JPH0148108B2 - - Google Patents

Info

Publication number
JPH0148108B2
JPH0148108B2 JP59186153A JP18615384A JPH0148108B2 JP H0148108 B2 JPH0148108 B2 JP H0148108B2 JP 59186153 A JP59186153 A JP 59186153A JP 18615384 A JP18615384 A JP 18615384A JP H0148108 B2 JPH0148108 B2 JP H0148108B2
Authority
JP
Japan
Prior art keywords
mold
molten steel
slab
slabs
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59186153A
Other languages
Japanese (ja)
Other versions
JPS6163343A (en
Inventor
Hatsuyoshi Kamishiro
Yoshio Hosomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP18615384A priority Critical patent/JPS6163343A/en
Publication of JPS6163343A publication Critical patent/JPS6163343A/en
Publication of JPH0148108B2 publication Critical patent/JPH0148108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/006Continuous casting of metals, i.e. casting in indefinite lengths of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は水平式連続鋳造によつて中空管状の
鋳片を鋳造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for casting hollow tubular slabs by horizontal continuous casting.

(従来技術) 水平連続鋳造により中空管状の鋳片を製造する
方法として、タンデツシユ底部に水平に連設した
外側モールドに対しタンデツシユ底部後方から外
側モールドとの間に鋳片厚を決定する隙間を形成
して片持支持させた内側モールドを配設し、タン
デツシユ内からの溶鋼を両モールド間に供給して
これを両モールドによつて内側と外側から冷却
し、凝固シエルを形成して引抜き中空管状の鋳片
を連続的に鋳造する方法が提案されている。
(Prior art) As a method of manufacturing hollow tubular slabs by horizontal continuous casting, a gap is formed between the outer mold and the rear of the tundish bottom to determine the thickness of the slab, which is connected to the outer mold horizontally at the bottom of the tundish. An inner mold cantilevered by the tundish is provided, and molten steel from inside the tundish is supplied between both molds and cooled from the inside and outside by both molds to form a solidified shell and then drawn into a hollow tubular shape. A method of continuously casting slabs has been proposed.

上記方法によれば、外側モールドの他に鋳片を
内側から冷却するための冷却手段を有する内側モ
ールドを必要とするところから、このモールドか
らの水漏れ等によつて爆発を誘引する危険があ
り、またこのモールドはタンデツシユ底部で片持
支持となり、しかもタンデツシユ底部の溶鋼中か
ら外側モールド内に挿入される構成となるため、
モールドの支持構造も複雑で、この支持上の不良
によつて溶鋼漏れ等の事故を生じる欠点がある。
According to the above method, since in addition to the outer mold, an inner mold is required which has a cooling means for cooling the slab from the inside, there is a risk of inducing an explosion due to water leakage from this mold. In addition, this mold is cantilevered at the bottom of the tundish, and is inserted into the outer mold from the molten steel at the bottom of the tundish.
The supporting structure of the mold is also complicated, and defects in this supporting structure can lead to accidents such as leakage of molten steel.

また、水平連続鋳造方法において、鋳片の外形
は従来公知のモールドによつて、円形もしくは矩
形に凝固、造形せしめるが、同時に鋳片の内部に
も中子鋳型を挿入し、鋳型の周囲に凝固層を発達
せしめて最終的には、内外凝固層の結合によつて
長手方向に孔を有する長尺の中空鋳片を鋳造する
方法および装置も提案されている。(特開昭59−
1053号公報参照) 更に、上記するような中子式に中空鋳片を鋳造
するに際して、モールド内または前記モールド近
傍に回転型電磁撹拌装置を設置し、鋳片内溶鋼に
鋳片軸方向を中心とする回転流を付与してシエル
周方向の溶鋼の凝固の均一化および強固なシエル
の早期形成を図るようにした中空鋳片の鋳造方法
も提案されている。(特開昭57−177858号公報参
照) (発明が解決しようとする課題) 上記する従来の中子式の中空鋳片の鋳造におい
ては、何れも、タンデツシユ側からモールドと中
子鋳型との間に溶鋼を流出させてそのままに凝固
させられる手法が採られるため、たとえモールド
側からの電磁撹拌装置による溶鋼に対する撹拌作
用によつて溶鋼の凝固に対する均一化は図られた
としても、鋳片厚は一定とするものである。
In addition, in the horizontal continuous casting method, the outer shape of the slab is solidified and shaped into a circular or rectangular shape using a conventionally known mold, but at the same time, a core mold is inserted inside the slab and solidified around the mold. A method and apparatus have also been proposed for developing layers and ultimately casting a long hollow slab having holes in the longitudinal direction by bonding the inner and outer solidified layers. (Unexamined Japanese Patent Publication No. 1983-
(Refer to Publication No. 1053) Furthermore, when casting a hollow slab in the core type as described above, a rotating electromagnetic stirrer is installed in the mold or near the mold, and the molten steel in the slab is stirred around the axial direction of the slab. A method for casting hollow slabs has also been proposed in which a rotational flow is applied to uniformize the solidification of molten steel in the circumferential direction of the shell and to form a strong shell at an early stage. (Refer to Japanese Unexamined Patent Publication No. 177858/1983) (Problems to be Solved by the Invention) In the conventional core-type hollow slab casting described above, the gap between the mold and the core mold from the tundesh side is Since a method is adopted in which the molten steel is allowed to flow out and solidify as it is, even if the solidification of the molten steel is made uniform by the stirring action on the molten steel by an electromagnetic stirring device from the mold side, the thickness of the slab is It is assumed to be constant.

この発明は上述の点に鑑みなされたものであつ
て、中空管状鋳片を鋳造するに当たつて、溶鋼の
均一化と共に、任意の厚みの中空管状鋳片を鋳造
する方法を提供することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a method for uniformizing molten steel and casting hollow tubular slabs of arbitrary thickness when casting hollow tubular slabs. purpose.

(課題を解決するための手段) 上記の目的を達成するためのこの発明の要旨と
するところは、モールド内における凝固シエルの
内側溶鋼に対しモールド外周に配装した電磁コイ
ルにより電磁力を付与して回転遠心力を与えつつ
凝固させ、中空管状鋳片を鋳造するものにおい
て、前記モールド内に溶鋼量を制限して供給し、
モールド内凝固シエル中空部に、タンデツシユ側
から高圧ガスを吹き込み、かつガス圧の調整によ
つて任意の厚みの中空管状鋳片を鋳造することを
特徴とする水平連続鋳造方法にある。
(Means for Solving the Problem) The gist of the present invention to achieve the above object is to apply electromagnetic force to the inner molten steel of the solidified shell in the mold by an electromagnetic coil arranged around the outer periphery of the mold. In a method for casting hollow tubular slabs by solidifying the steel while applying rotating centrifugal force, supplying a limited amount of molten steel into the mold,
This horizontal continuous casting method is characterized by blowing high-pressure gas into the hollow part of a solidified shell in a mold from the tundish side and casting a hollow tubular slab of any thickness by adjusting the gas pressure.

(第1実施例) 第1図はこの発明の方法を実施する水平連続鋳
造装置の全体概略構成図である。
(First Embodiment) FIG. 1 is an overall schematic diagram of a horizontal continuous casting apparatus for carrying out the method of the present invention.

図において、1はタンデツシユ、2はこのタン
デツシユ1の底部に開設したノズル、3はこのノ
ズル2に対し、ブレークリング4を介装して水平
に連設したモールドで、体内に冷却水が流通する
冷却ジヤケツトを有する。5はこのモールド3に
取巻き状に配装した電磁コイルで、回転磁界を生
じるように構成される。
In the figure, 1 is a tundish, 2 is a nozzle opened at the bottom of the tundish 1, and 3 is a mold connected horizontally to the nozzle 2 with a break ring 4 interposed therebetween, through which cooling water flows into the body. It has a cooling jacket. Reference numeral 5 denotes an electromagnetic coil arranged around the mold 3, and is configured to generate a rotating magnetic field.

6は前記モールド3に対向してタンデツシユ1
の底部後方に支持され、モールド前部に対して適
宜の隙間を形成して挿入配設した支持部材で、そ
の外周部は耐熱材によつて保護され、体内にはそ
の前端に開口してポーラスプラグ7を有し、該ポ
ーラスプラグ7は支持部材内のガス通路8を介し
て外部ガス供給機構9に接続される。
6 is a tundish 1 facing the mold 3;
It is a support member that is supported at the rear of the bottom of the mold and inserted into the front part of the mold by forming an appropriate gap.The outer periphery of the support member is protected by a heat-resistant material, and inside the body there is a porous material that opens at the front end. It has a plug 7, which porous plug 7 is connected to an external gas supply mechanism 9 via a gas passage 8 in the support member.

尚、図中10はモールド後方に配設した鋳片厚
み計で、この鋳片厚み計10からの信号によつて
ガス供給機構9の流量調整弁11を制御し、鋳片
内部に吹き出すガス圧、つまりガス量を調整する
ようにしている。
In the figure, reference numeral 10 denotes a slab thickness gauge installed at the rear of the mold, and the signal from this slab thickness gauge 10 controls the flow rate adjustment valve 11 of the gas supply mechanism 9 to adjust the gas pressure blown into the slab. In other words, the amount of gas is adjusted.

12はモールド後方に配設され、モールド3か
ら引抜かれる鋳片Aをガイドするサポートロー
ラ、13はこのサポートローラ12の後方に配設
したピンチローラで、鋳片Aを引抜き駆動する。
Reference numeral 12 denotes a support roller arranged at the rear of the mold to guide the slab A to be pulled out from the mold 3, and reference numeral 13 denotes a pinch roller arranged at the rear of the support roller 12 to drive the slab A to be pulled out.

(作 用) 上記構成において、タンデツシユ1内の溶鋼
は、タンデツシユ底部のノズル2からモールド3
と支持部材6の先端部の隙間に供給され、モール
ド3内を流動する冷却水によつてその外側から冷
却されて凝固し、中空状の内側には溶鋼Cを残す
凝固シエルBを形成する。
(Function) In the above configuration, the molten steel in the tundish 1 flows from the nozzle 2 at the bottom of the tundish to the mold 3.
The steel is supplied to the gap between the tip of the support member 6 and cooled from the outside by the cooling water flowing inside the mold 3 to solidify, forming a solidified shell B in which the molten steel C remains inside the hollow.

ここで、モールド3の外周に配装した電磁コイ
ル5に対する通電により、モールド内部には回転
磁界が作られており、この回転磁界による電磁力
で凝固シエル内側の溶鋼Cは回転し、その遠心力
によつて凝固シエル側に押されつつ凝固する。
By energizing the electromagnetic coil 5 disposed around the outer circumference of the mold 3, a rotating magnetic field is created inside the mold, and the electromagnetic force of this rotating magnetic field causes the molten steel C inside the solidification shell to rotate, resulting in centrifugal force. It solidifies while being pushed toward the solidifying shell side by the solidifying shell.

一方、ポーラスプラグ7からは凝固シエルBの
中空部にガスが吹き込まれ、このガス圧によつて
も溶鋼Cは内側から押される形になり、次第に冷
却されて外側からの凝固シエル厚を増していき、
モールド3を出て中空状の鋳片Aとなつてピンチ
ローラ13による引抜き駆動で、引抜き作用と押
戻し作用を繰り返しながらに引き抜かれる。
On the other hand, gas is blown into the hollow part of the solidification shell B from the porous plug 7, and this gas pressure also pushes the molten steel C from the inside, gradually cooling it and increasing the thickness of the solidification shell from the outside. breath,
After leaving the mold 3, it becomes a hollow slab A, which is pulled out by the pinch roller 13 while repeating a pulling action and a pushing back action.

そして上記鋳片Aはモールド後方において、鋳
片厚み計10によつて鋳片Aの厚みが検出され、
この鋳片厚み計10からの信号によりガス供給機
構9の流量調整弁11を制御し、モールド内部に
おける凝固シエルBの中空部に対するガス圧、つ
まりガス量が調整されて予定する厚みの鋳片を得
るものである。
Then, the thickness of the slab A is detected by a slab thickness meter 10 at the rear of the mold,
The flow rate adjustment valve 11 of the gas supply mechanism 9 is controlled by the signal from the slab thickness gauge 10, and the gas pressure, that is, the gas amount, to the hollow part of the solidification shell B inside the mold is adjusted to produce a slab of the expected thickness. It's something you get.

(第2実施例) 第2図は第2実施例を示す要部の一部断面図、
第3図は同ノズル部の正面図である。
(Second Embodiment) FIG. 2 is a partial sectional view of the main part showing the second embodiment;
FIG. 3 is a front view of the nozzle section.

上記第1実施例では、モールド3に対向してタ
ンデツシユ1の底部後壁に支持させた支持部材6
の前端部周りに環状にノズル2を開設した構成の
もので、支持部材6の支持構造が片持構造とした
ものであるが、この実施例では支持部材6の周り
に複数の分割構成のノズル2aを円形配列にし、
支持部材6の支持を両持構成にして安定性を向上
させたものである。
In the first embodiment, the support member 6 is supported on the bottom rear wall of the tundish 1 facing the mold 3.
The nozzle 2 is arranged in an annular shape around the front end of the support member 6, and the support structure of the support member 6 is a cantilever structure. 2a in a circular array,
The support member 6 is supported on both sides to improve stability.

さらに、支持部材6の先端に絞り部6aをもつ
支持部材6′を設けて、吹き込みガスの安定化を
計つたものである。
Further, a support member 6' having a constricted portion 6a is provided at the tip of the support member 6 to stabilize the blown gas.

(第3実施例) 第4図は第3実施例を示す要部の一部断面図、
第5図は同ノズル部の正面図である。
(Third Embodiment) FIG. 4 is a partial sectional view of the main part showing the third embodiment,
FIG. 5 is a front view of the nozzle section.

上記第2実施例では、ガス供給用のポーラスプ
ラグ7を支持部材6内に配備したが、この実施例
では支持部材を省き、複数の分割構成とされ、モ
ールド軸芯線に対して円形配列にしたノズル2a
の中心部(モールド軸芯線上)にガス供給用のポ
ーラスプラグ7aを配備した構成のものである。
In the above-mentioned second embodiment, the porous plug 7 for gas supply was arranged inside the support member 6, but in this embodiment, the support member was omitted, and the structure was divided into a plurality of parts, which were arranged circularly with respect to the mold axis. Nozzle 2a
A porous plug 7a for gas supply is provided at the center (on the mold axis).

(第4実施例) 第6図は第4実施例を示す要部の一部断面図、
第7図は同ノズル部の正面図である。
(Fourth embodiment) Fig. 6 is a partial sectional view of the main part showing the fourth embodiment;
FIG. 7 is a front view of the nozzle section.

この実施例ではモールド軸芯線上にガス供給用
のポーラスプラグ7aを配備する点では、上記第
3実施例と同じくするが、ノズル2bはモールド
軸芯線下方にのみ設けた構成のもので、ポーラス
プラグ7aから吹き出すガスが、第3実施例に比
べてより安定するようにしたものである。
This embodiment is the same as the third embodiment in that a porous plug 7a for gas supply is arranged on the mold axis, but the nozzle 2b is provided only below the mold axis, and the porous plug The gas blown out from 7a is made more stable than in the third embodiment.

(発明の効果) 然して、この発明の水平連続鋳造方法では、中
空管状の鋳片を鋳造するのに、モールド内に於け
る凝固シエル内側の溶鋼に対し、電磁コイルによ
る電磁力により回転遠心力を与えつつ凝固させる
ようにしたから、外側から冷却するモールドの他
に溶鋼を内側から冷却するための内側モールドを
必要とせず、従つてこの内側モールドからの水漏
れ等により爆発を誘引するような危険が全くな
く、しかもタンデツシユからモールドに至る構成
が簡素化できて溶鋼漏れ等の事故を生じるような
こともない。
(Effects of the Invention) However, in the horizontal continuous casting method of the present invention, in order to cast a hollow tubular slab, rotational centrifugal force is applied to the molten steel inside the solidified shell in the mold by electromagnetic force from an electromagnetic coil. Since the molten steel is allowed to solidify while being fed, there is no need for an inner mold to cool the molten steel from the inside in addition to a mold that cools it from the outside, and there is therefore no risk of water leakage from this inner mold, which could lead to an explosion. Moreover, the structure from the tundish to the mold can be simplified, and accidents such as leakage of molten steel will not occur.

またモールド内に吹き込まれるガス圧(ガス
量)を制御することによつて任意の厚みの鋳片、
つまり同じモールドを使用して外径が同じで肉厚
の異なる鋳片を得ることが出来るとともに、この
供給ガスにはまた不活性ガス、例えばアルゴン、
窒素等の不活性ガスを用いることによつては、圧
延前の加熱中、もしくは冷却中に鋳片の内部が酸
化してスケールが発生するようなことがなく、圧
延の欠陥も発生しにくくなる。
In addition, by controlling the gas pressure (gas amount) blown into the mold, slabs of arbitrary thickness can be produced.
This means that slabs with the same outer diameter and different wall thickness can be obtained using the same mold, and the supply gas also contains an inert gas, such as argon.
By using an inert gas such as nitrogen, the inside of the slab will not oxidize and scale will occur during heating or cooling before rolling, and rolling defects will be less likely to occur. .

さらに鋳造される鋳片の断面形状もモールドの
断面形状から円形に限らず、角断面にして丸穴の
ある鋳片等、特殊断面の鋳片も鋳造可能とするも
のである。
Furthermore, the cross-sectional shape of the slab to be cast is not limited to a circular shape due to the cross-sectional shape of the mold, and slabs with special cross sections such as square slabs with round holes can also be cast.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例としての水平連続鋳造
方法の装置を示し、第1図は第1実施例の全体概
略構成断面図、第2図は第2実施例の要部の構成
断面図、第3図は同ノズル部の正面図、第4図は
第3実施例の要部の構成断面図、第5図は同ノズ
ル部の正面図、第6図は第4実施例の要部の構成
断面図、第7図は同ノズル部の正面図である。 1……タンデツシユ、2……ノズル、3……モ
ールド、4……ブレークリング、5……電磁コイ
ル、6……支持部材、7……ポーラスプラグ、8
……ガス通路、9……ガス供給機構、10……鋳
片厚み計、11……流量調整弁、12……サポー
トローラ、13……ピンチローラ。
The drawings show an apparatus for a horizontal continuous casting method as an embodiment of the present invention, and FIG. 1 is a schematic sectional view of the entire structure of the first embodiment, FIG. 2 is a sectional view of the main part of the second embodiment, and FIG. 3 is a front view of the same nozzle section, FIG. 4 is a sectional view of the main part of the third embodiment, FIG. 5 is a front view of the same nozzle part, and FIG. 6 is the structure of the main part of the fourth embodiment. The sectional view and FIG. 7 are front views of the nozzle section. DESCRIPTION OF SYMBOLS 1... Tundeshi, 2... Nozzle, 3... Mold, 4... Break ring, 5... Electromagnetic coil, 6... Support member, 7... Porous plug, 8
... Gas passage, 9 ... Gas supply mechanism, 10 ... Slab thickness gauge, 11 ... Flow rate adjustment valve, 12 ... Support roller, 13 ... Pinch roller.

Claims (1)

【特許請求の範囲】[Claims] 1 モールド内における凝固シエルの内側溶鋼に
対しモールド外周に配装した電磁コイルにより電
磁力を付与して回転遠心力を与えつつ凝固させ、
中空管状鋳片を鋳造するものにおいて、前記モー
ルド内に溶鋼量を制限して供給し、モールド内凝
固シエル中空部に、タンデツシユ側から高圧ガス
を吹き込み、かつガス圧の調整によつて任意の厚
みの中空管状鋳片を鋳造することを特徴とする水
平連続鋳造方法。
1 Apply electromagnetic force to the molten steel inside the solidification shell in the mold using an electromagnetic coil arranged around the outer periphery of the mold to solidify it while applying rotational centrifugal force,
In an apparatus for casting hollow tubular slabs, a limited amount of molten steel is supplied into the mold, high-pressure gas is blown into the hollow part of the solidified shell in the mold from the tundish side, and the desired thickness is formed by adjusting the gas pressure. A horizontal continuous casting method characterized by casting hollow tubular slabs.
JP18615384A 1984-09-04 1984-09-04 Horizontal and continuous casting method Granted JPS6163343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18615384A JPS6163343A (en) 1984-09-04 1984-09-04 Horizontal and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18615384A JPS6163343A (en) 1984-09-04 1984-09-04 Horizontal and continuous casting method

Publications (2)

Publication Number Publication Date
JPS6163343A JPS6163343A (en) 1986-04-01
JPH0148108B2 true JPH0148108B2 (en) 1989-10-18

Family

ID=16183307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18615384A Granted JPS6163343A (en) 1984-09-04 1984-09-04 Horizontal and continuous casting method

Country Status (1)

Country Link
JP (1) JPS6163343A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711677B2 (en) * 1988-06-10 1998-02-10 川崎製鉄株式会社 Continuous casting method of metal tube and casting apparatus for continuous casting
CN104128574B (en) * 2014-07-15 2016-04-13 武汉泛洲中越合金有限公司 Horizontal casting casting device
CN107803473A (en) * 2017-11-17 2018-03-16 马鞍山市海华金属制品有限公司 A kind of horizontal casting casting device
CN109570460A (en) * 2019-01-31 2019-04-05 上海海亮铜业有限公司 A kind of horizontal continuous casting of copper alloy graphite crystallizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177858A (en) * 1981-04-24 1982-11-01 Nippon Kokan Kk <Nkk> Horizontal continuous casting method for steel
JPS591053A (en) * 1982-06-25 1984-01-06 Nippon Steel Corp Method and device for casting horizontally and continuously hollow casting ingot
JPS59212146A (en) * 1983-05-16 1984-12-01 Chuetsu Gokin Chuko Kk Horizontal type continuous casting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177858A (en) * 1981-04-24 1982-11-01 Nippon Kokan Kk <Nkk> Horizontal continuous casting method for steel
JPS591053A (en) * 1982-06-25 1984-01-06 Nippon Steel Corp Method and device for casting horizontally and continuously hollow casting ingot
JPS59212146A (en) * 1983-05-16 1984-12-01 Chuetsu Gokin Chuko Kk Horizontal type continuous casting method

Also Published As

Publication number Publication date
JPS6163343A (en) 1986-04-01

Similar Documents

Publication Publication Date Title
KR100330509B1 (en) Metal strip casting method and its continuous casting device
JP5038569B2 (en) Strip casting
JPH0148108B2 (en)
US3331430A (en) Continuous casting apparatus for casting hollow billets
JP2947098B2 (en) Manufacturing method of continuous cast slab for seamless steel pipe material
US4368774A (en) Mould for the horizontal continuous casting of metals
JP2000326060A (en) Method and apparatus for producing continuously cast steel material
US3886996A (en) Device for producing internal cylindrical space in ingots
JPS59153551A (en) Horizontal continuous casting equipment of thin walled billet
JPH10128510A (en) Method for continuously casting steel
JPS61229441A (en) Continuous casting method for preventing cavity in central part
JPS60121051A (en) Continuous casting device for thin billet
JPS63188451A (en) Vertical type continuous casting apparatus
JP2770691B2 (en) Steel continuous casting method
JP2975136B2 (en) Cooling device for continuous casting
JPS6123557A (en) Continuous casting machine
JPH0519167Y2 (en)
JPH02299747A (en) Twin roll type continuous casting machine
JPS62187548A (en) Horizontal continuous casting apparatus
JP2711676B2 (en) Method and apparatus for continuous casting of metal tubes
JP2843078B2 (en) Twin roll continuous caster and method of starting pouring by twin roll continuous caster
JP3069875B2 (en) Continuous casting apparatus and continuous casting method
JPH0238303B2 (en)
JPH0148107B2 (en)
JPH01215445A (en) Continuous casting method