JPH0148396B2 - - Google Patents

Info

Publication number
JPH0148396B2
JPH0148396B2 JP6586084A JP6586084A JPH0148396B2 JP H0148396 B2 JPH0148396 B2 JP H0148396B2 JP 6586084 A JP6586084 A JP 6586084A JP 6586084 A JP6586084 A JP 6586084A JP H0148396 B2 JPH0148396 B2 JP H0148396B2
Authority
JP
Japan
Prior art keywords
liquid
end plate
communication groove
compression chamber
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6586084A
Other languages
Japanese (ja)
Other versions
JPS59196991A (en
Inventor
Goro Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP6586084A priority Critical patent/JPS59196991A/en
Publication of JPS59196991A publication Critical patent/JPS59196991A/en
Publication of JPH0148396B2 publication Critical patent/JPH0148396B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 本発明はベーン型回転圧縮機の液量および気体
容量制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid volume and gas volume control device for a vane type rotary compressor.

圧縮気体の容量制御を行う装置として従来種々
なものが提案され又使用されている。主として空
気圧縮機及び冷凍機用圧縮機等に現在用いられて
いる容量制御装置は、レシプロ型に於ては各気筒
のバルブを次々に開放して段階的に容量制御を行
う吸込弁開放式容量制御装置や、スクリユー型回
転圧縮機にあつてはスライト弁式容量制御装置即
ちスライド弁を移動し、吸入締切位置を変化させ
圧縮室の吸入容積を増減し圧縮気体の吐出容量を
変化させる装置等がある。
Various devices have been proposed and used in the past as devices for controlling the capacity of compressed gas. Capacity control devices currently used mainly in air compressors and refrigerator compressors are reciprocating type, which is a suction valve open type capacity control device that opens the valves of each cylinder one after another to control the capacity in stages. A control device, and in the case of a screw-type rotary compressor, a slide valve type capacity control device, that is, a device that moves a slide valve to change the suction cut-off position to increase or decrease the suction volume of the compression chamber and change the discharge volume of compressed gas. There is.

レシプロ型に於ける圧縮気体容量の制御は各気
筒の圧縮作用を次々に停止して行なうためその圧
縮気体容量は段階的に変化し、こまかい調節を必
要とするものには用いられない。
Control of the compressed gas capacity in the reciprocating type is performed by stopping the compression action of each cylinder one after another, so the compressed gas capacity changes step by step, and is not used in applications that require fine adjustment.

また、スクリユー型回転圧縮機に用いられてい
るスライド弁式容量制御装置は吸入締切位置をス
ライド弁によつて変化させ圧縮室の実質的な容積
を連続的に変えて吐出容量を変化させることがで
きる。
In addition, the slide valve type capacity control device used in screw-type rotary compressors can change the suction cut-off position using a slide valve to continuously change the effective volume of the compression chamber and change the discharge capacity. can.

然し、この容量制御装置ではその構造が複雑な
上にスライド弁が回転体に接しながら移動摺動す
るため、高度な精度が要求され、原価が高くつく
のみならず、故障の原因を増すことになる。
However, this capacity control device has a complicated structure and requires a high degree of precision because the slide valve moves and slides while contacting the rotating body, which not only increases the cost but also increases the cause of failure. Become.

本発明は極く一般に用いられ最も単純で安価な
ベーン型回転圧縮機に於て、それほど精度を必要
としない簡単な機構を用いて気体の容量制御を行
いかつ、この圧縮気体の容量制御を行う手段に連
動して、圧縮室内に噴射される冷却、潤滑、密封
用液体の供給量を自動的にかつ無段階連続的に制
御することによつて、容量制御運転時におけるシ
リンダ内の液体の撹拌動力を最小限に押え、運転
動力を効果的に低下せしめるとともに液体ロツク
を防止し液体ロツクによるベーンの破損を防止す
ることを目的とするものである。
The present invention controls the gas capacity using a simple mechanism that does not require much precision in a vane type rotary compressor, which is extremely commonly used, is the simplest, and is the cheapest, and also controls the capacity of the compressed gas. By automatically and steplessly continuously controlling the supply amount of cooling, lubricating, and sealing liquid injected into the compression chamber in conjunction with the means, stirring of the liquid in the cylinder during capacity control operation is achieved. The purpose of this is to suppress the power to a minimum, effectively reduce the operating power, and prevent liquid locking and damage to the vanes due to liquid locking.

本発明の特徴は、ベーン型回転圧縮機におい
て、ロータ軸方向両端もしくは片端に回動自在の
端板を設け、該端板に、シリンダ内面に設けた吸
気口とは別に、隣接するベーン、シリンダ内面、
ロータ外周および端板で囲まれる圧縮室に開口す
る連絡溝を設け、該連絡溝を吸気室に連通し、容
量制御時前記連絡溝が圧縮室を介して吐出口に直
通しない範囲内で、吸気口との連通を遮断後吐出
口に連通するまでその容積を減少する圧縮室に前
記連絡溝を開口するように、前記回動自在の端板
を回動する装置を設け、かつ前記端板の回動に連
動して液体の通路面積を増減する液量制御装置を
圧縮機の液体の噴射系路中に設けたことにある。
A feature of the present invention is that, in a vane-type rotary compressor, a rotatable end plate is provided at both ends or one end in the axial direction of the rotor, and the end plate is provided with a rotatable end plate that connects adjacent vanes and cylinders, in addition to an intake port provided on the inner surface of the cylinder. inside,
A communication groove is provided that opens into the compression chamber surrounded by the outer periphery of the rotor and the end plate, and the communication groove is communicated with the intake chamber. a device for rotating the rotatable end plate so as to open the communication groove into a compression chamber whose volume decreases until it communicates with the discharge port after cutting off communication with the outlet; A liquid amount control device that increases or decreases the liquid passage area in conjunction with rotation is provided in the liquid injection system of the compressor.

本発明の装置を図面によつて説明すると、第1
図、第2図、第3図において、円筒形シリンダ1
の円筒をなす内面2の円の中心3に対し、偏心し
た中心4を中心としてベアリング16,17を介
して矢印の方向に回転するロータ5を有し、その
ロータ5に設けた複数個のベーン溝6に嵌つて摺
動するベーン7を備え、シリンダ1の両端にロー
タ5の中心4を中心として回動自在な端板18,
19を設け、ベアリング16,17を収納するケ
ーシング20,21をもつて端板18,19を覆
いシリンダ1の両端に固定する。
To explain the device of the present invention with reference to the drawings, the first
In Figures 2 and 3, the cylindrical cylinder 1
It has a rotor 5 that rotates in the direction of the arrow via bearings 16 and 17 about a center 4 eccentric to the center 3 of a circle of an inner surface 2 forming a cylinder, and a plurality of vanes provided on the rotor 5. End plates 18 are provided at both ends of the cylinder 1 and are rotatable about the center 4 of the rotor 5.
19 is provided, and the end plates 18 and 19 are covered with casings 20 and 21 that house the bearings 16 and 17 and fixed to both ends of the cylinder 1.

ロータ5の軸端22にカツプリングにと電動機
および内燃機関等の原動機と連結して(何れも図
示せず)ロータ5に回転を与えることにより、シ
リンダ内面2とベーン7とロータ外周8および端
板18,19によつて形成される圧縮室9の容積
を、回転の進むに従つて減少させて気体を吸入、
圧縮吐出するものである。
By coupling the shaft end 22 of the rotor 5 with a coupling to a prime mover such as an electric motor and an internal combustion engine (none of which are shown) and giving rotation to the rotor 5, the cylinder inner surface 2, the vane 7, the rotor outer periphery 8, and the end plate are connected. The volume of the compression chamber 9 formed by 18 and 19 is reduced as the rotation progresses to suck in gas;
It is compressed and discharged.

シリンダ1の外周上部に開口10を有する吸気
室11を、シリンダ1の圧縮室9を形成するシリ
ンダ内面2の外周に設ける。シリンダ内面2の上
部には、吸気口12を設け、ロータ外周8とシリ
ンダ内面2とが接近する圧縮室9の最小となる区
間に吐出口13を設けて、ロータ5の回転に従つ
て圧縮気体を吐出室14に送り出し、さらに連通
口15より圧力槽(図示せず)などに排出する。
An intake chamber 11 having an opening 10 at the upper part of the outer circumference of the cylinder 1 is provided on the outer circumference of the cylinder inner surface 2 forming the compression chamber 9 of the cylinder 1 . An intake port 12 is provided in the upper part of the cylinder inner surface 2, and a discharge port 13 is provided in the smallest section of the compression chamber 9 where the rotor outer periphery 8 and the cylinder inner surface 2 approach each other. is delivered to the discharge chamber 14 and further discharged from the communication port 15 to a pressure tank (not shown) or the like.

端板18,19には圧縮室9に開口する連絡溝
23と吸気室11に開口する連絡溝24を設け
て、この連絡溝23,24は第1図、第2図、第
3図に示すように端板18,19の圧縮室9に対
応する円周上と、吸気室11に対応する円周上と
に、シリンダ内面2に設けられた吸気口12と略
同一の開口角度の位置に夫々設ける。
The end plates 18 and 19 are provided with a communication groove 23 that opens into the compression chamber 9 and a communication groove 24 that opens into the intake chamber 11, and these communication grooves 23 and 24 are shown in FIGS. 1, 2, and 3. As shown in FIG. Provide each.

ケーシング20,21にシリンダ1の吸気室1
1と対応する位置に夫々連絡通路25,26を設
けて、常に連絡溝23,24と連通せしめる。
Intake chamber 1 of cylinder 1 in casings 20 and 21
Communication passages 25 and 26 are provided at positions corresponding to 1, respectively, to constantly communicate with communication grooves 23 and 24.

端板18,19の外周に回動角度に応じた、か
み合い歯27を設け、ピニオン28とかみ合わ
せ、ピニオン28は軸29を介してモータあるい
は油圧調節器(何れも図示せず)などにより回転
を与える。気体の容量を変化させる事が必要とな
つた場合、吐出圧力或は吐出気体温度等の変化を
感知し、これを電気的或は油圧、空圧等に変換
し、モータあるいは油圧調節器などを作動せし
め、軸29を介してピニオン28を回転し、端板
18,19を回動変位し、それによつて気体の容
量を変化せしめるのである。
Engaging teeth 27 are provided on the outer peripheries of the end plates 18 and 19 in accordance with the rotation angle, and mesh with a pinion 28. The pinion 28 is rotated via a shaft 29 by a motor or a hydraulic regulator (none of which is shown). give. When it is necessary to change the volume of gas, the change in discharge pressure or discharge gas temperature is sensed, and this is converted into electrical, hydraulic, or pneumatic pressure, and the motor or hydraulic regulator is controlled. When actuated, the pinion 28 is rotated via the shaft 29, and the end plates 18, 19 are rotationally displaced, thereby changing the gas capacity.

本実施例では端板18,19を歯車にて回動せ
しめる方法を図示したが、端板18,19を回動
せしめる方法は本実施例に限定するものではな
く、その他レバーにより回動せしめる等の他のす
べての方法を包含するものである。
In this embodiment, a method of rotating the end plates 18 and 19 using gears is illustrated, but the method of rotating the end plates 18 and 19 is not limited to this embodiment, and other methods such as rotating using a lever, etc. It includes all other methods.

第1図は端板18,19の連絡溝23,24が
シリンダ内面2の吸気口12と同角度位置にあ
り、通常圧縮(全負荷)運転する場合の状態を示
し、従来公知のベーン型回転圧縮機の作動と全く
同じである。即ちこの状態ではベーン7aは吸気
口12の締切位置にあり、ベーン7cが吐出口1
3の吐出管に位置しており、圧縮室9の気体はロ
ータ5の回転によりその容積を段々と圧縮室9
a,9b迄圧縮され、吐出口13より吐出され
る。第2図は気体容量の制御が必要となり、端板
18,19が右に約90゜回動した時の図を示す。
Fig. 1 shows a state in which the communication grooves 23, 24 of the end plates 18, 19 are at the same angular position as the intake port 12 on the inner surface 2 of the cylinder, and normal compression (full load) operation is performed. The operation is exactly the same as that of a compressor. That is, in this state, the vane 7a is at the closing position of the intake port 12, and the vane 7c is at the closing position of the intake port 12.
The volume of the gas in the compression chamber 9 is gradually increased by the rotation of the rotor 5.
It is compressed to a and 9b and discharged from the discharge port 13. FIG. 2 shows a state in which the end plates 18 and 19 have been rotated approximately 90 degrees to the right as it becomes necessary to control the gas capacity.

この場合、端板18,19の連絡溝23,24
が圧縮室9,9aの位置にあり圧縮室9,9aは
連絡溝24、連絡通路25,26(第3図参照)
連絡溝23を経て吸気室11に連通しており圧縮
室9,9aの気体は圧縮室の容積の減少につれて
吸気室11に返送され圧縮作用を受けていない。
吸入締切はベーン7bによつて始めて行なわれ、
吸入気体容積は圧縮室9bの容積となり、圧縮気
体容量の制御がなされている。
In this case, the communication grooves 23 and 24 of the end plates 18 and 19
are located at the compression chambers 9, 9a, and the compression chambers 9, 9a are connected to the communication groove 24 and communication passages 25, 26 (see Fig. 3).
The gas in the compression chambers 9, 9a is communicated with the intake chamber 11 via the communication groove 23, and as the volume of the compression chamber decreases, the gas is returned to the intake chamber 11 and is not subjected to compression.
Suction cut-off is first performed by vane 7b,
The intake gas volume becomes the volume of the compression chamber 9b, and the compressed gas volume is controlled.

以上のように端板18,19の回転角度を0゜か
ら順次回動せしめる間に吸入気体容量を順次減少
せしめる事になり、必要なだけの量の気体を吸
入、圧縮する事が出来るので動力も大きく節減す
ることができ、その効果大である。
As described above, while the rotation angle of the end plates 18 and 19 is sequentially rotated from 0 degrees, the suction gas capacity is gradually reduced, and the required amount of gas can be sucked and compressed, so the power It is also possible to save a lot of money, which is very effective.

これまでの説明は端板18,19の両方に連絡
溝23,24を設けた実施例について行つたが、
端板18,19の何れか一方のみに連絡溝23、
24を設けた場合も全く同様な作動をなし、同一
効果を奏するもので、当然本願発明の要旨に包含
されるものである。
The explanation so far has been about the embodiment in which the communication grooves 23 and 24 are provided in both the end plates 18 and 19.
A communication groove 23 in only one of the end plates 18 and 19,
Even if 24 is provided, the operation is exactly the same and the same effect is achieved, and it is naturally included in the gist of the present invention.

従来、ベーン形回転圧縮機の無段階的な容量制
御は吸気口を順次閉じながら行なういわゆる吸気
閉塞式容量制御であるため、吸入気体の減少に従
つて圧縮室吸入側圧力の負圧が増大するため、吸
入気体減少に従つて圧縮比が高くなり、容量制御
を行なつても消費動力があまり減少しなかつた
が、前述の本発明の装置によれば圧縮気体の減少
に応じて消費動力が大巾に減少しながら、無段階
的な圧縮気体の容量制御が、端板の回動角度調整
によつて行われるので、構造簡易でしかも安価に
効率よく行なう事ができる。
Conventionally, the stepless capacity control of vane-type rotary compressors is so-called intake closed capacity control, which is performed by sequentially closing the intake ports, so as the intake gas decreases, the negative pressure on the suction side of the compression chamber increases. Therefore, as the intake gas decreases, the compression ratio increases, and even if capacity control is performed, the power consumption does not decrease much. However, according to the device of the present invention, the power consumption decreases as the compressed gas decreases. Since the capacity of the compressed gas is controlled in a stepless manner by adjusting the rotation angle of the end plate, the structure can be simple, inexpensive, and efficient.

また第3図において、シリンダ20に連絡通路
25,26を設けたものを図示したが、連絡通路
25,26を設けず、端板18,19の連絡溝2
3,24を連通せしめるようにしても、同一効果
が得られ、本発明に含まれることは論ずるまでも
ない。
Although FIG. 3 shows the cylinder 20 provided with the communication passages 25 and 26, the communication passages 25 and 26 are not provided and the communication grooves of the end plates 18 and 19 are
It goes without saying that even if 3 and 24 are made to communicate with each other, the same effect can be obtained and this is also included in the present invention.

また第3図、第4図に示すようにピニオン28
の反対の軸端30に以下のように液量制御装置3
1を設ける。
In addition, as shown in FIGS. 3 and 4, the pinion 28
A liquid volume control device 3 is installed at the shaft end 30 opposite to the
1 will be provided.

ピニオン28の軸端30に雄ねじ32を設けこ
の雄ねじ32にねじ込んだ雌ねじを有するバルブ
33の外周に軸方向に溝40を設け、ボデイ34
にピン41で回り止めを施し、バルブ33をボデ
イ34内で第4図の左右に摺動するように収納
し、ボデイ34をケーシング21に固定する。ボ
デイ34に夫々圧縮機の液体噴射系略中に連通す
る液体の吸入口35、吐出口36を設け、ボデイ
34の内面に吸入口35、吐出口36に夫々連通
する連通溝37,38を設けてバルブ33の端面
に39の移動により液体の通路面積を制御するよ
うにする。第2図に示すように端板18の連絡溝
23,24が右の方に約90回動した状態で圧縮気
体容量が最小になつた状態において、液量制御装
置31のバルブ33が第4図に示す如く最も左方
に位置するようにねじ調整して、液体連通溝3
7,38の開口面積を制限し、液体の流通量を必
要最小限に制限せしめる。
A male thread 32 is provided at the shaft end 30 of the pinion 28, and a groove 40 is provided in the axial direction on the outer periphery of a valve 33 having a female thread screwed into the male thread 32.
is prevented from rotating with a pin 41, the valve 33 is accommodated in the body 34 so as to slide from side to side in FIG. 4, and the body 34 is fixed to the casing 21. The body 34 is provided with a liquid suction port 35 and a liquid discharge port 36 that communicate with the liquid injection system of the compressor, respectively, and the inner surface of the body 34 is provided with communication grooves 37 and 38 that communicate with the suction port 35 and the discharge port 36, respectively. The liquid passage area is controlled by moving 39 on the end face of the valve 33. As shown in FIG. 2, when the communication grooves 23 and 24 of the end plate 18 have moved approximately 90 turns to the right and the compressed gas capacity has reached its minimum, the valve 33 of the liquid volume control device 31 is turned to the fourth position. Adjust the screw so that the liquid communication groove 3 is located at the farthest left as shown in the figure.
7 and 38 are restricted to limit the amount of liquid flowing to the necessary minimum.

液体の吐出口36は供給ポンプ(図示せず)を
介して第1図、第2図に示す管路42を経てシリ
ンダ1の噴射口43に連通して居り、液体は圧縮
室9b内に噴射され、圧縮室内の冷却、潤滑、密
封作用を行なう。
The liquid discharge port 36 communicates with the injection port 43 of the cylinder 1 via a supply pump (not shown) and a pipe line 42 shown in FIGS. 1 and 2, and the liquid is injected into the compression chamber 9b. It provides cooling, lubrication, and sealing within the compression chamber.

第2図に示す最小容量運転状態より第1図に示
す全負荷運転状態に復帰する為には、吐出圧力お
よび吐出気体温度等を感知して作動するモータ
(図示せず)などにより軸29を介してピニオン
28を回転させて、端板18,19を第1図の位
置迄回転せしめる。
In order to return from the minimum capacity operating state shown in FIG. 2 to the full load operating state shown in FIG. The pinion 28 is then rotated to rotate the end plates 18 and 19 to the position shown in FIG.

ピニオン28の回転により軸端30の雄ねじ3
2が回転すると、ねじによつてバルブ33は右方
に移動し、端部39によつて狭められていた連通
溝37,38は第3図に示すように開放され、全
負荷運転時に必要な冷却、潤滑、密封用液体の全
量を圧縮機に供給噴射せしめる。
The rotation of the pinion 28 causes the male thread 3 of the shaft end 30 to
2 rotates, the valve 33 is moved to the right by the screw, and the communication grooves 37 and 38, which had been narrowed by the end portion 39, are opened as shown in Fig. 3, and the valve 33 is moved to the right by the screw. The entire amount of cooling, lubricating, and sealing liquid is supplied to the compressor and injected.

このように、容量制御を行なう端板の回動に連
動して液量制御装置31を設けることにより、圧
縮気体の容量変化に順応して、必要最小限の液体
を常に圧縮室に噴射することが出来、動力の軽減
はより一層その効果を上げ、特に容量制御運転時
における液体ロツクを防止し、ベーンの破損を防
止できるという効果がある。
In this way, by providing the liquid volume control device 31 in conjunction with the rotation of the end plate that performs volume control, it is possible to always inject the minimum amount of liquid into the compression chamber in response to changes in the volume of compressed gas. The reduction in power is even more effective, and is particularly effective in preventing liquid locking during capacity control operation and preventing damage to the vanes.

以上現在迄知られている実用的な無段階の気体
容量制御装置はスクリユ型回転圧縮機に於けるス
ライドバルブ式だけであるが、その種の機械は機
構が複雑で原価が高く、使用者側から見れば極め
て不利なものであつた。本発明によれば原価の安
いベーン型回転圧縮機を用いて而も安価で簡単な
構造で圧縮気体容量および液量制御をなし得て、
無段階容量制御の利用範囲を一層広める結果とな
るものである。
As mentioned above, the only practical stepless gas capacity control device known to date is the slide valve type for screw-type rotary compressors, but this type of machine has a complicated mechanism and is expensive, and it is difficult for the user to use it. From that perspective, it was extremely disadvantageous. According to the present invention, it is possible to control the compressed gas capacity and liquid amount using a low-cost vane type rotary compressor, and with a simple structure at low cost.
This results in further expanding the scope of use of stepless capacity control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示し、端板の連絡
溝が通常圧縮運転を行う状態の位置にあるベーン
型回転圧縮機の横断面図。第2図は端板の連絡溝
が、吸入締切位置を調整した状態にあり、本発明
の容量制御の実施例を示すベーン型回転圧縮機の
横断面図。第3図は第1図の−線に沿つた断
面を示す縦断面図。第4図は液量制御装置の通過
液量を絞つた状態を示す拡大断面図である。 1……シリンダ。5……ロータ。7……ベー
ン。9……圧縮室。11……吸気室。18,19
……端板。23,24……連絡溝。28……ピニ
オン。31……液量制御装置。
FIG. 1 is a cross-sectional view of a vane-type rotary compressor showing one embodiment of the present invention, in which the communication groove of the end plate is in a position for normal compression operation. FIG. 2 is a cross-sectional view of a vane-type rotary compressor in which the suction cut-off position of the communication groove of the end plate is adjusted, showing an embodiment of the capacity control of the present invention. FIG. 3 is a longitudinal sectional view showing a cross section taken along the - line in FIG. 1. FIG. 4 is an enlarged sectional view showing a state in which the amount of liquid passing through the liquid amount control device is restricted. 1...Cylinder. 5...Rotor. 7...Bane. 9...Compression chamber. 11...Intake chamber. 18,19
...end plate. 23, 24... Communication ditch. 28...Pinion. 31...Liquid volume control device.

Claims (1)

【特許請求の範囲】[Claims] 1 ベーン型回転圧縮機において、ロータ軸方向
両端もしくは片端に回動自在の端板を設け、該端
板に、シリンダ内面に設けた吸気口とは別に、隣
接するベーン、シリンダ内面、ロータ外周および
端板で囲まれる圧縮室に開口する連絡溝を設け、
該連絡溝を吸気室に連通し、容量制御時前記連絡
溝が圧縮室を介して吐出口に直通しない範囲内
で、吸気口との連通を遮断後吐出口に連通するま
でその容積を減少する圧縮室に前記連絡溝を開口
するように、前記回動自在の端板を回動する装置
を設け、かつ前記端板の回動に連動して液体の通
路面積を増減する液量制御装置を圧縮機の液体の
噴射系路中に設けたことを特徴とするベーン型回
転圧縮機の液量及び気体容量制御装置。
1. In a vane-type rotary compressor, a rotatable end plate is provided at both ends or one end in the axial direction of the rotor, and the end plate is provided with an air intake port provided on the inner surface of the cylinder, and adjacent vanes, the inner surface of the cylinder, the outer periphery of the rotor, and the inner surface of the rotor. A communication groove is provided that opens into the compression chamber surrounded by the end plate,
The communication groove is communicated with the intake chamber, and the volume of the communication groove is reduced until it communicates with the discharge port after cutting off communication with the intake port within a range where the communication groove does not directly communicate with the discharge port via the compression chamber during volume control. A device is provided for rotating the rotatable end plate so as to open the communication groove in the compression chamber, and a liquid volume control device is provided for increasing or decreasing the passage area of the liquid in conjunction with the rotation of the end plate. A liquid volume and gas capacity control device for a vane-type rotary compressor, characterized in that it is provided in a liquid injection system path of the compressor.
JP6586084A 1984-04-04 1984-04-04 Control device for volumes of liquid and gas of vane type rotary compressor Granted JPS59196991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6586084A JPS59196991A (en) 1984-04-04 1984-04-04 Control device for volumes of liquid and gas of vane type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6586084A JPS59196991A (en) 1984-04-04 1984-04-04 Control device for volumes of liquid and gas of vane type rotary compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50024984A Division JPS5930918B2 (en) 1975-03-03 1975-03-03 A method for controlling gas capacity in a vane-type rotary compressor.

Publications (2)

Publication Number Publication Date
JPS59196991A JPS59196991A (en) 1984-11-08
JPH0148396B2 true JPH0148396B2 (en) 1989-10-19

Family

ID=13299181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6586084A Granted JPS59196991A (en) 1984-04-04 1984-04-04 Control device for volumes of liquid and gas of vane type rotary compressor

Country Status (1)

Country Link
JP (1) JPS59196991A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129593A (en) * 1985-11-28 1987-06-11 Diesel Kiki Co Ltd Vane type compressor
DE3672476D1 (en) * 1985-12-28 1990-08-09 Diesel Kiki Co LEAF CELL COMPRESSOR WITH VARIABLE FLOW RATE.
EP0252658B1 (en) * 1986-07-07 1992-04-15 Diesel Kiki Co., Ltd. Variable capacity vane compressor
JPS6346699U (en) * 1986-09-12 1988-03-29

Also Published As

Publication number Publication date
JPS59196991A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
US3874828A (en) Rotary control valve for screw compressors
KR101253135B1 (en) Compressor having piston assembly
KR950002056B1 (en) Refrigeration plant and rotary positive displacement machine
US5722815A (en) Three stage self regulating gerotor pump
JPH0249994A (en) Rotary compressor
US7637725B2 (en) Variable output gerotor pump
US3451614A (en) Capacity control means for rotary compressors
JPH0219317B2 (en)
JPS59155580A (en) Capacity control type compressor
JPH0148396B2 (en)
EP0647293B1 (en) Piston unloader arrangement for screw compressors
US5944499A (en) Rotor-type pump having a communication passage interconnecting working-fluid chambers
US4068981A (en) Blade-type rotary compressor with full unloading and oil sealed interfaces
JPS5930918B2 (en) A method for controlling gas capacity in a vane-type rotary compressor.
JP3371709B2 (en) Oil pump device
JPH11510871A (en) Discharge pressure control of internal gear pump
JPS6332949Y2 (en)
JPS623319B2 (en)
JPH02248681A (en) Lubricating oil supplying device for vane type compressor
JPH08158841A (en) Oil pump device
JPH0234434Y2 (en)
JPH025919B2 (en)
CN217055325U (en) Variable oil pump
GB2158881A (en) Rotary vane compressor
JPS61232397A (en) Vane type compressor