JPS59155580A - Capacity control type compressor - Google Patents

Capacity control type compressor

Info

Publication number
JPS59155580A
JPS59155580A JP58029418A JP2941883A JPS59155580A JP S59155580 A JPS59155580 A JP S59155580A JP 58029418 A JP58029418 A JP 58029418A JP 2941883 A JP2941883 A JP 2941883A JP S59155580 A JPS59155580 A JP S59155580A
Authority
JP
Japan
Prior art keywords
compression chamber
compressor
intake
capacity control
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58029418A
Other languages
Japanese (ja)
Other versions
JPH0448950B2 (en
Inventor
Isao Hayase
功 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58029418A priority Critical patent/JPS59155580A/en
Priority to KR1019840000481A priority patent/KR840007619A/en
Priority to EP84101115A priority patent/EP0118039B1/en
Priority to DE8484101115T priority patent/DE3473007D1/en
Publication of JPS59155580A publication Critical patent/JPS59155580A/en
Priority to US06/774,704 priority patent/US4723895A/en
Publication of JPH0448950B2 publication Critical patent/JPH0448950B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/005Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 changing the phase relationship of two working pistons in one working chamber or the phase-relationship of a piston and a driven distribution member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce volumetric efficiency without reducing energy efficiency by providing an interrupting mechanism capable of interrupting a suction air path communicating a refrigerant suction port with a compression chamber. CONSTITUTION:One suction port 7 is communicated with the compession chamber 18 in the before half of a suction stroke and the other suction port 7' communicates with the same chamber 18 in the after half of the suction stroke while these ports serve as main refrigerant entrances for the compression chamber 18. A valve 9 is provided on the way of a refrigerant path 8'' communicating with the suction port 7'. The valve 9 is closed before the compression chamber 18 arrives at the maximum volume in the suction stroke, thereafter, the adiabatic expansion of refrigerant gas is effected once in an enclosed space until arriving at the maximum volume and, then, compression is effected until the pressure of the gas arrives at a discharging pressure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、例えば車輛空調用として適用する容量制御型
圧縮機に係υ、特にエネルギ効率を落とさずに体積効率
を落とすことができるようにした容量制御型圧縮機に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a capacity control type compressor applied, for example, to vehicle air conditioning. Regarding capacity control type compressors.

〔従来技術〕[Prior art]

例えば車輛空調用圧縮機においては、高速運転時の省エ
ネルギ化及び吐出温度上昇防止等の制御が強く望まれて
いる。これに対する従来技術として往復動形圧縮機でピ
ストンのストロークを可変とする等、圧縮機構を可動に
する手段があるが、構造が複雑化し実現性に乏しいとい
う問題があった。一方 吸気通路に絞りを設ける手段も
知られておシ、これは構造が簡単であるが高速での全断
熱効率、即ちエネルギ効率が低下し、吐出温度の上昇を
伴って容量制御の効果が少ないものであった。
For example, in compressors for vehicle air conditioning, there is a strong demand for control such as energy saving during high-speed operation and prevention of discharge temperature rise. As a conventional technique for solving this problem, there are means to make the compression mechanism movable, such as using a reciprocating compressor with a variable piston stroke, but this has the problem of complicating the structure and lacking in practicality. On the other hand, a method of providing a restriction in the intake passage is also known, but this has a simple structure, but the total adiabatic efficiency at high speeds, that is, the energy efficiency, decreases, and the discharge temperature increases, making the capacity control less effective. It was something.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、エネルギ効率を落とすことなく、体積
効率を落とすことができ、容量制御効果が大きい容量制
御型圧縮機をコンパクトな構成で提供することにある。
An object of the present invention is to provide a capacity-controlled compressor with a compact configuration that can reduce volumetric efficiency without reducing energy efficiency and has a large capacity control effect.

〔発明の概要〕[Summary of the invention]

本発明は、容量制御が必要になった時(冷媒流量が余分
となった時)に、各圧縮室が吸気行程で最大ボリューム
に達する前に、吸入通路との連絡を遮断し、この後、最
大ボリュームに達するまで密閉空間内で冷媒ガスを一旦
断熱膨張させ、その後吐出圧力まで圧縮を行うようにし
て吸入側通路の糸路を変化させ、冷媒流量の制御を行い
、上記目的を達成するものである。
In the present invention, when capacity control becomes necessary (when the refrigerant flow rate becomes redundant), communication with the suction passage is cut off before each compression chamber reaches its maximum volume in the intake stroke, and after that, The above purpose is achieved by adiabatically expanding the refrigerant gas in a closed space until it reaches the maximum volume, and then compressing it to the discharge pressure to change the thread path of the suction side passage and control the refrigerant flow rate. It is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図〜第5図を参照して説
明する。本実施例に係る圧縮機では第1図及び第2図に
示すように、クランクシャフト1に円周方向に180°
位相のずれた二つのクランクビンIAを互いに軸方向に
位置を異ならせて形成している。このクランクシャフト
1の各クランクビン】Aに夫々ピストン2を回転自在に
被嵌し、この各ピストン2をシリンダ3に設けた1対の
ボア3Aに夫々滑動自在に被嵌している。各ボア3Aは
シリンダ3と軸心を夫々直交させておυ、かつ相互にシ
リンダ3の軸方向に位置を異ならせると共に軸方向から
見て直角に交差している。この各シリンダ3が周方向の
各離間位置に吸気ボート7.7’と吐出ボート17とを
設けた円筒形のケーシング4内に摺接状態で回転自在に
収容されている。そして、このケーシング4の両端開放
部を閉鎖するフロントカバー5及びリアカッく−6によ
ってクランクシャフト1を支持し、クランクシャフト1
とシリンダ3とが互いにクランクビンIAの偏心量と同
量だけ偏心した位置で軸まわりに回転するようにしてい
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. In the compressor according to this embodiment, as shown in FIGS. 1 and 2, the crankshaft 1 has a 180° circumferential direction.
Two phase-shifted crank bins IA are formed at different positions in the axial direction. A piston 2 is rotatably fitted into each crank pin A of the crankshaft 1, and each piston 2 is slidably fitted into a pair of bores 3A provided in a cylinder 3. The respective bores 3A have their axes perpendicular to the cylinder 3, and are at different positions in the axial direction of the cylinder 3, and intersect with each other at right angles when viewed from the axial direction. Each cylinder 3 is rotatably accommodated in a cylindrical casing 4 in which an intake boat 7, 7' and a discharge boat 17 are provided at respective circumferentially spaced positions in a sliding state. The crankshaft 1 is supported by a front cover 5 and a rear cup 6 that close open ends of the casing 4.
The cylinder 3 and the cylinder 3 are arranged to rotate around the shaft at positions that are eccentric from each other by the same amount as the eccentricity of the crank bin IA.

ところで、前記吸入ボー)7.7’は、ケーシング4の
内周面に2ケ所に一定間隔で配置されている。即ち、一
方の吸入ボート7は吸入行程の前半部に、また他方の吸
入ボート7′は吸入行程の後半部に夫々連通し、これら
が圧縮室18への主冷媒入口となる。なお、吸入側冷媒
通路8は2つの吸入ボー)7.7’の夫々への冷媒通路
8′。
By the way, the suction bows 7.7' are arranged at two locations on the inner peripheral surface of the casing 4 at regular intervals. That is, one suction boat 7 communicates with the first half of the suction stroke, and the other suction boat 7' communicates with the second half of the suction stroke, and these serve as the main refrigerant inlet to the compression chamber 18. The suction side refrigerant passage 8 is a refrigerant passage 8' to each of the two suction ports 7 and 7'.

8“に分岐している。そして、後半部側の冷媒吸入ボー
ト7′に亘る一方の冷媒通路8“の途中に弁9が設けら
れ、この弁9を開閉する事によシ圧縮機容量の制御を行
うようにしている。なお\付属部品として、10はシャ
フトレール、11゜12はボールベアリング、13はニ
ードルベアリング、14はOリング、15はボルト(i
l−示す。
A valve 9 is provided in the middle of one refrigerant passage 8'' that spans the refrigerant suction boat 7' on the rear half side, and by opening and closing this valve 9, the capacity of the compressor can be changed. I'm trying to control it. As accessories, 10 is a shaft rail, 11, 12 is a ball bearing, 13 is a needle bearing, 14 is an O-ring, and 15 is a bolt (i).
l-show.

次に第3図及び第4図によって本実施例に係る容量制御
型圧縮機の制御原理を説明する。
Next, the control principle of the capacity control type compressor according to this embodiment will be explained with reference to FIGS. 3 and 4.

第3図は弁9を開状態とし、容量制御を行わない場合の
運転を示している。即ち、6クランクシヤフト1が回転
すると、それにつれてシリンダ3がたクランクビンIA
に被嵌されたピストン2は、クランクビンIAと共に公
転しながらシリンダ3シリンダ3に穿たれたボア3A内
を滑動する。この時、ピストン2、シリンダ3及びケー
シング4で囲まれた圧縮室10(ビス゛トンの両頭部に
2ケ所)はケーシング4の内周に沿って移動しながら容
積変化を行う。第3図に示すように、弁9が開の状態で
は第3図(ト)でピストン2の上部にある圧縮室18A
(容積中O)は、第3図■、(0,(ハ)。
FIG. 3 shows operation when the valve 9 is open and no capacity control is performed. In other words, as the crankshaft 1 rotates, the cylinder 3 rotates as the crankshaft 1 rotates.
The piston 2 fitted into the cylinder 3 slides within a bore 3A formed in the cylinder 3 while revolving together with the crankbin IA. At this time, the compression chambers 10 (two locations on both heads of the piston) surrounded by the piston 2, cylinder 3, and casing 4 change their volume while moving along the inner circumference of the casing 4. As shown in FIG. 3, when the valve 9 is open, the compression chamber 18A in the upper part of the piston 2 is shown in FIG.
(O in volume) is Figure 3 ■, (0, (c).

[F]に順次に示すように、クランクシャフト1の1回
転につきケーシング4内で半周移動して最大容積になる
間、常に吸入ボート7または7′と連通し、冷媒ガスを
吸入し続ける。さらに、シャフト1が1回転して圧縮行
程が終了するまでの1サイクルを第5図の如く縦軸に圧
縮室内圧力P1横軸に圧縮室内容積Vを取って示すと■
の経路となる。
As shown sequentially in [F], while moving half a circle within the casing 4 for each rotation of the crankshaft 1 to reach the maximum volume, it is always in communication with the suction boat 7 or 7' and continues to suck refrigerant gas. Furthermore, one cycle until the shaft 1 rotates once and the compression stroke ends is shown as shown in Fig. 5, with the compression chamber pressure P on the vertical axis and the compression chamber internal volume V on the horizontal axis.
This will be the route.

なお、この状態で車両の高速運転等によシ冷媒流量が余
分となった場合に以下の流量制御を行うようにする。
Note that in this state, if the refrigerant flow rate becomes excessive due to high-speed operation of the vehicle, etc., the following flow rate control is performed.

即ち、第4図は弁9を閉として、容量制御を行う場合の
状態を示している。図において、冷媒は他方の吸入ボー
ト7′からは吸入やる事が出来ず一方の吸入ボート7か
らしか吸入することができない状態となっている。第4
図(5)でピストン上部は吸入ボート7と連通して冷媒
ガスを吸入出来るが、吸入ボート7と遮断されてから、
即ち第4図0から同図(ト)までの間は密閉された状態
で最大ボリュームまで一旦断熱膨張を行い、その後圧縮
行程、即ち断熱圧縮萱程に入る。この状態での圧縮室内
の圧力−容積の変化の1サイクルを第5図に■の糸路で
示す。吸入行程の途中ま゛でははソPBの状態で吸入を
行い、断熱膨張、断熱圧縮を径て略最初の状態に戻った
後、実質的な圧縮行程に入る。この時の圧縮室容積をV
′ma工とすれば、容量制御をした■の糸路の冷媒流量
は容量制御をしていない■の糸路のはソV’ms工/V
ユニ程度になる。
That is, FIG. 4 shows a state in which capacity control is performed with the valve 9 closed. In the figure, the refrigerant cannot be sucked from the other suction boat 7' and can only be sucked from one suction boat 7. Fourth
In Figure (5), the upper part of the piston communicates with the suction boat 7 and can suck refrigerant gas, but after it is cut off from the suction boat 7,
That is, from 0 to 4 (g) in FIG. 4, adiabatic expansion is performed once to the maximum volume in a sealed state, and then a compression stroke, that is, an adiabatic compression stroke is entered. One cycle of pressure-volume changes in the compression chamber in this state is shown in FIG. 5 by the thread path marked ``■''. In the middle of the suction stroke, suction is performed in the state of PB, and after returning to the substantially initial state through adiabatic expansion and adiabatic compression, the actual compression stroke begins. The compression chamber volume at this time is V
If 'ma' is used, the refrigerant flow rate in the yarn path of ■ with capacity control is V'ms of the yarn path of ■ without capacity control.
It will be about Uni level.

尚、本実施例の作用を従来の吸気絞シによる場合と比較
するために第5図の■によって従来装置の作用を説明す
る。
Incidentally, in order to compare the effect of this embodiment with that of a conventional intake throttle system, the effect of the conventional device will be explained with reference to (2) in FIG.

吸入通路抵抗がかなり太きいたあ、圧縮室内の容積変化
速度が大きい場合は圧縮室内圧力は、ある程度P8よす
も低くなり、その後最大容積に達するまでに一部回復す
る・。最大容積時の圧縮室内圧が■の糸路の場合と等し
ければ、以後はV同様の圧縮性8を行い冷媒流量も等し
いと考えられる。
If the suction passage resistance is quite high and the rate of change in volume in the compression chamber is high, the pressure in the compression chamber will drop to some extent even at P8, and then partially recover before reaching the maximum volume. If the pressure in the compression chamber at the maximum volume is equal to that in the yarn path (2), it is considered that the compressibility 8 similar to V is performed thereafter and the refrigerant flow rate is also equal.

しかし、吸気絞シ■の糸路では同量の圧縮を行う為に本
発明の■の糸路の場合に比較し、図中ハツチング部分だ
け余計に入力を加えてやらねばならず、全断熱効率、即
ちエネルギ効率は低下してしまう。また■の糸路の場合
のように、断熱膨張によ、る吸気ガスの温度低下がない
ので、圧縮行程開始時(0点)の温度も■の場合よシ高
く従って吐出温度(0点)も高くなってしまう。
However, in order to perform the same amount of compression in the yarn path of the intake restrictor (■), compared to the yarn path of the present invention (■), it is necessary to add an extra input to the hatched part in the figure, which reduces the overall adiabatic efficiency. , that is, energy efficiency decreases. In addition, as in the case of the yarn path (■), there is no decrease in the temperature of the intake gas due to adiabatic expansion, so the temperature at the start of the compression stroke (point 0) is also higher than in the case (■), so the discharge temperature (point 0) It also becomes expensive.

即ち、本実施例によれば、1ケ所の弁9の開閉のみによ
って冷媒流量が制御出来、かつ吐出ガス温度を低くおさ
え、小さい入力で圧縮を行わせる事ができる。従って構
成が簡単で安価に製作できるうえ、信頼性が高く、耐久
性、省エネルギ性にすぐれた圧縮機を提供することがで
きる。
That is, according to this embodiment, the refrigerant flow rate can be controlled by opening and closing only one valve 9, and the temperature of the discharged gas can be kept low and compression can be performed with a small input. Therefore, it is possible to provide a compressor that has a simple configuration, can be manufactured at low cost, and is highly reliable, durable, and energy-saving.

尚、前記実施例では吸入ボートの段階的切換を行うよう
にした構成を説明したが、本発明はそのようなものに限
らず、例えば各ボートの圧縮室への開口幅を連続的に変
化させるようにすることも可能である。・ また、本発明は往復動型、或いはベーン型等について適
用することが可能であることも勿論である。
Incidentally, in the above-mentioned embodiment, a configuration was described in which the suction boats are switched in stages, but the present invention is not limited to such a configuration, and, for example, the opening width of each boat to the compression chamber is continuously changed. It is also possible to do so. - Also, it goes without saying that the present invention can be applied to a reciprocating type, a vane type, etc.

〔発明の効果〕〔Effect of the invention〕

以上で詳述したよりに、本発明によれば、エネルギ効率
を落とすことなく、体積効率を落とすことができ、容量
制御効果の大きい容量制御型圧縮機をコンパクトな構成
で提供することができる。
As described in detail above, according to the present invention, it is possible to reduce the volumetric efficiency without reducing the energy efficiency, and to provide a capacity control type compressor with a compact configuration that has a large capacity control effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示し、第1図は中央部縦断面図
、第2図は第1図の■−■線断面図、第3図囚〜(ト)
は容量制御を行わない状態での行程説明図、第4図囚〜
(匂は容量制御を行う場合の行程説明図、第6図は各種
運転状態を説明するためのP−■線図、第6図は組立状
態を示す分解斜視図である。
The figures show one embodiment of the present invention, in which Fig. 1 is a longitudinal sectional view of the central part, Fig. 2 is a sectional view taken along the line ■-■ of Fig. 1, and Fig. 3 is a cross-sectional view taken along the line
Figure 4 is an explanatory diagram of the process without capacity control.
(Figure 6 is an explanatory diagram of the process when performing capacity control, Figure 6 is a P-■ diagram for explaining various operating states, and Figure 6 is an exploded perspective view showing the assembled state.

Claims (1)

【特許請求の範囲】 1、容積型圧縮機に容量制御機構を設けてなる容量制御
型圧縮機において、冷媒吸入口と圧縮室とを連絡する吸
気通路を、吸気行程において圧縮室が最大容積に達する
以前に遮断し得る遮断機構を設けたことを特徴とする容
量制御型圧縮機。 2、容積型圧縮機は圧縮室空間の回転移動する回転式圧
縮機であり、前記圧縮室空間を形成する周囲の固定壁面
上に圧縮室と吸気行程の前半で連通ずる吸気ボートと、
後学で連通ずる吸気ボートとが互いに隔離して開設され
、遮断機構は、吸入口と吸気ボートとの間に設けられ、
その開閉により圧縮室が最大容積に達する以前に圧縮室
と吸気通路とを遮断し得る弁機構であることを特徴とす
る特許請求の範囲第1項記載の容量制御型圧縮機。 3、回転式圧縮機は、クランクシャフトと、このクラン
クシャフトのクランクビン部が回転自在に嵌入される軸
受穴を有するピストンと、円筒状で、 ・その軸心と交
差子る方向に前記ピストンを滑動させるボアを有するシ
リンダと、このシリンダの外径と略同径の内径を有し、
その周方向の互いに離間した位置に吸気ボート及び吐出
ボートを有する筒状のケーシングと、このケーシングの
軸方向両端開放部を閉鎖し、前記クランクシャフトを支
持してそのクランクシャフトとシリンダとが互いにクラ
ンクピンの偏心量と同量だけ偏心した位置で夫々の軸ま
わシに回転し得るようにしたフロントカバー及びリアカ
バーとを有することを特徴とする特許請求の範囲第2項
記載の容量制御型圧縮機。 4、クランクピンは、クランクシャフトの軸方向に位置
を異ならせ、かつ円周方向で互いに180゜方向を異な
らせて1対設けられ、ピストンは、この各ボアに対応し
て1対設けられたことを特徴とする特許請求の範囲第3
項記載の容量制御型圧縮機。
[Claims] 1. In a capacity control type compressor in which a displacement type compressor is provided with a capacity control mechanism, an intake passage connecting a refrigerant suction port and a compression chamber is configured such that the compression chamber reaches its maximum volume during the intake stroke. A capacity control type compressor characterized by being provided with a shutoff mechanism that can shut off the compressor before reaching the target. 2. A positive displacement compressor is a rotary compressor in which a compression chamber space rotates and moves, and an intake boat that communicates with the compression chamber in the first half of the intake stroke is provided on a fixed wall surface around the surroundings that forms the compression chamber space;
The intake boats that communicate with each other are installed separately from each other, and a shutoff mechanism is provided between the intake port and the intake boat.
2. The capacity-controlled compressor according to claim 1, further comprising a valve mechanism that can shut off the compression chamber and the intake passage before the compression chamber reaches its maximum volume by opening and closing the valve mechanism. 3. The rotary compressor includes a crankshaft, a piston having a bearing hole into which the crank bin portion of the crankshaft is rotatably inserted, and a cylindrical piston, and the piston is inserted in a direction intersecting the axis of the compressor. A cylinder having a sliding bore and an inner diameter approximately the same as the outer diameter of the cylinder,
A cylindrical casing having an intake boat and a discharge boat at positions separated from each other in the circumferential direction, and a cylindrical casing having both open ends in the axial direction of the casing closed, and supporting the crankshaft so that the crankshaft and the cylinder are mutually cranked. A capacity control type compressor according to claim 2, characterized in that the compressor has a front cover and a rear cover that are rotatable around their respective shafts at positions that are eccentric by the same amount as the eccentricity of the pin. . 4. A pair of crank pins were provided at different positions in the axial direction of the crankshaft and 180 degrees different from each other in the circumferential direction, and a pair of pistons were provided corresponding to each bore. The third claim characterized in that
Capacity control type compressor as described in .
JP58029418A 1983-02-04 1983-02-25 Capacity control type compressor Granted JPS59155580A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58029418A JPS59155580A (en) 1983-02-25 1983-02-25 Capacity control type compressor
KR1019840000481A KR840007619A (en) 1983-02-04 1984-02-02 Compressor capacity control method and apparatus
EP84101115A EP0118039B1 (en) 1983-02-04 1984-02-03 Positive displacement machine with discharge volume-control
DE8484101115T DE3473007D1 (en) 1983-02-04 1984-02-03 Positive displacement machine with discharge volume-control
US06/774,704 US4723895A (en) 1983-02-04 1985-09-11 Method of and apparatus for effecting volume control of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58029418A JPS59155580A (en) 1983-02-25 1983-02-25 Capacity control type compressor

Publications (2)

Publication Number Publication Date
JPS59155580A true JPS59155580A (en) 1984-09-04
JPH0448950B2 JPH0448950B2 (en) 1992-08-10

Family

ID=12275575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029418A Granted JPS59155580A (en) 1983-02-04 1983-02-25 Capacity control type compressor

Country Status (1)

Country Link
JP (1) JPS59155580A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106065854A (en) * 2016-07-28 2016-11-02 珠海格力节能环保制冷技术研究中心有限公司 One turns cylinder piston compressor
WO2017024866A1 (en) * 2015-08-07 2017-02-16 珠海格力节能环保制冷技术研究中心有限公司 Compressor, heat exchanging apparatus, and operating method for compressor
WO2017024867A1 (en) * 2015-08-07 2017-02-16 珠海格力节能环保制冷技术研究中心有限公司 Compressor, heat exchanger, and operating method of compressor
CN108799107A (en) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 Pump assembly, fluid machinery and heat transmission equipment
CN108916046A (en) * 2018-07-18 2018-11-30 珠海格力电器股份有限公司 Pump assembly, fluid machinery and heat exchange equipment
WO2020015291A1 (en) * 2018-07-18 2020-01-23 珠海格力电器股份有限公司 Pump body assembly, fluid machine, and heat exchange device
EP3779193A4 (en) * 2018-07-18 2021-02-17 Gree Electric Appliances, Inc. of Zhuhai Pump assembly, fluid machine, and heat exchange device
WO2023103876A1 (en) * 2021-12-07 2023-06-15 珠海格力电器股份有限公司 Fluid machinery and heat exchange device
WO2023226409A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226413A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226411A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226415A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange equipment
WO2023226414A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226407A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120785U (en) * 1981-01-20 1982-07-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120785U (en) * 1981-01-20 1982-07-27

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017024866A1 (en) * 2015-08-07 2017-02-16 珠海格力节能环保制冷技术研究中心有限公司 Compressor, heat exchanging apparatus, and operating method for compressor
WO2017024867A1 (en) * 2015-08-07 2017-02-16 珠海格力节能环保制冷技术研究中心有限公司 Compressor, heat exchanger, and operating method of compressor
CN106438359A (en) * 2015-08-07 2017-02-22 珠海格力节能环保制冷技术研究中心有限公司 Compressor, heat exchange equipment and running method of compressor
CN106438356A (en) * 2015-08-07 2017-02-22 珠海格力节能环保制冷技术研究中心有限公司 Compressor, heat exchange equipment and running method of compressor
CN106065854A (en) * 2016-07-28 2016-11-02 珠海格力节能环保制冷技术研究中心有限公司 One turns cylinder piston compressor
EP3779193A4 (en) * 2018-07-18 2021-02-17 Gree Electric Appliances, Inc. of Zhuhai Pump assembly, fluid machine, and heat exchange device
CN108916046A (en) * 2018-07-18 2018-11-30 珠海格力电器股份有限公司 Pump assembly, fluid machinery and heat exchange equipment
WO2020015291A1 (en) * 2018-07-18 2020-01-23 珠海格力电器股份有限公司 Pump body assembly, fluid machine, and heat exchange device
CN108799107A (en) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 Pump assembly, fluid machinery and heat transmission equipment
JP2021528585A (en) * 2018-07-18 2021-10-21 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai Pump body unit, fluid machinery, and heat exchanger
US11208990B2 (en) 2018-07-18 2021-12-28 Gree Electric Appliances, Inc. Of Zhuhai Pump body assembly, fluid machinery, and heat exchange device
US11639719B2 (en) 2018-07-18 2023-05-02 Gree Electric Appliances, Inc. Of Zhuhai Pump body assembly with a piston sleeve having protrusions for limiting radial movement between the piston sleeve and the structural members
WO2023103876A1 (en) * 2021-12-07 2023-06-15 珠海格力电器股份有限公司 Fluid machinery and heat exchange device
WO2023226409A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226413A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226411A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226415A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange equipment
WO2023226414A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device
WO2023226407A1 (en) * 2022-05-23 2023-11-30 珠海格力电器股份有限公司 Fluid machine and heat exchange device

Also Published As

Publication number Publication date
JPH0448950B2 (en) 1992-08-10

Similar Documents

Publication Publication Date Title
US5577897A (en) Scroll-type variable-capacity compressor having two control valves
JP5040907B2 (en) Refrigeration equipment
JPS59155580A (en) Capacity control type compressor
US9169840B2 (en) Piston operated bypass valve for a screw compressor
US5207078A (en) Reciprocatory piston type compressor for a refrigeration system
US8678797B2 (en) Variable displacement scroll compressor having first and second compression chambers that communicate with each other
JPH06221264A (en) Reciprocation type compressor
JPS5965582A (en) Variable capacity compressor
US20090238708A1 (en) Rotary pump
US6270329B1 (en) Rotary compressor
JP3745801B2 (en) Scroll compressor and injection cycle
JPH0763165A (en) Swash plate type compressor
JP2002062020A (en) Refrigerator
JPH01249977A (en) Rotary compressor
JP5234168B2 (en) Refrigeration equipment
JPS62218680A (en) Compressor
JPH02248681A (en) Lubricating oil supplying device for vane type compressor
JP3511680B2 (en) Rotary compressor
JP6256643B2 (en) Swing piston compressor
JPH0343687A (en) Coolant compressor and capacity control method thereof
JP2002031058A (en) Reciprocating refrigerant compressor
JPH05256283A (en) Rolling piston type compressor
JPH05321828A (en) Variable volume type compressor
JPH06212986A (en) Supercharger of engine
JPH04143482A (en) Compressor with rolling piston