular cross-section tube is then pressed along the straight extension. As a result, only the part opposite the plane X is substantially stretched. In this way, the rest No significant expansion is performed.

次に、管はマンドレルの曲げ部9に渚って移動させられる。管がこの曲げ部9に 沿って移動するにつれて、管は形成しようとしている曲管の@線に泊って曲がる 。The tube is then moved onto the bend 9 of the mandrel. The pipe is placed at this bend 9. As it moves along, the tube bends by staying on the @ line of the curved tube it is trying to form. .

管の中立軸線について曲げが行なわれるにつれて、湾曲部の外側における管の円 周方向圧縮部分が長手方向に伸張され、所定の程度まで厚みを減じられると同時 に、湾曲部の内側に2ける管の円周方向伸張部分は長手方向に圧縮され、所定程 度まで厚くされる。こうして、最終曲管は第4図に示すように一定の壁厚を持つ ことになる。管壁の円周方向曲率が圧縮、伸張作業中にほぼ一定に留まるので、 管壁に行なわれる余分な横断方向曲げは少ないか、あるいは、まったくない。As the bend is made about the neutral axis of the tube, the circle of the tube outside the bend increases. At the same time, the circumferentially compressed part is stretched in the longitudinal direction and the thickness is reduced to a predetermined degree. In this case, the two circumferentially extending portions of the tube inside the bend are compressed longitudinally and compressed to a certain extent. thickened to a degree. Thus, the final bent pipe has a constant wall thickness as shown in Figure 4. It turns out. Since the circumferential curvature of the tube wall remains approximately constant during compression and stretching operations, There is little or no extra transverse bending in the tube wall.

ダイ、マンドレルの寸法は任意所望の不均一な壁厚および管の公称内径に対する 曲げ半径の任意所望の比率を持った曲管を得られるように選定することができる 。Dimensions of the die and mandrel can be adjusted to any desired non-uniform wall thickness and nominal inner diameter of the tube. The bending radius can be selected to obtain a bent pipe with any desired ratio. .

冷間方法を行なうことについてのより大きな便利さとは別に、加熱時間がまった くないという利点がある。Apart from the greater convenience of performing the cold method, heating time is reduced. There is an advantage that there is no

公知の熱間方法では大きな曲管の場合には数時間を加熱に要する。これは、マン ドレルを赤熱してからその上に管を押し付けなければならないからである。そう しないと、管がマンドレルをつかんでしまい、しわくちゃになることが多いから である。また、数時間にわたって冷却してからやっと取シ外せるような熱い部品 がまったくない。さらに、マンドレルおよびダイか高価で磯は別工の難しい耐熱 鋼である必要がない。さらにまた、作業速度が機械に送りつつある冷たい管を赤 熱状態まで加熱するに必要な時間によって制限を受けない。さらにまた、冷たい 材料を本発明の方法においては妥当な程度にのみ加工硬化させるので、最終曲管 は熱間製造した曲管よりも強い状態で機械を出、4卑化された曲管に等しい強度 を持つことが多い。また、冷間製造した曲管は熱間製造した曲管には常に存在す る塵埃やスレールを持たない。800°Gを超える温度に耐え得る潤滑材は不要 である。The known hot method requires several hours for heating large curved pipes. This is man This is because the drill must be heated to red hot before the tube is pressed onto it. yes Otherwise, the tube will often grab the mandrel and cause it to crumple. It is. Also, hot parts must cool for several hours before being removed. There is no such thing. In addition, mandrels and dies are expensive, and rock is difficult to manufacture separately. It doesn't have to be steel. Furthermore, the working speed causes the cold tube being fed into the machine to become red. It is not limited by the time required to heat to a thermal state. It's cold again Since the material is work-hardened only to a reasonable extent in the method of the invention, the final bend leaves the machine in a stronger state than a hot-produced bent tube, and has a strength equivalent to that of a tetrabase bent tube. often have. In addition, cold-manufactured bent pipes always have hot-manufactured bent pipes. It has no dust or sludge. No need for lubricants that can withstand temperatures exceeding 800°G It is.

国 静 輝 杏 斡 牛 ンシζN二X τOTHE :NTERNATICNAL 5EARCHRE? C,tT ONCountry Shizuka Teru Anzu Cow ζN2X τOTHE:NTERNATICNAL 5EARCHRE? C, tT ON

Claims (1)

【特許請求の範囲】 1.湾曲した拡張マンドレルに直管を押し付けることによつて曲管を製造する方 法において、準楕円形横断面の直管であつて準楕円形横断面の長軸の片側におけ る管壁の不均一な厚さの部分が準楕円形の短軸が準楕円形の長軸の片側における 管壁と出会う点で厚さ最大となり、前記点の各側で前記長軸が管壁と出会う2つ の点の付近の薄いところまで厚みが漸次に減じて行く直管を形成する段階と、前 記長軸の反対側における管壁の内面の部分に或る大きさの半径方向の拡張力を加 える段階とを包含し、この拡張力の大きさが管壁の前記内面部分を前記長軸から 離れるように管が形成しようとしている曲管の必要な内部寸法および横断面形状 を持つ位置まで変位させるに充分なものであり、さらに、前記長軸から平行に隔 たりかつ前記長軸の前記反対側に位置する軸線まわりに管を曲げる段階を包含す ることを特徴とする曲管製造方法。 2.請求の範囲第1項記載の曲管製造方法において、前記曲管がその全周に沿つ てほぼ一定の壁厚となつており、準楕円形横断面の管の、準楕円形の短軸がその 前記片側で管壁と出会う点における最大厚さが、形成しようとしている曲管の壁 厚に対して、形成しようとしている曲管の、その外面における壁の平均長さ対曲 管の中心線に沿つた長さの比にほぼ等しい比率となつていることを特徴とする曲 管製造方法。 3.請求の範囲第1項記載の曲管製造方法において、準楕円形管の、前記長軸の 前記反対側の管壁部分が形成しようとしている曲管の必要な壁厚にほぼ等しい厚 さとなつていることを特徴とする曲管製造方法。 4.請求の範囲第1項記載の曲管製造方法において、前記長軸の前記反対側の管 壁が、準楕円形の短軸が前記反対側の管壁と出会う点で最大厚さとなり、準楕円 形の長軸が前記点の各側で管と出会う点付近の前記薄い厚さまで漸次に減少する 厚さを持つており、また、半径方向外向きの拡張力も前記長軸の前記反対側の管 の内壁面部分に加えることを特徴とする曲管製造方法。 5.請求の範囲第1項記載の曲管製造方法において、それぞれ準楕円形が形成し ようとしている曲管の管壁の平均横断面半径とほぼ同じ平均半径を有し、比較的 短い半径の短い湾曲部分によつて端を連結した2つの円弧状部分を包含すること を特徴とする曲管製造方法。 6.請求の範囲第1項記載の曲管製造方法において、長軸の片側において管壁が 最大厚さの点を有する準楕円形横断面の管が管の製造中に最初からこのような輪 郭に形成してあることを特徴とする曲管製造方法。 7.請求の範囲第1項記載の曲管製造方法において、長軸の片側における管壁が 最大厚さの点を有する準楕円形横断面の管が一定壁厚の円形管から形成され、こ の円形管がその直径方向平面の片側における管壁部分に半径方向、長手方向の成 分を有する漸次に変化する力を加えることによつて非対称的に圧縮され、それに よって、この管壁部分が前記直径方向平面に向つて変位させられ、長軸が当初の 円形管の前記直径方向平面と一致するかあるいは平行となつた必要な準楕円形の 管となることを特徴とする曲管製造方法。 8.請求の範囲第1項記載の曲管製造方法において、準楕円形横断面の管が直径 方向平面の片側における円形横断面の直管の外面部分を横方向移動しないように 支えながら前記直径方向平面の反対側における胃壁部分の外面に成る力を加える ことによつて形成され、この力が前記管壁部分を前記直径方向平面に向つて変位 させるに充分な大きさであると共に、変位した管壁が準楕円形の短軸が変位した 管壁と出会う中心点で当初の厚さよりも大きい最大値となり、前記点の各側にお いて短軸が管壁と出会う点付近における管壁の当初の厚さにほぼ等しい減少値ま で漸次に減少する厚さを有する準楕円形横断面に管を形成する向き、分布である ことを特徴とする曲管製造方法。 9.湾曲した拡張マンドレルによつて不均一な壁厚の準楕円形横断面の管から曲 管を形成する方法において、湾曲した拡張マンドレル(6)に斜めの管伸張部分 (8)が形成してあり、この管伸張部分が一端から他端まで準楕円形横断面の管 の内部輪郭に一致する寸法の準楕円形横断面から中心が準備円形端の長軸の片側 に位置し、直径が形成しようとしている曲管の公称内径孔にほぼ等しい円形横断 面まで徐々に変化しており、さらに、前記拡張マンドレルに形成しようとしてい る曲管のそれとほぼ同じ平均半径に湾曲した管曲げ部分(9)が形成してあるこ とを特徴とする曲管形成装置。 10.請求の範囲第9項記載の曲管形成装置において、円形横断面の管から準楕 円形横断面の管を形成する形成手段を包含し、この形成手段が圧縮手段を包含し 、この圧縮手段が斜めの通路(3)を形成したダイ(2)を包含し、この斜めの 通路が一端から他端まで直径が曲げ上うとしている管(1)の一端を入れるに充 分な大きさとなつている円形横断面から円形端の軸線から偏つた長軸を有する準 楕円形の横断面まで徐々に変化していることを特徴とする曲管形成装置。[Claims] 1. A method of manufacturing bent pipes by pressing straight pipes onto a curved expansion mandrel. In the method, a straight pipe with a quasi-elliptical cross section, on one side of the long axis of the quasi-elliptic cross section. The non-uniform thickness of the tube wall is such that the minor axis of the quasi-ellipse is on one side of the major axis of the quasi-ellipse. maximum thickness at the point where it meets the tube wall, and two points on each side of said point where said long axis meets the tube wall. The stage of forming a straight pipe in which the thickness gradually decreases to a thin point near the point A radial expansion force of a certain magnitude is applied to the inner surface of the tube wall on the opposite side of the longitudinal axis. and the magnitude of the expansion force causes the inner surface portion of the tube wall to move away from the longitudinal axis. The required internal dimensions and cross-sectional shape of the curved pipe that the pipes are to form apart. , and further spaced apart parallel to said long axis. and bending the tube about an axis located on the opposite side of the longitudinal axis. A bent pipe manufacturing method characterized by: 2. In the method for manufacturing a curved pipe according to claim 1, the curved pipe extends along its entire circumference. The wall thickness of the tube is almost constant, and the short axis of the quasi-ellipse of the tube has a quasi-elliptical cross section. The maximum thickness at the point where it meets the pipe wall on one side is the wall of the curved pipe to be formed. The average length of the wall at its outer surface of the curved pipe you are trying to form versus its thickness. A curve characterized by having a ratio approximately equal to the ratio of the length along the center line of the pipe. Tube manufacturing method. 3. In the method for manufacturing a bent pipe according to claim 1, the long axis of the semi-elliptical pipe is The thickness of the pipe wall portion on the opposite side is approximately equal to the required wall thickness of the curved pipe to be formed. A method for manufacturing a bent pipe characterized by a straight pipe. 4. The method for manufacturing a bent pipe according to claim 1, wherein the pipe on the opposite side of the long axis The wall is at its maximum thickness at the point where the short axis of the quasi-ellipse meets the opposite tube wall, forming a quasi-ellipse. progressively decreasing to said thinner thickness near the point where the long axis of the shape meets the tube on each side of said point; thickness, and the radially outward expansion force also applies to the tube on the opposite side of the long axis. A method for manufacturing a curved pipe, characterized by adding the material to the inner wall surface of the pipe. 5. In the method for manufacturing a bent pipe according to claim 1, each of the curved pipes has a quasi-elliptical shape. It has an average radius that is approximately the same as the average cross-sectional radius of the pipe wall of the curved pipe that is being Including two arcuate sections connected at their ends by a short curved section of short radius A curved pipe manufacturing method characterized by: 6. In the method for manufacturing a bent pipe according to claim 1, the pipe wall is formed on one side of the long axis. A tube of quasi-elliptical cross-section with a point of maximum thickness is formed with such a ring from the beginning during the manufacture of the tube. A method for manufacturing a curved pipe characterized by forming a curved pipe. 7. In the method for manufacturing a bent pipe according to claim 1, the pipe wall on one side of the long axis is A tube of quasi-elliptical cross section with a point of maximum thickness is formed from a circular tube of constant wall thickness; A circular tube has radial and longitudinal formations in the tube wall section on one side of its diametric plane. It is compressed asymmetrically by applying a gradually varying force having a This tube wall section is thus displaced towards said diametrical plane, with its long axis returning to its original position. the necessary quasi-elliptical shape coincident with or parallel to the diametrical plane of the circular tube; A method for manufacturing a curved pipe characterized by forming it into a pipe. 8. In the method for manufacturing a curved pipe according to claim 1, the pipe having a quasi-elliptical cross section has a diameter of Avoid lateral movement of the outer surface part of a straight pipe with a circular cross section on one side of the direction plane while supporting and applying a force to the outer surface of the stomach wall portion opposite the diametrical plane. and this force displaces said tube wall portion towards said diametrical plane. It is large enough to cause the displacement of the tube wall, and the short axis of the quasi-ellipse is also displaced. The maximum value is greater than the original thickness at the central point where it meets the tube wall, and the thickness increases on each side of said point. a reduction approximately equal to the original thickness of the tube wall near the point where its minor axis meets the tube wall. The distribution is oriented to form a tube in a quasi-elliptical cross-section with a thickness that gradually decreases in A curved pipe manufacturing method characterized by the following. 9. Curved expansion mandrels are used to bend tubes of semi-elliptical cross section with non-uniform wall thickness. In the method of forming a tube, a curved expansion mandrel (6) is fitted with an oblique tube extension section. (8) is formed, and this tube extension part has a quasi-elliptical cross section from one end to the other. One side of the long axis of the circular end whose center is prepared from a quasi-elliptical cross-section with dimensions matching the internal contour of A circular cross section located at , with a diameter approximately equal to the nominal internal diameter hole of the bent pipe to be formed. The surface is gradually changing and furthermore, the expanding mandrel is about to form. A pipe bending portion (9) is formed which is curved to approximately the same average radius as that of the curved pipe. A bent pipe forming device characterized by. 10. In the curved pipe forming device according to claim 9, a semi-elliptic pipe is formed from a pipe having a circular cross section. comprising forming means for forming a tube of circular cross section, the forming means comprising compression means; , the compression means includes a die (2) forming a diagonal passageway (3); The diameter of the passageway from one end to the other is large enough to accommodate one end of the pipe (1) about to be bent up. A semicircular cross section with a long axis that is offset from the axis of the circular end. A curved pipe forming device characterized by a gradual change to an elliptical cross section.
JP62504744A 1986-08-13 1987-08-13 Method and apparatus for manufacturing bent pipes Pending JPH01500501A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8619759 1986-08-13
GB868619759A GB8619759D0 (en) 1986-08-13 1986-08-13 Tube bends

Publications (1)

Publication Number Publication Date
JPH01500501A true JPH01500501A (en) 1989-02-23

Family

ID=10602685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62504744A Pending JPH01500501A (en) 1986-08-13 1987-08-13 Method and apparatus for manufacturing bent pipes

Country Status (10)

Country Link
US (1) US4841760A (en)
EP (1) EP0276290B1 (en)
JP (1) JPH01500501A (en)
KR (1) KR950009143B1 (en)
AT (1) ATE63484T1 (en)
AU (1) AU589272B2 (en)
CA (1) CA1305028C (en)
DE (1) DE3770149D1 (en)
GB (1) GB8619759D0 (en)
WO (1) WO1988001207A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165168A (en) * 1991-04-09 1992-11-24 Higgins Larry B Method of making a high rise spout and spout made according to the method
JPH07266837A (en) * 1994-03-29 1995-10-17 Horikiri Bane Seisakusho:Kk Manufacture of hollow stabilizer
ES2209001T3 (en) 1997-05-12 2004-06-16 Firma Muhr Und Bender STABILIZER.
US5979202A (en) * 1997-05-29 1999-11-09 Blakeley Engineering Ltd. Method and apparatus for making pipe line steel grooved-end fittings
US5907896A (en) * 1997-09-10 1999-06-01 Tseng; Shao-Chien Method for bending forging artistic metallic pipes
USD406639S (en) * 1998-04-29 1999-03-09 H&H Tube & Manufacturing Co. Spout design
US20070017269A1 (en) * 2003-09-03 2007-01-25 Eiji Izumi Device and method for bending pipe material
US8480011B2 (en) 2007-09-04 2013-07-09 Dehn's Innovations, Llc Nozzle system and method
ITMI20072372A1 (en) * 2007-12-19 2009-06-20 Ibf S P A PROCEDURE FOR BENDING TUBULAR ARTICLES WITH A REPORT> 3 BETWEEN THE BENDING RADIUS AND THE EXWERN DIAMETER OF THE FINISHED TUBE
US20110101630A1 (en) * 2009-11-04 2011-05-05 Tadashi Sakai Bend shape for anti-roll bar
CN102198460A (en) * 2011-02-23 2011-09-28 上海华钢不锈钢有限公司 Device for machining thin-walled seamless elbow of stainless steel U-tube
US10182696B2 (en) 2012-09-27 2019-01-22 Dehn's Innovations, Llc Steam nozzle system and method
US10562078B2 (en) 2013-07-01 2020-02-18 Ecp Incorporated Vacuum spray apparatus and uses thereof
DE102015226807A1 (en) * 2015-12-29 2017-06-29 Robert Bosch Gmbh Component for fuel injection system and method for manufacturing a component of a fuel injection system
JP6703022B2 (en) * 2017-03-30 2020-06-03 日本発條株式会社 Hollow stabilizer, stabilizer manufacturing apparatus, and hollow stabilizer manufacturing method
CN107695624B (en) * 2017-09-29 2019-07-19 北京科勒有限公司 The production method of bathroom hardware shell
US11931760B2 (en) 2018-08-14 2024-03-19 Ecp Incorporated Spray head structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1353714A (en) * 1917-07-16 1920-09-21 Firm Rohrbogenwerk G M B H Method and device for manufacturing pipe-bends, serpentines, and the like
US1951802A (en) * 1931-10-03 1934-03-20 Gen Fire Extinguisher Co Method of making pipe bends
US2441299A (en) * 1945-01-15 1948-05-11 Taylor James Hall Mandrel for and method of making pipe bends
US2976908A (en) * 1957-05-14 1961-03-28 Ferguson James Mackay Method of and apparatus for manufacturing pipe bends
DE2517891A1 (en) * 1975-04-23 1976-11-04 Moeller Sidro Fab Conical mandrel for tube bending - has mandrel with elliptical cross section in area of the bend

Also Published As

Publication number Publication date
KR880701596A (en) 1988-11-04
US4841760A (en) 1989-06-27
AU589272B2 (en) 1989-10-05
WO1988001207A1 (en) 1988-02-25
GB8619759D0 (en) 1986-09-24
CA1305028C (en) 1992-07-14
ATE63484T1 (en) 1991-06-15
DE3770149D1 (en) 1991-06-20
AU7756787A (en) 1988-03-08
EP0276290A1 (en) 1988-08-03
KR950009143B1 (en) 1995-08-16
EP0276290B1 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
JPH01500501A (en) Method and apparatus for manufacturing bent pipes
US3668918A (en) Method for manufacturing shafts for vehicles
US3292414A (en) Apparatus for localized swaging of pipes
GB2045135A (en) Forming dies and methods of forming tubular fittings
US3570297A (en) Die and method for drawing metal tubes
US5016460A (en) Durable method for producing finned tubing
US4747431A (en) Integral joint forming of work-hardenable high alloy tubing
US2178141A (en) Method for straightening oil-well casings or the like
US4157654A (en) Tube forming process
WO2002024366A1 (en) Method of forming cold diametrally reducing roll for metal pipe and metal pipe formed by the method
US4157024A (en) Forming die and process for tubular fittings
JP6665643B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
US971838A (en) Process of making tubular metal walls.
EP0900912A3 (en) Drill pipe and method for making the same
US3136053A (en) Method of forming close tolerance tubing
US2675049A (en) Process for the manufacture of tubular l's
US2428474A (en) Method of tube drawing
US693119A (en) Drawing tubes.
US2150948A (en) Axle housing and method of making the same
RU2461436C1 (en) Method of producing variable cross-section thin-wall shells
JPS62118919A (en) Method and device for manufacturing bend pipe
JPS62224422A (en) Manufacture of hollow stabilizer
RU2150342C1 (en) Method for cold pilger rolling of tubes
US2966197A (en) Apparatus for bending tubes for samall radius bends
JPS5927660B2 (en) Tube forming method