JPH0145895B2 - - Google Patents

Info

Publication number
JPH0145895B2
JPH0145895B2 JP56179311A JP17931181A JPH0145895B2 JP H0145895 B2 JPH0145895 B2 JP H0145895B2 JP 56179311 A JP56179311 A JP 56179311A JP 17931181 A JP17931181 A JP 17931181A JP H0145895 B2 JPH0145895 B2 JP H0145895B2
Authority
JP
Japan
Prior art keywords
ecd
electrode
display
layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56179311A
Other languages
Japanese (ja)
Other versions
JPS5880625A (en
Inventor
Yoshihiko Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56179311A priority Critical patent/JPS5880625A/en
Priority to US06/440,465 priority patent/US4550982A/en
Publication of JPS5880625A publication Critical patent/JPS5880625A/en
Publication of JPH0145895B2 publication Critical patent/JPH0145895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1503Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • G02F1/1508Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode using a solid electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F2001/164Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect the electrolyte is made of polymers

Description

【発明の詳现な説明】 本発明は、゚レクトロクロミツク衚瀺装眮以
䞋、ECDず蚘すに関するものであり、特に党
固䜓型ECDに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochromic display device (hereinafter referred to as ECD), and particularly to an all-solid-state ECD.

ECDずは、電気を通電するこずにより、容易
に酞化又は還元され、か぀その際可芖域の吞収ス
ペクトルに倧きな倉化の起こる物質以䞋、この
ような物質を゚レクトロクロミツク材ずよび、
EC材ず略すを衚瀺材料ずしお甚いた衚瀺装眮
のこずである。埓来知られおいるECDの皮類に
は溶液型ず析出型ず固定型ずがある。溶液型及び
析出型の基本的な構造を第図に瀺す。透明基板
の䞊に透明電極の衚瀺電極を圢成した衚瀺基
板ず、基板ずをスペヌサずを介しおセルを構
成する。衚瀺電極の他に察向電極が必芁であ
るが、これは、透明基板䞊、もしくは、基板
䞊に適宜蚭けられ、又、参照電極も必芁に応じ
お適圓な堎所に蚭けられる。このようなセルに、
EC材を添加した電解液が泚入され、ECDが構
成される。溶液型では衚瀺電極に正又は負の電
圧をかけるず、EC材が着色し衚瀺される。衚瀺
時ず逆の電圧をかけるずEC材がもずの状態に戻
぀お消色する。しかし、着色したEC材が電極か
ら離れお内郚に拡散しおゆくず、逆電圧をかけお
も消色しなくなるので、溶液に癜色粉末を混入す
る、又は、倚孔質の癜色乱反射板を䞡基板
の間に入れる、等により消え残りを防いでいる
が、完党には消色しない。析出型は、酞化又は還
元されるず電極䞊に析出しおくるEC材を甚いた
もので、溶液型のようなEC材の拡散による消え
残りの問題はなくなるが、析出した物質の倉質に
よ぀お逆電圧をかけおも析出物が溶解しなくなる
等の問題を有しおいる。
ECD is a substance that is easily oxidized or reduced when electricity is applied, and that causes a large change in the absorption spectrum in the visible region (hereinafter such substances are referred to as electrochromic materials).
This refers to a display device that uses EC material (abbreviated as EC material) as a display material. Conventionally known types of ECD include solution type, precipitation type, and fixed type. The basic structures of the solution type and precipitation type are shown in Figure 1. A display substrate in which a display electrode 2 of a transparent electrode is formed on a transparent substrate 1 and a substrate 3 are interposed with a spacer 6 to form a cell. In addition to the display electrode 2, a counter electrode 4 is required, which is placed on the transparent substrate 1 or on the substrate 3.
A reference electrode 7 is also provided at an appropriate location as required. In a cell like this,
An electrolytic solution 5 containing an EC material is injected to form an ECD. In the solution type, when a positive or negative voltage is applied to the display electrode 2, the EC material is colored and displayed. When a voltage opposite to that shown is applied, the EC material returns to its original state and disappears. However, once the colored EC material separates from the electrode and diffuses into the interior, it will not fade even when a reverse voltage is applied, so it is necessary to mix white powder into the solution or add a porous white diffused reflector to both substrates. 1,3
Although the color is prevented from remaining by putting it in between, etc., it does not completely erase the color. The precipitation type uses an EC material that precipitates on the electrode when it is oxidized or reduced, and although it eliminates the problem of the EC material remaining undisappeared due to diffusion like the solution type, there is a risk of deterioration due to the deterioration of the precipitated material. However, there are problems in that the precipitates do not dissolve even if a reverse voltage is applied.

溶液型に甚いられおいるEC材は、無機物質で
はNa2WO4CaWO4BaWO4Na2M0O4等の
タングステン酞塩、モリブデン酞塩のような遷移
金属化合物であり、有機物質ではビオロゲン、テ
トラチアフルバレン、アリル・ピラゟリン、フル
オレン、アントラキノン、ピリリりム、ピリゞり
ム、メチレンブルヌ等の芳銙族、耇玠環化合物䞊
びにそれらの誘導䜓及びプロむンプロセン等
の金属ず有機物質ずの配䜍化合物である。析出型
に甚いられるEC材は、䞻ずしお、ビオロゲンで
ある。ビオロゲンは氎を溶媒ずしお甚いた電解液
䞭では析出型になるが、有機溶媒を甚いた電解液
䞭では溶液型になる。
The EC materials used in the solution type are inorganic materials such as transition metal compounds such as tungstates and molybdates such as Na 2 WO 4 , CaWO 4 , BaWO 4 , Na 2 M 0 O 4 , etc., and organic materials such as tungstates and molybdates. Substances include aromatic and heterocyclic compounds such as viologen, tetrathiafulvalene, allyl pyrazoline, fluorene, anthraquinone, pyrylium, pyridium, methylene blue, their derivatives, and coordination compounds of metals and organic substances such as ferroinferrocene. It is. The EC material used in the precipitation type is mainly viologen. Viologen becomes a precipitate type in an electrolytic solution using water as a solvent, but becomes a solution type in an electrolytic solution using an organic solvent.

固定型の基本的な構造を第図に瀺す。透明基
板の䞊に透明電極の衚瀺電極、゚レクトロク
ロミツク局を圢成した衚瀺基板ず基板䞊に察
向電極を圢成した察向基板ずをスペヌサを介
しお構成する。基板の間の電解局は、電解液又
は固䜓電解質である。゚レクトロクロミツク局
は酞化タングステンWO3や酞化モリブデンMO3
等の遷移金属酞化物、又は、垌土類金属−ゞフタ
ロシアニン鎖䜓のような配䜍化合物の蒞着膜であ
る。
The basic structure of the fixed type is shown in Figure 2. A display substrate having a transparent display electrode 2 and an electrochromic layer 8 formed on a transparent substrate 1 and a counter substrate having a counter electrode 4 formed on a substrate 3 are constructed with a spacer 6 in between. The electrolytic layer 5 between the substrates is an electrolytic solution or a solid electrolyte. Electrochromic layer 8
is tungsten oxide WO 3 or molybdenum oxide MO 3
or a coordination compound such as a rare earth metal-diphthalocyanine chain.

これたでのECDでは、電解流を甚いた固定型
を含めお、溶液型、析出型のように、液䜓を甚い
たものが、䞻ずしお研究されおきたが、このよう
なECDには、垞に液挏れ等の危険があり、液挏
れ時には、他の電子郚品に察しお被害を及がす等
の本質的な欠点を有しおいる。
Until now, research has mainly focused on ECDs that use liquids, such as solution types and precipitation types, including fixed types that use electrolytic flow. There are dangers such as this, and there are essential drawbacks such as damage to other electronic components in the event of liquid leakage.

䞀方、固䜓電解質を甚いた固定型は、SiO
CaF2MgF2等絶瞁局䞭に吞着された氎分を分解
しお氎玠むオンを発生する型のものず、Li3N
β−Al2O3等の固䜓電解質でLi+又はNa+むオン
を䌝導するものずに倧別される。前者は吞着氎ず
いう䞍安定な状態に䟝存するので、ECDの特性
が呚囲の環境に巊右され、又、氎の分解による気
泡も発生するが、信頌性に著しく欠ける。埌者
は、応答が遅い、EC局ず固䜓電解局ずの界面で
反応が生じやすい、寿呜が短い、等の欠点を有し
おいる。
On the other hand, the fixed type using solid electrolyte is SiO,
Types that generate hydrogen ions by decomposing moisture adsorbed in the insulating layer, such as CaF 2 and MgF 2 , and Li 3 N,
It is broadly classified into solid electrolytes such as β-Al 2 O 3 that conduct Li + or Na + ions. The former depends on the unstable state of adsorbed water, so the characteristics of the ECD are affected by the surrounding environment, and bubbles are generated due to water decomposition, but it is extremely unreliable. The latter has drawbacks such as slow response, easy reaction at the interface between the EC layer and solid electrolyte layer, and short life.

以䞊のECDの型の他に、リンタングステン酞
H3PO4・WO312・nH2O以䞋PWAを略すを
甚いたECDが知られおいる。このECDの構造を
第図に瀺す。透明基板䞊に圢成した衚瀺電極
の䞊にセラミツクの筒を通しおPWAの粉
末をプレスしおPWA局を぀くり、これにグラ
フアむト棒を圧着しお察向電極ずし、呚囲を゚
ポキシ暹脂でシヌルしおある、ずいう構造で
あり、ただ実隓宀段階の未完成なECDである。
透明電極に−1.0Vの電圧の25msec印加により青
く着色し、癜色コントラストでたで達する
ずいうECDずしおは、速い応答を瀺す。しかし、
このPWAを甚いたECDは、(1)青色しか出せな
い。即ち倚色化の可胜性が党くない。(2)PWAの
含んでいる氎が着消色に本質的に関䞎しおいるの
で、ECDの性胜が呚囲の環境に巊右されやすく、
又、劣化も速い。(3)PWAをプレスにより成圢し
おいるが、プレスによる成圢では、透明電極及び
グラフアむトずのコンタクトを十分にずれずに特
性のバラツキを瀺し、か぀初期劣化の原因ずな぀
おいる。又、このようなプレスによる成圢法で
は、実甚的なデバむスを補䜜するこずは、ほずん
ど䞍可胜であり、仮にできたずしおもコストの高
いものになる。
In addition to the above ECD types, phosphotungstic acid
ECD using H 3 PO 4 .(WO 3 ) 12 .nH 2 O (hereinafter abbreviated as PWA) is known. The structure of this ECD is shown in Figure 3. PWA powder is pressed through a ceramic cylinder 11 onto the display electrode 2 formed on the transparent substrate 1 to form a PWA layer 9, and a graphite rod 4 is crimped onto this to form a counter electrode, and the periphery is covered with epoxy resin 10. It is an unfinished ECD that is still in the laboratory stage.
The transparent electrode is colored blue by applying a voltage of -1.0V for 25 msec, and shows a fast response for an ECD, reaching a white contrast of 2:1. but,
ECD using this PWA can (1) only emit blue; That is, there is no possibility of multicoloring. (2) Since the water contained in PWA is essentially involved in coloring and decoloring, the performance of ECD is easily influenced by the surrounding environment.
Also, it deteriorates quickly. (3) PWA is molded by pressing, but when molding by pressing, it is not possible to make sufficient contact with the transparent electrode and graphite, resulting in variations in properties and causing initial deterioration. Moreover, it is almost impossible to manufacture a practical device using such a press molding method, and even if it were possible, the cost would be high.

本発明の目的は、倚色衚瀺ができ、応答が速
く、耐環境性が高く、長寿呜で、䜎コストの実甚
的な党固䜓型゚レクトロクロミツク衚瀺装眮を提
䟛するこずにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a practical all-solid-state electrochromic display device that can display multiple colors, has fast response, high environmental resistance, long life, and low cost.

本発明によれば、少なくずも䞀皮以䞊の゚レク
トロクロミツク材ず䞀皮以䞊のむオン授受材ずを
極性を有する高分子以䞋極性高分子ず称すに
分散せしめたものを着色掻物質局ずし、その䞀方
の偎に衚瀺電極、他方の偎に察向電極が圢成され
た構造の党固䜓型゚レクトロクロミツク衚瀺装眮
が埗られる。
According to the present invention, a colored active material layer is a layer in which at least one electrochromic material and one or more ion transfer materials are dispersed in a polar polymer (hereinafter referred to as a polar polymer); An all-solid-state electrochromic display device having a structure in which a display electrode is formed on one side and a counter electrode is formed on the other side is obtained.

以䞊のような構成の本発明においおは、゚レク
トロクロミツク材ずむオン授受材の距離が非垞に
短くな぀おいるので、着消色時の応答時間が埓来
のものに比べお非垞に短くな぀た。又、高分子を
甚いおいるので、成圢性、加工性にすぐれ、実甚
的なECDを提䟛するこずができる。さらに、極
性高分子を甚いおいるため、その極性により、そ
の䞭に含有されたむオン授受材は容易に解離し、
高いむオン䌝導性を瀺す。したが぀お、高性胜な
ECDが実珟できる。
In the present invention having the above-described structure, the distance between the electrochromic material and the ion exchange material is extremely short, so that the response time during coloring and decoloring is extremely short compared to the conventional one. Furthermore, since a polymer is used, it has excellent moldability and processability, and can provide a practical ECD. Furthermore, since a polar polymer is used, the ion exchange material contained therein easily dissociates due to its polarity.
Shows high ionic conductivity. Therefore, high performance
ECD can be realized.

本発明のECDの構造を第図に瀺す。前述し
た劂く、透明基板䞊に衚瀺電極、着色掻物質
局に、察向電極が順次積局され、その䞊からシ
ヌル局が党䜓を被芆しおいる。以䞋、各構成
芁件に぀いお説明する。透明基板にはガラス又は
プラスチツク板等透明な材料が甚いられ、透明電
極には酞化スズSnO2膜又は酞化むンゞりム
−酞化スズITO膜等の透明な導䌝䜓が甚いら
れる。透明電極は普通真空蒞着法で圢成される
が、化孊的な方法も䜿われる。
The structure of the ECD of the present invention is shown in FIG. As described above, the display electrode 2, the colored active material layer, and the counter electrode 4 are sequentially laminated on the transparent substrate 1, and the seal layer 10 covers the entire structure from above. Each component will be explained below. A transparent material such as glass or a plastic plate is used for the transparent substrate, and a transparent conductor such as a tin oxide (SnO 2 ) film or an indium tin oxide (ITO) film is used for the transparent electrode. Transparent electrodes are usually formed by vacuum deposition, but chemical methods are also used.

着色掻物質局は、䞀皮以䞊のEC材ず䞀皮以䞊
のむオン授受材ずを合成高分子䞭に分散させたも
のである。このEC材には、前に述べた溶液型に
甚いるこずが可胜な党おのEC材を甚いるこずが
できる。䟋えば無機物質では、Na2WO4
CaWO4BaWO4Na2MoO4等のタングステン
酞塩、モリブデン酞塩のような遷移金属化合物で
あり、有機物質ではビオロゲン、テトラチアフル
バレン、アリルピラゟリン、フルオレン、アント
ラキノン、ピリリりム、ピリゞりム、メチレンブ
ルヌ等の芳銙族、耇玠環化合物、䞊びにそれらの
誘導䜓及びプロむン、プロセン等の金属ず有
機物質ずの配䜍化合物である。次にここで甚いら
れるむオン授受材ずは、䞊蚘のEC材ずむオンを
授受し埗る物質のこずで、通垞のむオン䌝導䜓、
もしくはむオン導電䜓はもちろんのこず、導電率
が䜎く固䜓電解質ずしおは甚いられないものも含
んでいる。䟋えば、むオン授受材には、クラりン
゚ヌテル、及びその金属鎖䜓窒化リチりム、過塩
玠酞アルカリ金属を甚いるこずができる。極性を
有する高分子ずしお、䟋えば、ポリフツ化ビニリ
デン、ポリメタクリロニトリル、およびそれらの
誘導䜓を甚いるこずができる。
The colored active material layer is made by dispersing one or more EC materials and one or more ion transfer materials in a synthetic polymer. As this EC material, all the EC materials that can be used in the solution type mentioned above can be used. For example, inorganic substances include Na 2 WO 4 ,
Transition metal compounds such as tungstates and molybdates such as CaWO 4 , BaWO 4 , Na 2 MoO 4 and organic substances such as viologen, tetrathiafulvalene, allylpyrazoline, fluorene, anthraquinone, pyrylium, pyridium, methylene blue, etc. Aromatic compounds, heterocyclic compounds, derivatives thereof, and coordination compounds of metals and organic substances such as ferroin and ferrocene. Next, the ion exchange material used here refers to a substance that can exchange ions with the above-mentioned EC material, such as a normal ion conductor,
It also includes not only ionic conductors but also those with low conductivity that cannot be used as solid electrolytes. For example, crown ether, its metal chain lithium nitride, and alkali metal perchlorate can be used as the ion transfer material. As the polar polymer, for example, polyvinylidene fluoride, polymethacrylonitrile, and derivatives thereof can be used.

察向電極には、金Au、銀Ag、銅Cu、炭玠
等、導電性のものならなんでも䜿うこずができ
る。最終にシヌル材には、゚ポキシ暹脂等の有機
接着剀や䜎融点ガラス、ICのモヌルド材等、密
閉効果がある材料なら䜕でも甚いるこずができ
る。
The counter electrode includes gold (Au), silver (Ag), copper (Cu), and carbon (C).
Any conductive material can be used. Finally, for the sealing material, any material that has a sealing effect can be used, such as organic adhesives such as epoxy resin, low-melting glass, and IC molding materials.

次に本発明を実斜䟋により第図を甚いお
説明する。文䞭、「郚」ずあるのは重量郚を瀺す。
Next, the present invention will be explained by an example (using FIG. 4).
explain. In the text, "parts" indicate parts by weight.

実斜䟋  透明ガラス基板の䞊に真空蒞着法により
In2O3透明電極衚瀺電極ずしお蚭けた。この衚
瀺電極の䞊に䞋蚘凊方に基づき着色掻物質局
を蚭けた。
Example 1 By vacuum evaporation method on transparent glass substrate 1
An In 2 O 3 transparent electrode was provided as the display electrode 2. A colored active material layer 1 is formed on the display electrode 2 based on the following formulation.
2 was established.

1′−ゞアルキル−4′−ゞピリゞりム
ゞクロラむドこれは通垞メチルビオロゲン
ず略されおいるものである。 23郚 ゞベンゟ−18−クラりン−−リチりムクロ
ラむド 30郚 ポリフツ化ビニリデン 10郚 ゞメチルフオルムアミドDMF 100郚 以䞊の組成物を磁補ボヌルミルにお時間混緎
埌、着色掻物質組成物ずする。本実斜䟋においお
は、EC材には還元で発色するビオロゲンを甚い、
むオン授受䜓にはクラりン゚ヌテル・金属塩鎖䜓
を甚いた。この組成物を䞊蚘透明電極の䞊に被
膜が1Όになるようにスピナヌコヌトし、窒玠雰
囲気䞭で130℃に均䞀加熱されたオヌブン䞭に
時間眮いお也燥させ、着色掻物質局ずした。
この着色掻物質局の䞊に、金を3000Å真空蒞
着し察向電極ずした。曎に以䞊の積局構造の呚
囲を゚ポキシ暹脂やアルキル暹脂等、シヌル局
で芆うこずにより䞈倫なECDができた。
1,1'-dialkyl-4,4'-dipyridium dichloride (this is commonly abbreviated as methyl viologen) 23 parts dibenzo-18-crown-6-lithium chloride 30 parts polyvinylidene fluoride 10 100 parts dimethyl formamide (DMF) The above composition is kneaded for 5 hours in a porcelain ball mill to obtain a colored active material composition. In this example, viologen, which develops color upon reduction, is used as the EC material.
A crown ether/metal salt chain was used as the ion transfer body. This composition was spin-coated on the transparent electrode 2 to a thickness of 1Ό, and placed in an oven uniformly heated to 130°C in a nitrogen atmosphere.
The colored active material layer 12 was obtained by drying for a while.
On this colored active material layer 12, gold was vacuum-deposited to a thickness of 3000 Å to form a counter electrode 4. Furthermore, the periphery of the above laminated structure is covered with a sealing layer 1 of epoxy resin, alkyl resin, etc.
By covering it with 0, a durable ECD was created.

このようにしお補䜜したECDにおいお、察向
電極に察しお衚瀺電極に負の電圧を印加する
ず、着色掻物質局が濃青色に着色し、逆に正
の電圧を印加するず消色した。実甚的には、−2V
の印加電圧により玄50msecで癜色光のコントラ
ストがになり、金色の背景に濃青色のよい
コントラストの衚瀺が埗られた。次いで逆極性の
2Vの電圧を印加するず、玄200msecで完党に
色が消えた。曎に−2Vを50msec、2Vを
200msecのパルス電圧を印加しお寿呜詊隓を詊み
たずころ、106回の着消色を経おも着色掻物質局
及びそれず界面においお劣化珟象はみられ
ず、長期にわた぀お安定した動䜜を行える実甚的
な党固䜓型ECDを補䜜するこずができた。
In the ECD thus manufactured, when a negative voltage was applied to the display electrode 2 with respect to the counter electrode 4, the colored active material layer 12 was colored deep blue, and when a positive voltage was applied, the color disappeared. Practically speaking, −2V
With the applied voltage, the contrast of white light became 4:1 in about 50 msec, and a display with good contrast of deep blue against a gold background was obtained. Next, when a voltage of +2V of opposite polarity was applied, the color completely disappeared in about 200 msec. Furthermore, -2V for 50msec, +2V
When a life test was performed by applying a pulse voltage of 200 msec, no deterioration phenomenon was observed in the colored active material layer 12 or its interface even after 106 times of coloring and decoloring, and stable operation could be achieved over a long period of time. We were able to fabricate a practical all-solid-state ECD.

実斜䟋  実斜䟋に述べた補法においお、この補法の着
色掻物質組成物に、埮粉砕した酞化チタン粉末
TiO2を22郚加わえたものを、着色掻物質組成物
ずした以倖は実斜䟋ず同じ補法でECDを぀く
぀た。
Example 2 In the manufacturing method described in Example 1, finely ground titanium oxide powder was added to the colored active material composition of this manufacturing method.
An ECD was produced using the same method as in Example 1, except that 22 parts of TiO 2 was added to the colored active material composition.

本実斜䟋のECDは、消色状態で癜であり、2V
の印加により、玄50msecで癜色光コントラスト
がの癜地の背景に濃青の衚瀺が埗られた。
次いで−2Vの電圧を印加するず200msecで消色
した。寿呜は実斜䟋ずほが同じぐらいであ぀
た。このように、酞化チタン又はアルミナAl2O3
のような癜色粉末を混合するこずにより、癜色背
景が容易に埗られる。又、有色粉末を混合すれ
ば、その色の背景を埗るこずは容易である。
The ECD in this example is white in the decolorized state and +2V
By applying , a dark blue display on a white background with a white light contrast of 4:1 was obtained in about 50 msec.
Then, when a voltage of -2V was applied, the color disappeared in 200 msec. The lifespan was almost the same as in Example 1. Thus, titanium oxide or alumina Al 2 O 3
A white background can be easily obtained by mixing white powders such as Also, if colored powders are mixed, it is easy to obtain a background of that color.

実斜䟋  実斜䟋においお、察向電極を金の代わりに、
銀の5000Å厚の薄膜にした。このECDの特性は
実斜䟋の特性ずほが同じであ぀た。さらに、炭
玠の5000Å厚の薄膜を甚いたECDも補䜜したが、
このECDの特性も実斜䟋ずほが同じであ぀た。
Example 3 In Example 1, the counter electrode was made of gold instead of
It was made into a thin film of silver with a thickness of 5000 Å. The characteristics of this ECD were almost the same as those of Example 1. Furthermore, we also fabricated an ECD using a 5000 Å thick carbon film.
The characteristics of this ECD were also almost the same as in Example 1.

実斜䟋  実斜䟋に述べた補法䞭においお、着色掻物質
組成物の組成を䞋蚘の劂くにした以倖は、実斜䟋
ず同じ補法で補䜜した。
Example 4 A product was manufactured using the same manufacturing method as in Example 1, except that the composition of the colored active material composition was changed as follows.

−タヌチアリブチルアントラキノン 20郚 窒化リチりムLiN3 15郚 ポリフツ化ビニリデン 30郚 酞化チタン粉末 22郚 ゞメチルフオルムアミド 100郚 LiN3はあらかじめ埮粉砕したあず、混合した。
本実斜䟋においおは、EC材に還元で発色するア
ントラキノン系色玠を、むオン授受材に無機のリ
チりム䌝導䜓を甚いた。
2-tertiarybutylanthraquinone 20 parts Lithium nitride LiN 3 15 parts Polyvinylidene fluoride 30 parts Titanium oxide powder 22 parts Dimethyl formamide 100 parts LiN 3 was pulverized in advance and then mixed.
In this example, an anthraquinone dye that develops color upon reduction was used as the EC material, and an inorganic lithium conductor was used as the ion transfer material.

本実斜䟋におけるECDにおいお、衚瀺電極に
−2Vを印加するず、濃青色の衚瀺があらわれ、
60msecで癜色コントラストがに達し、
2Vを印加するず消色し、150msecで完党に消色
した。寿呜は106回着消色回数以䞊であ぀た。
In the ECD in this example, when -2V is applied to the display electrode, a dark blue display appears,
White contrast reaches 4:1 in 60msec, +
The color disappeared when 2V was applied, and the color completely disappeared in 150 msec. The lifespan was more than 106 times.

実斜䟋  実斜䟋に述べた補法においお着色掻物質組成
物の組成䞭、EC材を酞化で発色するアリルピラ
ゟリンにし、着色掻物質組成物を䞋蚘の劂くにし
た以倖は、実斜䟋ず同じ補法で補䜜した。
Example 5 The manufacturing method described in Example 1 was the same as in Example 1, except that in the composition of the colored active material composition, the EC material was replaced with allylpyrazoline, which develops color through oxidation, and the colored active material composition was changed as follows. Produced with.

−ゞ−メトキシプニル−−
モルフオリノプノヌル−△2−ピラゟリン
これはアリル・ピラゟリンの䞀皮である。
50郚 ゞベンゟ−18−クラりン−−リチりムクロ
ラむド 30郚 ポリフツ化ビニリデン 10郚 酞化チタン粉末 22郚 ゞメチルフオルムアミドDMF 100郚 本実斜䟋におけるECDは、衚瀺電極に2V印
加するず、玄40msecで癜色光コントラストが
になり癜色の背景に濃赀色のよいコントラ
ストの衚瀺が埗られた。次いで逆極性の2Vの電
圧を印加するず、玄150msecで完党に色が消え
た。寿呜は106回着消色回数以䞊であ぀た。
1,5-di(p-methoxyphenyl)-3-
Morpholinophenol-△ 2 -pyrazoline (This is a type of allyl pyrazoline.)
50 parts dibenzo-18-crown-6-lithium chloride 30 parts polyvinylidene fluoride 10 parts titanium oxide powder 22 parts dimethylformamide (DMF) 100 parts The ECD in this example turns white in about 40 msec when +2V is applied to the display electrode. The optical contrast was 4:1, and a display with good contrast of deep red against a white background was obtained. Next, when a voltage of 2V of opposite polarity was applied, the color completely disappeared in about 150msec. The lifespan was 106 times or more.

実斜䟋  実斜䟋に述べた補法においお、着色掻物質組
成物の組成䞭、EC材を還元で発色するビオロゲ
ンず酞化で発色するアリルピラゟリンの二皮類に
し、着色掻物質組成物を䞋蚘の劂くにした以倖は
実斜䟋ず同じ補法で補䜜した。
Example 6 In the manufacturing method described in Example 1, two types of EC materials were used in the composition of the colored active material composition: viologen, which develops color through reduction, and allylpyrazoline, which develops color through oxidation, and the colored active material composition was prepared as follows. It was manufactured using the same manufacturing method as Example 1 except for the following.

−1′−ゞアルキル−4′−ゞピリゞりム
ゞクロラむド 23郚 −ゞ−メトキシプニル−−
モルフオリノプノヌル−△2−ピラゟリン
50郚 ゞベンゟ−18−クラりン−−リチりムクロ
ラむド 30郚 ポリフツ化ビニリデン 10郚 酞化チタン粉末 22郚 ゞメチルフオルムアミドDMF 100郚 本実斜䟋におけるECDは、衚瀺電極に−2Vを
印加するず、濃青色の衚瀺があらわれ、50msec
で癜色光のコントラストがに達し、0Vを
印加するず、玄300msecで消色した。次に衚瀺電
極に2Vを印加するず、濃赀色の衚瀺があらわ
れ、玄40msecで癜色光コントラストがに
達し、0Vを印加するず玄200msecで消色した。
寿呜は106回着消色回数以䞊であ぀た。
1-1'-Dialkyl-4,4'-dipyridium dichloride 23 parts 1,5-di(p-methoxyphenyl)-3-
Morpholinophenol-△ 2 -pyrazoline
50 parts dibenzo-18-crown-6-lithium chloride 30 parts polyvinylidene fluoride 10 parts titanium oxide powder 22 parts dimethyl formamide (DMF) 100 parts The ECD in this example turns dark blue when -2V is applied to the display electrode. appears, and 50msec
The white light contrast reached 4:1, and when 0V was applied, the color disappeared in about 300 msec. Next, when +2V was applied to the display electrode, a dark red display appeared, and the white light contrast reached 4:1 in about 40 msec, and when 0V was applied, the color disappeared in about 200 msec.
The lifespan was 106 times or more.

このように、数皮類のEC材を混合するこずに
より、電圧制埡により倚色衚瀺をするECDを補
䜜するこずができた。
In this way, by mixing several types of EC materials, we were able to create an ECD that displays multiple colors through voltage control.

実斜䟋  第図のごずく、透明ガラス基板䞊に、真空蒞
着法によりITO透明電極を衚瀺電極ずしお蚭け
た。EC材ずしおテトラチアフルバレンTTF
0.1モル、合成高分子ずしおポリメタクリロ
ニトリルPMCN0.75モルむオン授受材ず
しお過塩玠酞リチりムLiClO40.2モルをプロ
ピレンカヌボネヌトに溶かしコヌテむング溶液ず
した。ただし、合成高分子のモル数は、モノマヌ
のモル数に換算しお蚘す。これを衚瀺電極の䞊
に膜厚が2.3ÎŒmになるようにスピナヌコヌトし、
N2雰囲気䞭80℃に均䞀に加熱されたオヌブン䞭
に時間おいお也燥させ、曎に真空䞭60℃に均䞀
に加熱されたオヌブン䞭に時間おいお也燥さ
せ、着色掻性局ずした。この䞊に金を1000Å
真空蒞着しお察向電極ずした。曎に以䞊の積局
構造の呚囲をポリスチレン暹脂のシヌル局で
芆うこずにより、信頌性の高いECDを補䜜でき
た。
Example 7 As shown in FIG. 4, an ITO transparent electrode was provided as a display electrode 2 on a transparent glass substrate by vacuum evaporation. Tetrathiafulvalene (TTF) as EC material
A coating solution was prepared by dissolving 0.1 mole/0.75 mole of polymethacrylonitrile (PMCN) as a synthetic polymer and 0.2 mole/0.2 mole of lithium perchlorate LiClO 4 as an ion transfer material in propylene carbonate. However, the number of moles of the synthetic polymer is expressed in terms of the number of moles of monomer. This was spinner coated onto the display electrode 2 to a thickness of 2.3 ÎŒm.
It was dried in an oven uniformly heated to 80° C. in a N 2 atmosphere for 8 hours, and further dried in a vacuum oven uniformly heated to 60° C. for 2 hours to obtain a colored active layer 12. 1000Å of gold on top of this
A counter electrode 4 was formed by vacuum evaporation. Furthermore, by covering the periphery of the above laminated structure with a sealing layer 10 of polystyrene resin, a highly reliable ECD could be manufactured.

このようにしお補䜜したECDにおいお、察向
電極に察しお衚瀺電極に負の電圧を印加する
ず、濃赀色の衚瀺があらわれ、逆極性の電圧を印
加するず消色した。具䜓的には、−3.5Vの電圧印
加により、100msecで癜色光コントラストが
になり、金色を背景に高いコントラストの赀色
の衚瀺が埗られた。次いで逆極性の3.5Vの電
圧印加により100msecで完党に色が消えた。
In the ECD thus manufactured, when a negative voltage was applied to the display electrode 2 with respect to the counter electrode 4, a dark red display appeared, and when a voltage of opposite polarity was applied, the color disappeared. Specifically, by applying a voltage of -3.5V, the white light contrast becomes 3:3 in 100msec.
1, and a high-contrast red display against a gold background was obtained. Then, by applying a voltage of +3.5V of opposite polarity, the color completely disappeared in 100 msec.

実斜䟋  実斜䟋においおシヌル局を陀いた以倖は
実斜䟋ず党く同じ構造、組成のECDを補䜜し
たずころ、信頌性は倚少実斜䟋に比べお萜ちる
ものの、実斜䟋ずほずんど同じ衚瀺性胜が埗ら
れた。
Example 8 An ECD with the same structure and composition as in Example 1 was manufactured except for the sealing layer 10, and although the reliability was slightly lower than that in Example 1, it was almost the same as Example 1. Display performance was obtained.

実斜䟋  第図のごずくITO透明電極の䞊に、以䞋の
コヌテむング溶液を甚いお、スピナヌ法により
0.6ÎŒmの厚みに着色掻性局を蚭けた。コヌテ
むング溶液はEC材ずしお、−ゞ−メ
トキシプニヌル−−−ハむドロキシプ
ニヌル−△2−ピラゟリン0.1モル、合成高
分子ずしおポリメタクリロニトリルPMCN
0.4モル、むオン授受材ずしおLiClO40.1モ
ルを含み溶媒ずしおシクロヘキサノンずプロ
ピレンカヌボネヌトの混合溶媒を甚いた溶
液ずした。也燥条件は、N2雰囲気䞭60℃で二時
間、真空䞭60℃で二時間である。この着色掻性局
の䞊に金を1000Å真空蒞着しお、察向電極
ずした。曎に以䞊の積局構造の呚囲をポリスチレ
ン暹脂のシヌル局で芆うこずにより信頌性の
高いECDを補䜜できた。
Example 9 As shown in Figure 2, the following coating solution was used on the ITO transparent electrode 2 using a spinner method.
A colored active layer 12 was provided with a thickness of 0.6 ÎŒm. The coating solution contains 0.1 mol/1,3-di(P-methoxyphenyl)-5-(P-hydroxyphenyl)-△ 2 -pyrazoline as the EC material and polymethacrylonitrile (PMCN) as the synthetic polymer.
The solution contained 0.4 mole/LiClO 4 as an ion exchange material and 0.1 mole/liClO 4 as an ion exchange material, using a 4:1 mixed solvent of cyclohexanone and propylene carbonate as a solvent. Drying conditions are 2 hours at 60°C in N2 atmosphere and 2 hours at 60°C in vacuum. On this colored active layer 12, gold is vacuum-deposited to a thickness of 1000 Å, and the counter electrode 4 is
And so. Furthermore, by covering the periphery of the above laminated structure with a sealing layer 10 of polystyrene resin, a highly reliable ECD could be manufactured.

このようにしお補䜜したECDにおいお、察向
電極に察しお衚瀺電極に正の電圧を印加する
ず、濃黄色の衚瀺があらわれ、逆極性の電圧を印
加するず、消色した。具䜓的には−1.5Vの電圧
印加により100msecで癜色コントラストが
になり、逆極性の1.5Vの電圧印加により
100msecで完党に消えた。
In the ECD thus manufactured, when a positive voltage was applied to the display electrode 2 with respect to the counter electrode 4, a dark yellow display appeared, and when a voltage of opposite polarity was applied, the color disappeared. Specifically, by applying a voltage of -1.5V, the white contrast becomes 3:1 in 100msec.
By applying a voltage of +1.5V with the opposite polarity,
It completely disappeared in 100msec.

以䞊の実斜䟋においおは、着色掻物質局の合成
高分子にポリフツ化ビニリデンを甚いたが、メラ
ミン暹脂、゚ポキシ暹脂、ケむ玠暹脂、アクリル
暹脂、キシレン暹脂、酢酞ビニル暹脂、塩化ビニ
ル−酢酞ビニル共重合䜓暹脂、ポリビニルカルバ
ゟヌル暹脂のいずれか䞀皮、又は数皮の混合物を
甚いおも、䞊蚘実斜䟋ず同様の結果が埗られた。
In the above examples, polyvinylidene fluoride was used as the synthetic polymer for the colored active material layer, but melamine resin, epoxy resin, silicon resin, acrylic resin, xylene resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer The same results as in the above examples were obtained even when one of the combined resin and polyvinylcarbazole resin, or a mixture of several of them, was used.

以䞊のように、本発明のECDは、合成高分子
䞭にEC材及びむオン授受材を分散させた着色掻
物質局の䞡偎に衚瀺電極ず察向電極ずを付けた構
造の党固䜓型ECDである。本ECDは、埓来の固
䜓電解質を甚いた党固䜓型ECDに比范しお、応
答速床、耐環境性、寿呜の点で優れおいる。又、
PWAを甚いたECDに比べお、(1)着色時応答時間
ほが同じだが、消色速床は速い。(2)皮々のEC材
を䜿甚できるので、皮々の色をだすこずができ、
さらに、実斜䟋におけるように、電圧制埡によ
り倚色のだせるECDが提䟛できる。(3)ECD䞭の
氎分が着消色に関䞎しおいず、又、空気䞭の氎分
の圱響を受けにくいので、耐環境性が高い。(4)成
圢性の高い高分子を甚いおいるので、電極ずの密
着性もよく、高い生産性で補䜜するこずができ
る。したが぀お䜎䟡栌のECDを提䟛するこずが
できる。(5)以䞊の皮々の芁因から寿呜が長く、実
甚的なECDである、等の諞効果を埗る。
As described above, the ECD of the present invention is an all-solid-state ECD having a structure in which a display electrode and a counter electrode are attached on both sides of a colored active material layer in which an EC material and an ion transfer material are dispersed in a synthetic polymer. . This ECD is superior in response speed, environmental resistance, and lifespan compared to conventional all-solid-state ECDs that use solid electrolytes. or,
Compared to ECD using PWA, (1) The response time during coloring is almost the same, but the speed of decoloring is faster. (2) Since various EC materials can be used, various colors can be produced.
Furthermore, as in Example 6, an ECD capable of producing multiple colors can be provided by voltage control. (3) Moisture in ECD does not play a role in coloring or fading, and it is not easily affected by moisture in the air, so it has high environmental resistance. (4) Since a polymer with high moldability is used, it has good adhesion to the electrode and can be manufactured with high productivity. Therefore, it is possible to provide a low-priced ECD. (5) Due to the various factors mentioned above, various effects such as a long life and a practical ECD are obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第図は埓来の溶液型及び析出型ECDの基本
的な䞀䟋を瀺す断面図、第図は埓来の固定型
ECDの基本的な䞀䟋を瀺す断面図、第図は
PWAを甚いたECDの断面図、第図は本発明に
係るECDの実斜䟋を瀺す断面図である。 図においお、 透明基板、 衚瀺電極、
 基板、 察向電極、 電解液、 スペヌ
サ、 参照電極、 ゚レクトロクロミツク
局、 リンタングステン酞局、 シヌル
局、 セラミツク筒、 着色掻性局。
Figure 1 is a cross-sectional view showing a basic example of a conventional solution-type and precipitation-type ECD, and Figure 2 is a conventional fixed-type ECD.
Figure 3 is a cross-sectional view showing a basic example of ECD.
4 is a cross-sectional view of an ECD using PWA. FIG. 4 is a cross-sectional view showing an embodiment of the ECD according to the present invention. In the figure, 1...transparent substrate, 2...display electrode, 3
... Substrate, 4... Counter electrode, 5... Electrolyte, 6... Spacer, 7... Reference electrode, 8... Electrochromic layer, 9... Phosphortungstic acid layer, 10... Seal layer, 11... Ceramic tube, 12... Coloring activity layer.

Claims (1)

【特蚱請求の範囲】[Claims]  衚瀺電極ず察向電極ずの間に、少なくずも䞀
皮以䞊の゚レクトロクロミツク材ず䞀皮以䞊のむ
オン授受材ずを極性を有する高分子に分散させた
着色掻物質局を有する党固䜓型゚レクトロクロミ
ツク衚瀺装眮においお、むオン授受材ずしお、ク
ラりン゚ヌテル、及びその金属錯䜓窒化リチり
ム、過塩玠酞アルカリ金属を甚い、極性を有する
高分子ずしお、ポリフツ化ビニリデン、ポリメタ
クリロニトリル、およびそれらの誘導䜓を甚いた
こずを特城ずする党固䜓型゚レクトロクロミツク
衚瀺装眮。
1. An all-solid-state electrochromic display having, between a display electrode and a counter electrode, a colored active material layer in which at least one electrochromic material and one or more ion transfer materials are dispersed in a polar polymer. In the device, crown ether, its metal complex lithium nitride, and alkali metal perchlorate were used as ion exchange materials, and polyvinylidene fluoride, polymethacrylonitrile, and derivatives thereof were used as polar polymers. An all-solid-state electrochromic display device featuring:
JP56179311A 1981-11-09 1981-11-09 Entirely solid electrochromic display device Granted JPS5880625A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56179311A JPS5880625A (en) 1981-11-09 1981-11-09 Entirely solid electrochromic display device
US06/440,465 US4550982A (en) 1981-11-09 1982-11-09 All-solid-state display including an organic electrochromic layer with ion donor/acceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56179311A JPS5880625A (en) 1981-11-09 1981-11-09 Entirely solid electrochromic display device

Publications (2)

Publication Number Publication Date
JPS5880625A JPS5880625A (en) 1983-05-14
JPH0145895B2 true JPH0145895B2 (en) 1989-10-05

Family

ID=16063608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56179311A Granted JPS5880625A (en) 1981-11-09 1981-11-09 Entirely solid electrochromic display device

Country Status (1)

Country Link
JP (1) JPS5880625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369828B2 (en) 2006-04-06 2019-08-06 Hewlett-Packard Development Company, L.P. Glossy media sheet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262624A (en) * 1987-04-21 1988-10-28 Asahi Glass Co Ltd Electrochromic element
FR2618571B1 (en) * 1987-07-24 1990-10-19 Warszawski Bernard LIGHT MODULATION MATERIAL AND MANUFACTURING METHODS
FR2618570B1 (en) * 1987-07-24 1990-10-19 Warszawski Bernard LIGHT MODULATION PROCESS
US4837592A (en) * 1987-12-24 1989-06-06 Ford Motor Company Method of making an electrochromic layer and new electrochromic device made therefrom
US4810067A (en) * 1987-12-24 1989-03-07 Ford Motor Company Electrochromic device and method of making an electrochromic layer therefor
US6620342B1 (en) * 2000-10-23 2003-09-16 Atofina Chemicals, Inc. Narrow composition distribution polyvinylidene fluoride RECLT films, processes, articles of manufacture and compositions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168793A (en) * 1974-12-11 1976-06-14 Matsushita Electric Ind Co Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168793A (en) * 1974-12-11 1976-06-14 Matsushita Electric Ind Co Ltd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10369828B2 (en) 2006-04-06 2019-08-06 Hewlett-Packard Development Company, L.P. Glossy media sheet

Also Published As

Publication number Publication date
JPS5880625A (en) 1983-05-14

Similar Documents

Publication Publication Date Title
US4573768A (en) Electrochromic devices
US3971624A (en) Controllable electrochromic indicator device with ionic conducting intermediate layer and non-polarizable electrodes
US7557499B2 (en) Dual light emitting and electrochromic device
US4193670A (en) Electrochromic devices having protective interlayers
JPS6343124A (en) Color tone variable mirror
JPH0145895B2 (en)
US4598979A (en) Electrochromic display device
Howard et al. Optical properties of reversible electrodeposition electrochromic materials
JPS59113422A (en) Total solid-state electrochromic display
Yamanaka Tungsten Trioxide/Liquid Electrolyte Electrochromic Devices with Amorphous Iron Tungstate Counter Electrodes–Response Characteristics and Cell Reliability
KR102136286B1 (en) Method of Manufacturing Anodic Electrochromic Ink Layer for Electrochromic Device and Electrochromic Device of the Same
JPS61223724A (en) Electrochromic display element
US4374610A (en) Dish shaped substrate for electrochromic displays
JP4470451B2 (en) Method for producing electrochemical dimmer and method for producing polymer electrolyte
KR20070103656A (en) Electrolyte for electrochromic device
EP0229438A1 (en) Electrochromic devices using solid electrolytes
JP4506171B2 (en) Electrochemical light control device and method for manufacturing the same
JPS63286826A (en) Electrochromic display element
CA1256187A (en) Electrochromic devices using proton-conducting acid- polymer blends as the solid electrolyte
JPS5944708A (en) Method of forming transparent electrode
JPH0693066B2 (en) Electrochromic display element
JPH02226122A (en) Electrochromic element
JPH0635006A (en) Electrochromic element
JPS5840531A (en) Entirely solid type electrochromic display device
JPS58207030A (en) All solid-state type electrochromic display