JPH0143138B2 - - Google Patents

Info

Publication number
JPH0143138B2
JPH0143138B2 JP57039354A JP3935482A JPH0143138B2 JP H0143138 B2 JPH0143138 B2 JP H0143138B2 JP 57039354 A JP57039354 A JP 57039354A JP 3935482 A JP3935482 A JP 3935482A JP H0143138 B2 JPH0143138 B2 JP H0143138B2
Authority
JP
Japan
Prior art keywords
fuel
speed
engine
vehicle speed
fuel cutoff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57039354A
Other languages
Japanese (ja)
Other versions
JPS58158327A (en
Inventor
Motoyasu Muramatsu
Yukio Suzuki
Kunihiko Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3935482A priority Critical patent/JPS58158327A/en
Publication of JPS58158327A publication Critical patent/JPS58158327A/en
Publication of JPH0143138B2 publication Critical patent/JPH0143138B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は、燃料消費率を改善するために減速中
に燃料遮断(燃料カツト)を行なう内燃機関の燃
料遮断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cutoff method for an internal combustion engine, which cuts fuel during deceleration in order to improve fuel consumption.

従来の燃料遮断方法では、吸気系絞り弁開度と
内燃機関の回転速度とを検出し、絞り弁がアイド
リング開度にある場合に内燃機関の回転速度が所
定値以上であるときは一律に燃料遮断を実施して
いる。したがつて変速機の減速比が高い場合(ロ
ーギヤの場合)には低車速域においても燃料遮断
が行なわれ、あるいは開始され、燃料遮断の頻度
が増大するとともに燃料供給復帰時(=燃料遮断
終了時)の衝撃の発生頻度も増大している。ま
た、大きい駆動力を必要とする大きな減速比の場
合に、燃料供給復帰時の車速が低いことは燃料供
給復帰後の機関回転速度の上昇が遅れ、機関が停
止するおそれもある。
In the conventional fuel cutoff method, the opening degree of the intake system throttle valve and the rotational speed of the internal combustion engine are detected, and when the throttle valve is at the idling opening degree and the rotational speed of the internal combustion engine is above a predetermined value, the fuel is cut off uniformly. A shutdown is in place. Therefore, when the reduction ratio of the transmission is high (in the case of low gear), fuel cut-off is performed or started even in the low vehicle speed range, and the frequency of fuel cut-off increases and when fuel supply is restored (= end of fuel cut-off). The frequency of shock occurrences is also increasing. Furthermore, in the case of a large reduction ratio that requires a large driving force, if the vehicle speed is low when the fuel supply is restored, the increase in engine rotational speed after the fuel supply is restored is delayed, which may cause the engine to stop.

これを改善するために、機関回転速度Nと車速
Vとの比N/Vから変速機の減速比あるいはシフ
トレバー位置を検出し、大きな減速比の場合では
燃料遮断終了時の機関回転速度を増大させる方法
が考えられているが、この方法では駆動系の設定
ギヤ比およびタイヤの有効半径が変更された場合
に、すなわち車種が異なる場合に減速比検出の基
礎となるN/V比を変更する必要があり、多くの
車種に共通の燃料遮断プログラムを採用すること
は困難であつた。
In order to improve this, the reduction ratio of the transmission or the shift lever position is detected from the ratio N/V of the engine rotation speed N and the vehicle speed V, and in the case of a large reduction ratio, the engine rotation speed at the end of the fuel cut-off is increased. However, in this method, the N/V ratio, which is the basis for detecting the reduction ratio, is changed when the set gear ratio of the drive system and the effective radius of the tires are changed, that is, when the vehicle model is different. It has been difficult to adopt a common fuel cutoff program for many vehicle models.

本発明の目的は、減速比が大きい場合の燃料遮
断の頻度の増大、したがつて衝撃回数の増大を回
避でき、かつ駆動系の設定ギヤ比およびタイヤの
有効半径の変更に対してコンピユータプログラム
を変更する必要がない内燃機関の燃料遮断方法を
提供することである。
It is an object of the present invention to avoid an increase in the frequency of fuel cut-offs and therefore an increase in the number of impacts when the reduction ratio is large, and to provide a computer program for changing the set gear ratio of the drive train and the effective radius of the tires. It is an object of the present invention to provide a fuel cutoff method for an internal combustion engine that does not require modification.

本発明は、アクセル開度が所定値以下の場合、
エンジン回転数が燃料遮断開始回転数以上のとき
燃料遮断を行い、エンジン回転数が燃料遮断終了
回転数以下になつたとき燃料供給を復帰させる内
燃機関の燃料遮断方法において、車速を検出し、
車速が低いほど、上記燃料遮断開始回転数および
(または)燃料遮断終了回転数を高く設定するこ
とを特徴としている。
In the present invention, when the accelerator opening is less than or equal to a predetermined value,
In a fuel cutoff method for an internal combustion engine, the fuel cutoff is performed when the engine speed is equal to or higher than the fuel cutoff start speed, and the fuel supply is restored when the engine speed becomes below the fuel cutoff end speed, detecting the vehicle speed;
The present invention is characterized in that the lower the vehicle speed, the higher the fuel cutoff start rotation speed and/or the fuel cutoff end rotation speed are set.

車速から変速段の位置が推定され、すなわち変
速段は、高車速時、高速段に、または低車速時、
低速段に定められていると推定される。燃料遮断
開始あるいは終了回転数を低速段ほど高く設定す
ることにより、低車速時、燃料供給復帰の頻度が
減少し、また高車速時、燃料遮断の頻度が増加す
る。
The position of the gear is estimated from the vehicle speed, that is, the gear is set to high gear at high vehicle speed, or to high gear at low vehicle speed.
It is presumed that this is set for low gear. By setting the fuel cutoff start or end rotational speed higher for lower gears, the frequency of fuel supply restoration is reduced at low vehicle speeds, and the frequency of fuel cutoffs is increased at high vehicle speeds.

図面を参照して本発明の実施例を説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明を適用される電子制御機関を示
し、エアクリーナから吸入された空気は、エアフ
ローメータ1により流量を検出され、運転室の加
速ペダルに連動する絞り弁2により流量を制御さ
れ、サージタンク3、および吸気ポート4を通つ
て吸気弁5から燃焼室6へ供給される。燃焼室6
はシリンダヘツド7、シリンダブロツク8、およ
びピストン9により画定され、燃焼後の混合気は
排気ガスとして排気弁10から排気系の排気管1
1へ排出される。スロツトルスイツチ12は絞り
弁2のアイドリング開度を検出し、回転角センサ
13は配電器14の軸15の回転からクランク軸
の回転角を検出し、水温センサ17はシリンダブ
ロツク8に取付けられて冷却水温度を検出し、車
速センサ18は変速機19の出力軸の回転から車
速を検出する。電磁式燃料噴射弁23は吸気ポー
ト4の近傍に取付けられて燃料を噴射し、点火装
置24は点火二次電流を配電器14へ送り、配電
器14は点火二次電流を各燃焼室6の点火プラグ
25へ所定の順序で分配する。電子制御装置28
はスロツトルスイツチ12、回転角センサ13、
水温センサ17、および車速センサ18から入力
信号を受け、燃料噴射弁23へ燃料噴射パルス
を、点火装置24へ一次電流信号を送る。
FIG. 1 shows an electronically controlled engine to which the present invention is applied, in which the flow rate of air taken in from an air cleaner is detected by an air flow meter 1, and the flow rate is controlled by a throttle valve 2 linked to an accelerator pedal in the driver's cab. It is supplied from the intake valve 5 to the combustion chamber 6 through the surge tank 3 and the intake port 4. Combustion chamber 6
is defined by the cylinder head 7, cylinder block 8, and piston 9, and the air-fuel mixture after combustion is passed from the exhaust valve 10 to the exhaust pipe 1 of the exhaust system as exhaust gas.
1. The throttle switch 12 detects the idling opening of the throttle valve 2, the rotation angle sensor 13 detects the rotation angle of the crankshaft from the rotation of the shaft 15 of the power distributor 14, and the water temperature sensor 17 is attached to the cylinder block 8. The cooling water temperature is detected, and the vehicle speed sensor 18 detects the vehicle speed from the rotation of the output shaft of the transmission 19. The electromagnetic fuel injection valve 23 is installed near the intake port 4 and injects fuel, the ignition device 24 sends the ignition secondary current to the power distribution device 14, and the power distribution device 14 sends the ignition secondary current to each combustion chamber 6. The spark plugs 25 are distributed in a predetermined order. Electronic control device 28
are the throttle switch 12, the rotation angle sensor 13,
It receives input signals from the water temperature sensor 17 and the vehicle speed sensor 18, and sends a fuel injection pulse to the fuel injection valve 23 and a primary current signal to the ignition device 24.

第2図は電子制御装置28のブロツク図であ
る。エアフローメータ1および水温センサ17の
アナログ信号はマルチプレクサ31へ送られ、
A/D変換機32においてA/D変換されてから
入出力ポート33へ送られる。回転角センサ13
のパルスは整形回路35を介して入出力ポート3
6へ送られ、スロツトルスイツチ12および車速
センサ18の出力パルスは入出力ポート36へ直
接送られる。点火装置28は出力ポート37から
駆動回路38を介して入力を受け燃料噴射弁23
は出力ポート39から駆動回路40を介して入力
を受ける。入出力ポート33,36,37,3
9、RAM44、ROM45、およびCPU46は
バス47により互いにデータを送受する。PU4
6はCLOCK48からクロツクパルスを受ける。
FIG. 2 is a block diagram of the electronic control unit 28. The analog signals of the air flow meter 1 and the water temperature sensor 17 are sent to the multiplexer 31,
The signal is A/D converted by the A/D converter 32 and then sent to the input/output port 33. Rotation angle sensor 13
The pulses are sent to the input/output port 3 via the shaping circuit 35.
6, and the output pulses of the throttle switch 12 and vehicle speed sensor 18 are sent directly to the input/output port 36. The ignition device 28 receives input from the output port 37 via the drive circuit 38 and connects the fuel injection valve 23
receives input from output port 39 via drive circuit 40 . Input/output ports 33, 36, 37, 3
9, RAM 44, ROM 45, and CPU 46 exchange data with each other via bus 47. PU4
6 receives a clock pulse from CLOCK48.

第3図は本発明を実施するプログラムのフロー
チヤートである。このプログラムはメインプログ
ラムに含められて実行される。ステツプ51では
スロツトルスイツチ12からの入力信号から絞り
弁2が所定開度以下、すなわちアイドリング開度
にあるか否かを判別し、判別結果が正であればス
テツプ52へ進み、否であればステツプ57へ進
んで燃料噴射を行なう。ステツプ52では燃料遮
断を開始する最小機関回転速度Naおよび燃料遮
断を終了する機関回転速度Nbを車速Vの関数f
(V)、g(V)として算出する。第4図および第
5図はNa=f(V)、Nb=g(V)の例を示して
いる。第4図ではNa,Nbはともに、車速Vが減
少するに連れて増大している。第5図ではV<
V1の範囲ではNa,Nbは車速Vが減少するに連
れて増大し、V≧V1の範囲ではNa=N1、Nb=
N2である。第4図では車速Vの全範囲において、
第5図ではV<V1の範囲において、同一の車速
に対するNa,Nbは減速比の大きいシフトレバー
位置程、大きい値となる。ステツプ53では回転
角センサ13からの入力から機関回転速度Nを検
出し、N≧Naか否かを判別して、N≧Naであれ
ばステツプ56へ進んで燃料遮断を行ない、N<
Naであればステツプ54へ進む。ステツプ54
では現在、燃料遮断中であるか否かを判別し、判
別結果が正であればステツプ55へ進み、否であ
ればステツプ57へ進んで燃料供給を行なう。ス
テツプ55ではN≦Nbか否かを判別し、判別結
果が否であればステツプ56へ進んで燃料遮断を
行ない、正であればステツプ57へ進んで燃料供
給を行なう。したがつて機関回転速度NがN≧
Naである場合に機関が減速状態になると燃料遮
断が開始され、機関回転速度NがNbまで低下す
ると燃料遮断が終了して燃料供給が再開される。
Na,Nbは減速比が大きいシフトレバー位置程大
きい値となるので、高速段においては、十分に長
い燃料遮断期間が確保されて燃費向上が図られ、
また低速段においては、燃料遮断あるいは燃料供
給復帰の頻度すなわち車両の受ける衝撃発生回数
の増大が抑制される。
FIG. 3 is a flowchart of a program implementing the present invention. This program is included in the main program and executed. In step 51, it is determined from the input signal from the throttle switch 12 whether or not the throttle valve 2 is at a predetermined opening or less, that is, at the idling opening.If the determination result is positive, the process proceeds to step 52; if not, the process proceeds to step 52. Proceeding to step 57, fuel injection is performed. In step 52, the minimum engine rotational speed Na at which the fuel cutoff starts and the engine rotational speed Nb at which the fuel cutoff ends are determined as a function f of the vehicle speed V.
(V) and g(V). FIGS. 4 and 5 show examples where Na=f(V) and Nb=g(V). In FIG. 4, both Na and Nb increase as the vehicle speed V decreases. In Figure 5, V<
In the range of V1, Na and Nb increase as the vehicle speed V decreases, and in the range of V≧V 1 , Na=N1, Nb=
It is N2. In Figure 4, in the entire range of vehicle speed V,
In FIG. 5, in the range of V<V1, Na and Nb for the same vehicle speed become larger values as the shift lever position has a larger reduction ratio. In step 53, the engine rotation speed N is detected from the input from the rotation angle sensor 13, and it is determined whether N≧Na or not. If N≧Na, the process proceeds to step 56 to perform a fuel cutoff, and if N<
If Na, proceed to step 54. Step 54
Then, it is determined whether or not fuel is currently being cut off. If the determination result is positive, the process proceeds to step 55; if not, the process proceeds to step 57 to supply fuel. In step 55, it is determined whether N≦Nb, and if the result of the determination is negative, the process proceeds to step 56 to cut off the fuel, and if the result is positive, the process proceeds to step 57 to supply fuel. Therefore, the engine rotation speed N is N≧
When the engine is in a deceleration state in the case of Na, fuel cutoff is started, and when the engine rotational speed N decreases to Nb, the fuel cutoff is ended and fuel supply is restarted.
Na and Nb have larger values as the shift lever position increases the reduction ratio, so in high speed gears, a sufficiently long fuel cut-off period is ensured to improve fuel efficiency.
In addition, in the low speed range, an increase in the frequency of fuel cutoff or fuel supply restoration, that is, the number of times the vehicle receives shocks, is suppressed.

以上のように本発明によれば、燃費向上を図り
つつ、燃料遮断あるいは供給復帰による衝撃発生
頻度を減少させ、かつ変速段の位置を検出する必
要がなく、変速段の位置に応じてコンピユータプ
ログラムを変更する必要のない燃料遮断方法が得
られる。
As described above, according to the present invention, while improving fuel efficiency, it is possible to reduce the frequency of impact occurrence due to fuel cutoff or restoration of fuel supply, and there is no need to detect the position of the gear position, and the computer program A fuel shutoff method is obtained that does not require changes to the fuel.

このように本発明によれば、燃料遮断が開始お
よび(または)終了する機関回転速度を車速の関
数として設定することにより、駆動系の種類に応
じてプログラムを変更する必要なく、減速比の大
きい場合の燃料遮断の頻度の増大を回避すること
ができる。
As described above, according to the present invention, by setting the engine rotation speed at which fuel cutoff starts and/or ends as a function of vehicle speed, it is possible to set the engine speed at which the fuel cutoff starts and/or ends as a function of the vehicle speed. This can avoid an increase in the frequency of fuel cut-offs when

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される電子制御機関を例
示する図、第2図は第1図の電子制御装置のブロ
ツク図、第3図は本発明を実施するプログラムの
フローチヤート、第4図および第5図は燃料遮断
を開始および終了する機関回転速度を車速の関数
とした場合の関数を例示する図である。 13…回転角センサ、18…車速センサ、23
…燃料噴射弁、28…電子制御装置。
FIG. 1 is a diagram illustrating an electronic control engine to which the present invention is applied, FIG. 2 is a block diagram of the electronic control device in FIG. 1, FIG. 3 is a flowchart of a program for implementing the present invention, and FIG. 4 and FIG. 5 is a diagram illustrating a function when the engine rotational speed at which fuel cutoff starts and ends is a function of vehicle speed. 13...Rotation angle sensor, 18...Vehicle speed sensor, 23
...Fuel injection valve, 28...Electronic control device.

Claims (1)

【特許請求の範囲】[Claims] 1 アクセル開度が所定値以下の場合、エンジン
回転数が燃料遮断開始回転数以上のとき燃料遮断
を行い、エンジン回転数が燃料遮断終了回転数以
下になつたとき燃料供給を復帰させる内燃機関の
燃料遮断方法において、車速を検出し、車速が低
いほど、上記燃料遮断開始回転数および(また
は)燃料遮断終了回転数を高く設定することを特
徴とする内燃機関の燃料遮断方法。
1. When the accelerator opening is below a predetermined value, the fuel is cut off when the engine speed is above the fuel cutoff starting speed, and the fuel supply is restored when the engine speed is below the fuel cutoff ending speed. A fuel cutoff method for an internal combustion engine, characterized in that a vehicle speed is detected, and the lower the vehicle speed, the higher the fuel cutoff start rotation speed and/or the fuel cutoff end rotation speed are set.
JP3935482A 1982-03-15 1982-03-15 Interrupting method of fuel for internal-combustion engine Granted JPS58158327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3935482A JPS58158327A (en) 1982-03-15 1982-03-15 Interrupting method of fuel for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3935482A JPS58158327A (en) 1982-03-15 1982-03-15 Interrupting method of fuel for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58158327A JPS58158327A (en) 1983-09-20
JPH0143138B2 true JPH0143138B2 (en) 1989-09-19

Family

ID=12550734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3935482A Granted JPS58158327A (en) 1982-03-15 1982-03-15 Interrupting method of fuel for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58158327A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155741U (en) * 1984-03-26 1985-10-17 マツダ株式会社 Fuel cutoff control device for engines with hydraulic clutches

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848728A (en) * 1981-09-11 1983-03-22 Toyota Motor Corp Method of and apparatus for supplying fuel to electronically controlled fuel-injection engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848728A (en) * 1981-09-11 1983-03-22 Toyota Motor Corp Method of and apparatus for supplying fuel to electronically controlled fuel-injection engine

Also Published As

Publication number Publication date
JPS58158327A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
US4924832A (en) System and method for controlling ignition timing for internal combustion engine
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
US5067579A (en) Slip control system for a vehicle provided with an internal combustion engine
JPS5848728A (en) Method of and apparatus for supplying fuel to electronically controlled fuel-injection engine
GB2207781A (en) I.c. engine fuel control
JP5810927B2 (en) Vehicle control device
JPS6342098B2 (en)
JPH0143138B2 (en)
JP7282448B2 (en) Control device for internal combustion engine
JPS6411818B2 (en)
JPS59134351A (en) Speed change gear decision method of electronic control engine for vehicle
JPH0520578B2 (en)
JP2585037B2 (en) Engine fuel control device
JP2581033B2 (en) Fuel injection amount control method for internal combustion engine
JP2905938B2 (en) Engine idle speed control device
JPS6030446A (en) Fuel injection control method
JP2926731B2 (en) Vehicle acceleration slip control device
JPS59101555A (en) Fuel cut method of internal-combustion engine
JPH0544550B2 (en)
JPS5993966A (en) Ignition timing control method of internal-combustion engine
JPH0472057B2 (en)
JPH0543872B2 (en)
JPH0663466B2 (en) Internal combustion engine speed control device
JPH01138344A (en) Fuel injection quantity controller for internal combustion engine
JPS59168265A (en) Ignition timing control device for internal-combustion engine