JPH0146014B2 - - Google Patents

Info

Publication number
JPH0146014B2
JPH0146014B2 JP18269982A JP18269982A JPH0146014B2 JP H0146014 B2 JPH0146014 B2 JP H0146014B2 JP 18269982 A JP18269982 A JP 18269982A JP 18269982 A JP18269982 A JP 18269982A JP H0146014 B2 JPH0146014 B2 JP H0146014B2
Authority
JP
Japan
Prior art keywords
vehicle
axle
axle load
girder
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18269982A
Other languages
Japanese (ja)
Other versions
JPS5973736A (en
Inventor
Susumu Kanegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Electronic Instruments Co Ltd
Original Assignee
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Electronic Instruments Co Ltd filed Critical Kyowa Electronic Instruments Co Ltd
Priority to JP18269982A priority Critical patent/JPS5973736A/en
Publication of JPS5973736A publication Critical patent/JPS5973736A/en
Publication of JPH0146014B2 publication Critical patent/JPH0146014B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 本発明は、走行中の車両の軸重を測定して該車
両の重量を測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the weight of a moving vehicle by measuring the axle load of the vehicle.

走行中の車両は、各種ばね系により振動し重心
の移動が生じるため、その軸重は、静止時の軸重
を中心として変動する。従来の軸重測定は、軸重
測定用の検出板(一般に、複数の荷重変換器の上
に載荷板が配設されている)が小さいため、上記
変動する軸重値の一時の値しか計測できず、従つ
て測定結果が不正確となる欠点があつた。
A running vehicle vibrates due to various spring systems, causing movement of the center of gravity, and therefore its axle load fluctuates around the axle load when it is stationary. In conventional axle load measurement, the detection plate for axle load measurement (generally, a loading plate is placed on top of multiple load converters) is small, so only a temporary value of the fluctuating axle load value can be measured. Therefore, there was a drawback that the measurement results were inaccurate.

この軸重値の変動を減少させるためには検出板
自体は勿論のこと、その検出板前後のある長さの
路面を厳密に平坦に仕上げる必要がある。しかし
ながら、この平坦仕上げは、技術的にかなり困難
であり、経済的にも著しく不利を伴なう。
In order to reduce this variation in the axle load value, it is necessary to make not only the detection plate itself but also a certain length of the road surface in front of and behind the detection plate strictly flat. However, this flat finishing is technically quite difficult and economically disadvantageous.

ところで、軸重を測定し、車両総重量を測定す
るには、1台の車両の各軸の軸重値を総計するこ
ととなるが、その場合、同一車両の軸重か他の車
両の軸重かを判別する必要がある。この判別方法
としては、目視により行なう方法と目視によら
ず、光電管、ループコイル、速度計等の機器を組
み合わせて自動的に判別する方法とがある。この
後者の従来の車両判別装置は、光電管、ループコ
イル、速度計等の単機能検出器からの検出情報を
適宜電気的に処理して車種を判別するものである
ため、装置が複雑化するという難点があり、また
必らずしも正確な車種判別を行ない得るものでは
なかつた。
By the way, in order to measure the axle load and total vehicle weight, the axle load value of each axle of one vehicle must be totaled, but in that case, the axle load of the same vehicle or the axle load of another vehicle must be totaled. You need to determine how heavy it is. This discrimination method includes a visual method and an automatic discrimination method using a combination of devices such as phototubes, loop coils, speedometers, etc. without visual inspection. The latter type of conventional vehicle identification device is said to be complicated because it electrically processes detection information from single-function detectors such as phototubes, loop coils, and speedometers to determine the vehicle type. This method has its drawbacks, and it is not always possible to accurately identify the vehicle type.

本発明は、上記事情に鑑みなされたもので、そ
の目的とするところは、測定用桁上面およびその
前後の路面を平坦に仕上げずとも軸重を精度よく
測定でき、この軸重をもとに車両の総重量を高精
度に測定し得る車両重量測定方法を提供すること
にある。
The present invention was made in view of the above circumstances, and its purpose is to be able to accurately measure the axle load without flattening the top surface of the measuring girder and the road surface in front and behind it, and to measure the axle load based on this axle load. An object of the present invention is to provide a vehicle weight measuring method that can measure the total weight of a vehicle with high precision.

更に、本発明の第2の目的は、車両の軸重を測
定すると共に一車両の軸重を自動的に総計して車
両総重量を測定し得る車両重量測定方法を提供す
ることにある。
Furthermore, a second object of the present invention is to provide a vehicle weight measuring method that can measure the axle load of a vehicle and automatically total the axle loads of one vehicle to determine the total vehicle weight.

上記目的を達成させるため、第1と発明は、走
行中の車両の軸重を測定して該車両の重量を測定
する方法において、前記車両の最長軸間距離以上
の長さの橋梁状の桁に、前記車両の車体振動に基
づく軸重波形の変動周期の少なくとも1周期以上
に相当する範囲にわたり最短軸間距離以下の等間
隔区間でせん断力検出用の検出器を配備し、前記
桁上を前記車両が走行するとき前記各検出器から
連続して出力される軸重値出力を所定のサンプリ
ング周期でサンプリングし且つ前記検出器の出力
毎に順次記憶した後、車両進行方向に対し最初に
配設された前記検出器の出力に対し連続した時間
的関係をもつて記憶された前記検出器の軸重値デ
ータを順次読出して加算し且つ加算されたデータ
を加算回路で除して平均して一軸分の軸重を演算
し、このような軸重測定手順を前記桁上を走行す
る車両の各軸毎に行うと共に、隣接する前記区間
をほぼ同時刻に通過する車両の各軸による前記検
出器からの出力パルスのタイミング差を検出し、
そのタイミング差がほぼ等しいとき同一車両の軸
と判定し、その同一車両と判定された各軸の軸重
を総計して走行中の一車両の重量を測定すること
を特徴とし、 また、第2の発明は、走行中の車両の軸重を測
定して該車両の重量を測定する方法において、前
記車両の最長軸間距離以上の長さの橋梁状の桁
に、前記車両の車体振動に基づく軸重波形の変動
周期の少なくとも1周期以上に相当する範囲にわ
たり最短軸間距離以下の等間隔区間でせん断力検
出用の検出器を配備し、前記桁上を前記車両が走
行するとき前記各検出器から連続して出力される
軸重値出力を所定のサンプリング周期でサンプリ
ングし且つ前記検出器の出力毎に順次記憶した
後、車両進行方向に対し最初に配設された前記検
出器の出力に対し連続した時間的関係をもつて記
憶された前記検出器の軸重値データを順次読出し
て加算し且つ加算されたデータを加算回数で除し
て平均して一軸分の軸重を演算し、このような軸
重測定手順を前記桁上を走行する車両の各軸毎に
行うと共に、同時に出力されている2つの検出器
が配備されている2つの前記区間を調べ、当該2
つの区間の区間数から軸間距離を演算し、得られ
た該軸間距離の変化から同一車両の軸か否かを判
別して、前記演算により得られた軸重を総計して
走行中の一車両の重量を測定することを特徴とし
ている。
In order to achieve the above object, a first invention provides a method for measuring the weight of a running vehicle by measuring the axle load of the vehicle, in which a bridge-like girder having a length equal to or longer than the longest distance between the axles of the vehicle is provided. A detector for detecting shear force is installed at equal intervals equal to or less than the shortest interaxle distance over a range corresponding to at least one period of fluctuation of the axle load waveform based on body vibration of the vehicle, and When the vehicle is running, the axle load value outputs that are continuously output from each of the detectors are sampled at a predetermined sampling period and sequentially stored for each output of the detectors. The axle load value data of the detector stored in a continuous temporal relationship with respect to the output of the installed detector is sequentially read out and added, and the added data is divided by an adding circuit and averaged. The axle load for one axle is calculated, and such an axle load measurement procedure is performed for each axle of a vehicle traveling on the girder, and the detection is performed for each axle of a vehicle that passes through the adjacent section at approximately the same time. detects the timing difference between the output pulses from the
When the timing differences are almost equal, the axles are determined to be of the same vehicle, and the axle loads of the axles determined to be the same vehicle are totaled to measure the weight of one vehicle in motion, The invention provides a method for measuring the weight of a vehicle by measuring the axle load of a running vehicle, in which a bridge-like girder having a length equal to or longer than the longest axle distance of the vehicle is provided with a bridge-like girder that is based on body vibration of the vehicle A detector for detecting shear force is provided at equal intervals equal to or less than the shortest interaxle distance over a range corresponding to at least one cycle of variation of the axle load waveform, and when the vehicle runs on the girder, each of the above detections is performed. After sampling the axle load value output continuously from the detector at a predetermined sampling period and storing it sequentially for each output of the detector, On the other hand, the axle load value data of the detectors stored in a continuous temporal relationship are sequentially read out and added, and the added data is divided by the number of additions and averaged to calculate the axle load for one axis; Such an axle load measurement procedure is performed for each axle of the vehicle running on the girder, and the two sections where two detectors that are outputting at the same time are installed are examined.
The distance between the axles is calculated from the number of sections, and it is determined whether the axles belong to the same vehicle based on the change in the obtained distance between the axles. It is characterized by measuring the weight of a vehicle.

以下、図面を用いて本発明の実施を詳細に説明
する。
Hereinafter, implementation of the present invention will be described in detail using the drawings.

第1図は、本発明方法の実施例に用いる測定用
桁とその配置状態を示す平面図、第2図は、第1
図の縦断面図である。同図において、桁1は、路
面2と同一高さ面に上面をそろえて配置されてい
る。路上には、保守点検用のピツト3が堀削形成
され、このピツト3の左右両端には、上記桁1の
支点としての支持具4,4が設けられ、桁1は、
この支持具4,4上に略水平に保持されている。
桁1は、本実施例においては上面が路面2と同一
高さに配置される1車線幅の平板部1aと、この
平板部1aの下面側に所定の高さを有し且つ第1
図および第2図における左右方向に平行に伸びた
2つの桟状板部1b,1cとから成り、被測定車
両の最長軸間距離より長い橋梁状を呈している。
桟状板部1b,1cの両側面には、せん断力検出
用センサ5(この場合ひずみゲージ)が等間隔の
位置に接着等の手段により添着されている。この
せん断力検出用センサ5としてのひずみゲージ
は、せん断力を検出し得るよう2枚1組で形成さ
れ上記平板部1aの板面に対しそれぞれ45°およ
び135°ずらせて互いに交差して同一位置に添着さ
れている。上記等間隔区間は、被測定車両の最短
軸間距離以下に設定されており、第1図に示す如
く、隣接するせん断力検出用センサ5をここでは
4つずつ接続して各検出器5A〜5Lが構成され
ている。ここで、検出器5A〜5Lに対応する区
間をA〜Lとする。
FIG. 1 is a plan view showing the measuring girder and its arrangement used in an embodiment of the method of the present invention, and FIG.
FIG. In the figure, the girder 1 is arranged with its upper surface aligned at the same height as the road surface 2. A pit 3 for maintenance and inspection is excavated on the road, and supports 4, 4 are provided at both left and right ends of the pit 3 as fulcrums for the girder 1.
It is held substantially horizontally on these supports 4, 4.
In this embodiment, the girder 1 has a one-lane-width flat plate part 1a whose upper surface is arranged at the same height as the road surface 2, and a first plate part 1a having a predetermined height on the lower surface side of the flat plate part 1a.
It consists of two bar-like plate parts 1b and 1c extending in parallel in the left-right direction in FIG.
Shear force detection sensors 5 (strain gauges in this case) are attached to both sides of the bar-shaped plate parts 1b and 1c at equal intervals by means such as adhesive. The strain gauges serving as the shear force detection sensor 5 are formed in a set of two so as to be able to detect shear force, and are shifted by 45 degrees and 135 degrees with respect to the plate surface of the flat plate portion 1a, respectively, and intersect with each other at the same position. It is attached to. The above-mentioned equally spaced sections are set to be equal to or less than the shortest distance between the axes of the vehicle to be measured, and as shown in FIG. 5L is configured. Here, the sections corresponding to the detectors 5A to 5L are designated as A to L.

第3図は、本発明方法の実施例を示す回路の概
略構成と回路内での信号処理の手順を示すブロツ
ク図、第4図aは車両が測定用桁上を走行する状
態を示す説明図、同図bは、車両が通過した場合
の各検出器5A〜5Lの出力を表わすタイミング
図、第5図は、第4図示の各出力の軸重波形を、
前軸および後軸のそれぞれにつき合成した波形図
である。
FIG. 3 is a block diagram showing a schematic configuration of a circuit and a signal processing procedure in the circuit showing an embodiment of the method of the present invention, and FIG. 4a is an explanatory diagram showing a state in which a vehicle runs on a measurement girder. , FIG. 5B is a timing chart showing the output of each detector 5A to 5L when a vehicle passes by, and FIG. 5 shows the axle load waveform of each output shown in FIG.
It is a waveform diagram synthesized for each of the front axis and the rear axis.

先ずこれら第3図〜第5図を参照して軸重値の
測定方法を説明する。
First, a method for measuring an axle load value will be explained with reference to FIGS. 3 to 5.

第3図において、各検出器5A〜5Lからの各
出力は、制御回路9に入力される。今、第4図a
に示すように、車両6が桁1上を左から右へ通過
すると、検出器5Aが前輪(前軸)7の重量に応
じた出力を発し、引続き検出器5B,5C……,
5Lが順次出力する。このときの各検出器の出力
波形は、第4図bに示すように横軸に時間をと
り、縦軸に電圧をとつて表わせばA7〜L7の如
くとなる。また、後輪(後軸)8の重量による各
検出器の出力波形は、同様にA8〜L8(H8〜
L8は図示せず)の如くとなる。このように各検
出器5A〜5Lから連続して出力される前軸出力
A7〜L7と、後軸出力A8〜L8を、例えば周
知のアナログマルチプレクサおよびA/D変換器
を用いて所定のサンプリング周期でサンプリング
しデジタル値にそれぞれ変換する。そして、この
デシタル測定データは、例えばコンパレータを介
して、所定値(車輪が当該検出器上に載つたこと
を判定し得る電圧値)以上のものだけを用いるよ
うにすることが後述するメモリの利用効率の観点
から望ましい。
In FIG. 3, each output from each detector 5A to 5L is input to a control circuit 9. Now, Figure 4 a
As shown in , when the vehicle 6 passes over the girder 1 from left to right, the detector 5A emits an output corresponding to the weight of the front wheel (front axle) 7, and then the detectors 5B, 5C...,
5L outputs sequentially. The output waveforms of the respective detectors at this time are expressed as A7 to L7, with time plotted on the horizontal axis and voltage plotted on the vertical axis, as shown in FIG. 4B. In addition, the output waveforms of each detector depending on the weight of the rear wheel (rear axle) 8 are similarly A8 to L8 (H8 to
(L8 is not shown). The front shaft outputs A7 to L7 and the rear shaft outputs A8 to L8, which are continuously outputted from each of the detectors 5A to 5L, are processed at a predetermined sampling period using, for example, a well-known analog multiplexer and an A/D converter. , and convert them to digital values. Then, this digital measurement data can be used, for example, via a comparator, so that only data equal to or higher than a predetermined value (a voltage value that can determine that the wheel is placed on the detector) can be used, as described later. Desirable from an efficiency standpoint.

このようにサンプリングされた測定データは、
例えば周知のシフトレジタを用いて検出器5A〜
5Lの各出力の順に時系列データとし、さらに順
次または、一括してタイムデータと共にメモリの
所定の番地に格納保持される。ここに格納された
時系列データは、第5図に概念的に示すように、
車両6の車体振動に基づく軸重波形の変動周期の
2周期(2T)分であるが、少なくとも1周期分
格納するだけでもよい。
The measurement data sampled in this way is
For example, using a well-known shift register, the detectors 5A to
Each output of 5L is made into time series data in order, and is stored and held at a predetermined address in the memory together with the time data either sequentially or all at once. The time series data stored here is conceptually shown in Figure 5.
Although this is two cycles (2T) of the fluctuation cycle of the axle load waveform based on body vibration of the vehicle 6, it is sufficient to store at least one cycle.

所定のサンプリングサイクル分サンプリングし
最後の検出器の出力5Lの測定データがメモリに
格納された後、メモリに記憶された記憶内容、即
ち、車両進行方向に対し最初に配設された前記検
出器の出力に対し連続した時間的関係をもつて記
憶された前記検出器の軸重値データを、タイムデ
ータを参照しつつ順次読出してこれらを周知の演
算器を用いて加算し且つ加算されたデータを加算
回数で除して平均することによつて一軸分の軸重
を演算する。
After a predetermined sampling cycle has been sampled and the measurement data of the output 5L of the last detector is stored in the memory, the contents stored in the memory, that is, the data of the detector initially arranged with respect to the vehicle traveling direction are stored in the memory. The axle load value data of the detector, which is stored in a continuous temporal relationship with respect to the output, is sequentially read out while referring to the time data, and these are added using a well-known arithmetic unit, and the added data is The axle load for one axle is calculated by dividing by the number of additions and averaging.

このようにして求められた軸重値は、後述の一
車両判別手順に従つた信号により制御され、一車
両の総重量が求められる(手順13)。
The axle load value thus obtained is controlled by a signal according to a vehicle discrimination procedure described later, and the total weight of one vehicle is determined (step 13).

第6図aは、2台の車両が測定用桁上を走行す
る状態を示す説明図、同図bはそれらの車両が通
過した場合の各検出器の出力をデジタル信号とし
て表わしたタイミング図を示す。次に、この第6
図と第3図とを参照してそれぞれ得られた軸重出
力が同一車両のものであるか否かの判別方法を説
明する。制御回路9に入力された検出器5A〜5
Lからの信号は、デジタル処理されて第6図bに
おけるタイミング図に示す如く出力の有無のみを
表わす波形とされる。先行する車両14の前軸1
5によつて区間Aに出力A15が発生し、後軸1
6によつて出力A16が発生する。同様に後続の
車両17の前軸18により出力A18が、後軸1
9によつて出力A19が発生する。他の区間B〜
Lについても同様である。このような出力パルス
から、隣接する区間を通過する前軸または後軸に
よる出力パルスのタイミング差tを知ることによ
つて軸速が求められる。すなわち軸速vは、 v=区間距離/t として求めることができる(手順20)。同タイミ
ングで異なる区間に発生する出力パルスは、次の
軸を表わしているが、これらの隣接区間の通過タ
イミング差、例えば、t2とt1を比較し(手順
21)、両者が等しければ(ただし、所定の許容範
囲内にある場合を含む)一車両と判別される(手
順22)。第6図に示す例の場合、区間Aと区間E
とに略同時に出力パルスA16,E15が発生し
ており、次の区間にそれぞれ発生するパルスB1
6,F15とのタイミング差は、それぞれt2と
t1となる。この場合、t2とt1とは等しいか
ら同一車両の前軸と後軸が区間Eと区間Aにパル
スを発生していることが分り、従つて、区間A乃
至E、あるいはB乃至Fが軸間距離として求めら
れる(手順23)。この軸間距離を仮に第6図示の
タイミング図上にLBFとして表わす。
Figure 6a is an explanatory diagram showing the state in which two vehicles are running on the measurement girder, and Figure 6b is a timing diagram showing the output of each detector as a digital signal when those vehicles pass. show. Next, this sixth
A method for determining whether or not the obtained axle load outputs are from the same vehicle will be explained with reference to the figure and FIG. 3. Detectors 5A to 5 input to the control circuit 9
The signal from L is digitally processed into a waveform that only indicates the presence or absence of output, as shown in the timing diagram in FIG. 6b. Front axle 1 of the preceding vehicle 14
5, an output A15 is generated in section A, and the rear axle 1
6 produces an output A16. Similarly, the front axle 18 of the following vehicle 17 outputs an output A18 to the rear axle 1.
9 produces an output A19. Other section B~
The same applies to L. From such output pulses, the shaft speed can be determined by knowing the timing difference t between the output pulses of the front shaft or the rear shaft passing through adjacent sections. That is, the shaft speed v can be obtained as v=section distance/t (step 20). Output pulses that occur in different sections at the same timing represent the next axis, but by comparing the passing timing difference between these adjacent sections, for example, t2 and t1 (procedure
21), if the two are equal (including cases within a predetermined tolerance range), it is determined that the vehicle is one vehicle (step 22). In the case of the example shown in Figure 6, section A and section E
Output pulses A16 and E15 are generated almost simultaneously, and pulse B1 is generated in the next section.
6 and F15 are t2 and t1, respectively. In this case, since t2 and t1 are equal, it can be seen that the front axle and rear axle of the same vehicle generate pulses in section E and section A, and therefore, the section A to E or B to F is between the axles. It is determined as a distance (step 23). This distance between the axes is tentatively represented as LBF on the timing diagram shown in FIG.

区間Aに生じる次の出力A18とタイミングの
一致する他の区間Iの出力I16を基に、同様に
してそれぞれ隣接する区間B,Jに生じる出力と
のタイミング差t3とt4を求め(手順20)、両
者を比較する(手順21)。タイミング差t3とt
4とは、同一でないことから同一車両の軸でない
ことが分るが(手順22)、軸間距離LBJを計測す
る(手順23)。そのLBJは、先行車両の後軸と後
続車両の前軸との軸間距離を示すものである。こ
の軸間距離LBJは、前に求めた軸間距離LBFに
加えず、総軸間距離を出す(手順25)。もし、t
3とt4が等しい場合には、LBJがLBFに加え
られ、総軸間距離が求められる。この軸間距離も
軸速と同様、常にスキヤニングされて、順次隣接
区間へ移動するタイミングに合わせて計測し、こ
れら各軸間距離を手順24で比較すると、この変化
から(手順22)、一車両の判別ができる(手順
22)。
Based on the output I16 of another section I that has the same timing as the next output A18 generated in section A, similarly calculate timing differences t3 and t4 between the outputs generated in adjacent sections B and J, respectively (step 20). , compare the two (step 21). Timing difference t3 and t
4 is not the same, so it can be seen that the axes of the same vehicle are not the same (step 22), but the distance between the axles LBJ is measured (step 23). The LBJ indicates the distance between the rear axle of the preceding vehicle and the front axle of the following vehicle. This center-to-center distance LBJ is not added to the previously determined center-to-center distance LBF, but calculates the total center-to-center distance (step 25). If, t
If 3 and t4 are equal, LBJ is added to LBF and the total center distance is determined. Like the shaft speed, this inter-axle distance is always scanned and measured at the timing of moving to adjacent sections sequentially.When these inter-axle distances are compared in step 24, from this change (step 22), one vehicle can be determined (steps
twenty two).

斯くして手順10乃至12で得た各軸の軸重値を一
車両判別手順22による信号によつて加算し、一車
両分の総重量を求める(手順13)。これら総重量
と総軸間距離とによつて車両の種類、いわゆる車
種を判別する。
The axle load values for each axle obtained in steps 10 to 12 are added together using the signal from the one-vehicle discrimination step 22 to determine the total weight for one vehicle (step 13). The type of vehicle, so-called vehicle type, is determined based on the total weight and total distance between the axles.

尚、第3図に示す手順は、上述のようである
が、同一車両か否かを判別するには、軸間距離の
測定は必らずしも必要ではなく、手順20と21によ
つて軸速の変化を検知するだけでも充分である。
また、同一車両の判別は、手順23と手順24とによ
つて軸間距離の変化のみから行なつてもよい。
The procedure shown in Fig. 3 is as described above, but in order to determine whether the vehicles are the same or not, it is not always necessary to measure the distance between the axes, and steps 20 and 21 It is sufficient to detect changes in shaft speed.
Further, identification of the same vehicle may be performed based only on the change in the distance between the axes in steps 23 and 24.

第3図に示した実施例によれば、軸重値を精度
よく計れるのみならず、同一車両の判別によつて
軸重量を、また総軸間距離をそれぞれ計測できる
ため車種の判別が正確、確実であり、これによつ
て過積載車両の監視、取締りや有料道路の料金徴
収業務の省力化乃至無人化を実現することが可能
である。
According to the embodiment shown in Fig. 3, not only can the axle load value be measured with high precision, but also the axle weight and total distance between axles can be measured by determining whether the vehicle is the same, so the vehicle type can be determined accurately. It is reliable, and thereby it is possible to realize labor-saving or unmanned operations such as monitoring and enforcement of overloaded vehicles and toll collection operations on toll roads.

以上詳述したように本発明によれば、測定用桁
の上面およびその前後の路面を敢えて平坦に仕上
げて走行車体の振動を無くさずとも軸重を精度よ
く測定でき、一方、同一車両の軸であるか否かを
判定するために、光電管、ループコイル、速度計
等の単機能検出器からの検出情報を得る必要がな
く、検出器自体の出力をもとに判定するようにし
ているため、装置構成の簡略化およびコストの低
廉化が実現されると共に、一車両毎の総重量の自
動測定を実現することができる。
As described in detail above, according to the present invention, it is possible to accurately measure the axle load without eliminating the vibration of the running vehicle body by intentionally finishing the top surface of the measurement girder and the road surface in front and behind it to be flat. There is no need to obtain detection information from single-function detectors such as phototubes, loop coils, and speedometers to determine whether the , it is possible to simplify the device configuration and reduce costs, and also to automatically measure the total weight of each vehicle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に用いる測定用桁と
その配置状態を示す平面図、第2図は第1図の縦
断面図、第3図は本発明の実施例を示す回路の概
略構成と回路内での信号処理の手順を示すブロツ
ク図、第4図aは、車両が測定用桁上を走行する
状態を示す説明図、同図bは、車両が通過した場
合の各検出器の出力を表わすタイミング図、第5
図は第4図示の各出力の軸重波形を前軸および後
軸のそれぞれにつき合成した波形図、第6図aは
2台の車両が測定用桁上を走行する状態を示す説
明図、同図bはそれらの車両が通過した場合の各
検出器の出力をデジタル化して表わしたタイミン
グ図である。 1……測定用桁、1a……平板部、1b,1c
……桟状板部、2……路面、3……保守点検用ピ
ツト、4……支持具、5……せん断力検出用セン
サ、5A〜5L……検出器、A〜L……区間、
6,14,17……車両、7,15,18……前
軸(前輪)、8,16,19……後軸(後輪)、9
……制御回路、10,11,12,13,20,
21,22,23,24,25,26……手順、
t1,t2,t3,t4……隣接区間間の出力パ
ルスのタイミング差、LBF,LBJ……軸間距離。
FIG. 1 is a plan view showing the measuring girders used in carrying out the method of the present invention and their arrangement, FIG. 2 is a longitudinal sectional view of FIG. 1, and FIG. 3 is a schematic configuration of a circuit showing an embodiment of the present invention. Figure 4a is an explanatory diagram showing the state in which a vehicle is running on the measurement girder, and Figure 4b is a block diagram showing the signal processing procedure in the circuit. Timing diagram representing output, 5th
The figure is a waveform diagram in which the axle load waveforms of each output shown in Figure 4 are combined for the front and rear axles, and Figure 6a is an explanatory diagram showing the state in which two vehicles are running on the measuring girder. FIG. b is a timing diagram digitizing the outputs of each detector when those vehicles pass. 1... Measuring digit, 1a... Flat plate part, 1b, 1c
...Ram plate portion, 2...Road surface, 3...Pit for maintenance and inspection, 4...Support, 5...Sensor for detecting shear force, 5A to 5L...Detector, A to L...Section,
6, 14, 17... Vehicle, 7, 15, 18... Front axle (front wheel), 8, 16, 19... Rear axle (rear wheel), 9
...Control circuit, 10, 11, 12, 13, 20,
21, 22, 23, 24, 25, 26... procedure,
t1, t2, t3, t4...timing difference of output pulses between adjacent sections, LBF, LBJ...distance between axes.

Claims (1)

【特許請求の範囲】 1 走行中の車両の軸重を測定して該車両の重量
を測定する方法において、前記車両の最長軸間距
離以上の長さの橋梁状の桁に、前記車両の車体振
動に基づく軸重波形の変動周期の少なくとも1周
期以上に相当する範囲にわたり最短軸間距離以下
の等間隔区間でせん断力検出用の検出器を配備
し、前記桁上を前記車両が走行するとき前記各検
出器から連続して出力される軸重値出力を所定の
サンプリング周期でサンプリングし且つ前記検出
器の出力毎に順次記憶した後、車両進行方向に対
し最初に配設された前記検出器の出力に対し連続
した時間的関係をもつて記憶された前記検出器の
軸重値データを順次読出して加算し且つ加算され
たデータを加算回数で除して平均して一軸分の軸
重を演算し、このような軸重測定手順を前記桁上
を走行する車両の各軸毎に行うと共に、隣接する
前記区間をほぼ同時刻に通過する車両の各軸によ
る前記検出器からの出力パルスのタイミング差を
検出し、そのタイミング差がほぼ等しいとき同一
車両の軸と判定し、その同一車両と判定された各
軸の軸重を総計して走行中の一車両の重量を測定
することを特徴とする車両重量測定方法。 2 走行中の車両の軸重を測定して該車両の重量
を測定する方法において、前記車両の最長軸間距
離以上の長さの橋梁状の桁に、前記車両の車体振
動に基づく軸重波形の変動周期の少なくとも1周
期以上に相当する範囲にわたり最短軸間距離以下
の等間隔区間でせん断力検出用の検出器を配備
し、前記桁上を前記車両が走行するとき前記各検
出器から連続して出力される軸重値出力を所定の
サンプリング周期でサンプリングし且つ前記検出
器の出力毎に順次記憶した後、車両進行方向に対
し最初に配設された前記検出器の出力に対し連続
した時間的関係をもつて記憶された前記検出器の
軸重値データを順次読出して加算し且つ加算され
たデータを加算回数で除して平均して一軸分の軸
重を演算し、このような軸重測定手順を前記桁上
を走行する車両の各軸毎に行うと共に、同時に出
力されている2つの検出器が配備されている2つ
の前記区間を調べ、当該2つの区間の区間数から
軸間距離を演算し、得られた該軸間距離の変化か
ら同一車両の軸か否かを判別して、前記演算によ
り得られた軸重を総計して走行中の一車両の重量
を測定することを特徴とする車両重量測定方法。
[Scope of Claims] 1. In a method of measuring the weight of a moving vehicle by measuring the axle load of the vehicle, the body of the vehicle is attached to a bridge-like girder having a length equal to or longer than the longest distance between the axles of the vehicle. When the vehicle runs on the girder, a detector for detecting shear force is provided at equally spaced intervals equal to or less than the shortest interaxle distance over a range corresponding to at least one cycle of fluctuation of the axle load waveform based on vibration, and when the vehicle runs on the girder. After sampling the axle load value output continuously from each of the detectors at a predetermined sampling period and sequentially storing each output of the detector, the detector is first disposed in the vehicle traveling direction. The axle load value data of the detector, which is stored in a continuous temporal relationship with respect to the output of This axle load measurement procedure is performed for each axle of the vehicle traveling on the girder, and the output pulses from the detector due to each axle of the vehicle passing through the adjacent section at approximately the same time are calculated. The system detects the timing difference, and when the timing differences are almost equal, it is determined that the axles belong to the same vehicle, and the weight of the moving vehicle is measured by adding up the axle loads of each axle determined to be the same vehicle. Vehicle weight measurement method. 2. In a method of measuring the weight of a moving vehicle by measuring the axle load of the vehicle, an axle load waveform based on body vibration of the vehicle is attached to a bridge-like girder having a length equal to or longer than the longest distance between the axles of the vehicle. Detectors for detecting shear force are installed at equal intervals equal to or less than the shortest interaxle distance over a range corresponding to at least one cycle of the fluctuation period of The axle load value output is sampled at a predetermined sampling period and sequentially stored for each output of the detector. The axle load value data for one axis is calculated by sequentially reading and adding the axle load value data of the detector stored in a temporal relationship, and dividing the added data by the number of times of addition to calculate the axle load for one axis. The axle load measurement procedure is performed for each axle of the vehicle running on the girder, and the two sections where the two detectors that are outputting at the same time are installed are examined, and the axle load measurement procedure is carried out for each axle of the vehicle running on the girder. The distance between the axles is calculated, and based on the change in the distance between the axles, it is determined whether the axles belong to the same vehicle.The axle loads obtained by the calculation are totaled to measure the weight of one vehicle in motion. A vehicle weight measurement method characterized by:
JP18269982A 1982-10-20 1982-10-20 Vehicle weight measuring method Granted JPS5973736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18269982A JPS5973736A (en) 1982-10-20 1982-10-20 Vehicle weight measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18269982A JPS5973736A (en) 1982-10-20 1982-10-20 Vehicle weight measuring method

Publications (2)

Publication Number Publication Date
JPS5973736A JPS5973736A (en) 1984-04-26
JPH0146014B2 true JPH0146014B2 (en) 1989-10-05

Family

ID=16122883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18269982A Granted JPS5973736A (en) 1982-10-20 1982-10-20 Vehicle weight measuring method

Country Status (1)

Country Link
JP (1) JPS5973736A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153523A (en) * 1984-08-24 1986-03-17 Mitsubishi Heavy Ind Ltd Apparatus for discriminating kind of car
JP2710785B2 (en) * 1988-05-06 1998-02-10 株式会社クボタ Method and apparatus for measuring stationary weight of running vehicle
JP4721895B2 (en) * 2005-12-27 2011-07-13 大和製衡株式会社 Axle load measuring device

Also Published As

Publication number Publication date
JPS5973736A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US7668692B2 (en) Method for weighing vehicles crossing a bridge
US9804017B2 (en) Method for weighing a vehicle, and measuring system and measuring arrangement therefor
US3593263A (en) Apparatus for vehicle direction sensing
CN108318117A (en) A kind of vehicle dynamic weighing compensation sensor array, System and method for
ATE153931T1 (en) DEVICE FOR DETECTING DISRUPTIONS IN SIGNAL TRANSMISSION IN MOTOR VEHICLES
KR101247542B1 (en) Weight measuring system considering changes of speed and lane and method thereof
JPH02105023A (en) Method and device for weighing car
JPS62255828A (en) Measuring system for maximum vehicle total weight
CN112781702B (en) Method and system for weighing vehicle
JP3467906B2 (en) Axle load measuring device
JPH0146014B2 (en)
US4667757A (en) System for determining axle spacing
JP2022042580A (en) Failure detector, charge collection system, method for detecting failure, and program
JP2001133314A (en) Vehicle weight measuring device and vehicle weight measuring method
JPH07225891A (en) Pedal for vehicle type deciding device
CN110268237A (en) Method and apparatus for detecting the weight for the load being moved on scale
CN101900600A (en) Axle load measuring device and axle load measuring method
JPH10185665A (en) Axle load measuring device
JP3686184B2 (en) Vehicle wheel load measuring device
CN213014021U (en) Load recognition device of bridge
JP2001283375A (en) Vehicle sort measuring device
JP3521072B2 (en) Vehicle speed and vehicle length measurement method for moving objects
JP4742380B2 (en) Axle load measuring device for traveling vehicle
CN202383831U (en) Overweight monitoring and evidence-obtaining system of travelling truck
JP3602226B2 (en) Method and apparatus for measuring the number of passing vehicles