JPH0142920B2 - - Google Patents

Info

Publication number
JPH0142920B2
JPH0142920B2 JP2332882A JP2332882A JPH0142920B2 JP H0142920 B2 JPH0142920 B2 JP H0142920B2 JP 2332882 A JP2332882 A JP 2332882A JP 2332882 A JP2332882 A JP 2332882A JP H0142920 B2 JPH0142920 B2 JP H0142920B2
Authority
JP
Japan
Prior art keywords
crystal silicon
heat
carbon
pulling
insulating cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2332882A
Other languages
Japanese (ja)
Other versions
JPS58140393A (en
Inventor
Hideyasu Matsuo
Akio Karita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2332882A priority Critical patent/JPS58140393A/en
Publication of JPS58140393A publication Critical patent/JPS58140393A/en
Publication of JPH0142920B2 publication Critical patent/JPH0142920B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は単結晶シリコン引上装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in single crystal silicon pulling equipment.

半導体集積回路等に用いられる単結晶シリコン
は主にチヨコラルスキー法(CZ法)によつて製
造されている。この方法は、単結晶シリコン引上
装置に用いて行われるものである。以下、第1図
及び第2図a,bを参照して単結晶シリコン引上
装置を説明する。
Single crystal silicon used in semiconductor integrated circuits and the like is mainly manufactured by the Czyochoralski method (CZ method). This method is performed using a single crystal silicon pulling apparatus. Hereinafter, a single crystal silicon pulling apparatus will be explained with reference to FIG. 1 and FIGS. 2a and 2b.

図中1は上部と下部が開口したチヤンバーであ
る。このチヤンバー1内には石英ガラス製ルツボ
2が載置されており、このルツボ2の外周面はグ
ラフアイト製保護体3によつて包囲されている。
この保護体3の底面には、前記チヤンバー1の下
部開口から挿入された回転自在な支持棒4が連結
されている。前記保護体3の外周には筒状のヒー
タ5が配設されており、このヒータ5には前記チ
ヤンバー1の下部開孔から挿入された電極6,6
が連結されている。前記ヒータ5の外周には筒状
の保温筒7が配設されており、この保温筒7は内
面がグラフアイト材8、外面がカーボンフエルト
部9で構成されている。この保温筒7の上下部に
は保温効果を高めるために夫々上部ヒートシール
ド10と下部ヒートシールド11が配設されてい
る。この上部ヒートシールド10はグラフアイト
製で第2図a及びbに示す如きリング状の形状を
なしている。また、下部ヒートシールド11はカ
ーボンフエルト部12を上下2枚のグラフアイト
板13,13ではさんだサンドイツチ構造を有し
ている。更に、チヤンバー1の上部開口からは下
端に種結晶14を保持した引上軸15が回転可能
に吊下されている。
In the figure, 1 is a chamber with an open top and bottom. A crucible 2 made of quartz glass is placed in the chamber 1, and the outer peripheral surface of the crucible 2 is surrounded by a protector 3 made of graphite.
A rotatable support rod 4 inserted from the lower opening of the chamber 1 is connected to the bottom surface of the protector 3. A cylindrical heater 5 is disposed on the outer periphery of the protector 3, and electrodes 6, 6 inserted through the lower opening of the chamber 1 are connected to the heater 5.
are connected. A cylindrical heat-retaining tube 7 is disposed around the outer periphery of the heater 5, and the heat-retaining tube 7 has an inner surface made of graphite material 8 and an outer surface made of a carbon felt portion 9. An upper heat shield 10 and a lower heat shield 11 are disposed at the upper and lower portions of the heat retaining cylinder 7, respectively, to enhance the heat retaining effect. The upper heat shield 10 is made of graphite and has a ring shape as shown in FIGS. 2a and 2b. Further, the lower heat shield 11 has a sandwich structure in which a carbon felt portion 12 is sandwiched between two upper and lower graphite plates 13, 13. Furthermore, a pulling shaft 15 holding a seed crystal 14 at its lower end is rotatably suspended from the upper opening of the chamber 1 .

上述した従来の単結晶シリコン引上装置を用い
たチヨコラルスキー法による単結晶シリコンの引
上げは、ルツボ2内にシリコン原料を入れ、チヤ
ンバー1内をアルゴンガス等の不活性ガス雰囲気
とし、電極6,6からヒータ5に通電して発熱さ
せることによりシリコン原料を溶融させ、この溶
融シリコン16に引上軸15下端の種結晶14を
浸し、引上軸15を引上げることにより行う。
In pulling single crystal silicon by the Czyochoralski method using the conventional single crystal silicon pulling apparatus described above, a silicon raw material is placed in the crucible 2, an inert gas atmosphere such as argon gas is created in the chamber 1, and an electrode 6 is placed in the chamber 1. , 6 to heat the heater 5 to melt the silicon raw material, dip the seed crystal 14 at the lower end of the pulling shaft 15 into the molten silicon 16, and pull up the pulling shaft 15.

ところで、LSIの製造に用いられる単結晶シリ
コンは無転位結晶で、しかもデバイスの歩留まり
を高くするためには素子形成時の熱処理工程にお
いて熱誘起微小欠陥の発生しないものが望まし
い。したがつて、単結晶シリコンの有転位化及び
熱誘起微小欠陥の原因となる物質が混入するのを
極力防止しなければならない。
Incidentally, the single-crystal silicon used for manufacturing LSIs is a dislocation-free crystal, and in order to increase the yield of devices, it is desirable that thermally induced micro-defects do not occur during the heat treatment process during element formation. Therefore, it is necessary to prevent as much as possible the incorporation of substances that cause dislocations and thermally induced microdefects in single crystal silicon.

ここで、単結晶シリコンの有転位化の原因とな
る物質は石英ガラス製ルツボと溶融シリコンとの
反応により生成するるSiOである。
Here, the substance that causes dislocations in single-crystal silicon is SiO, which is produced by a reaction between a quartz glass crucible and molten silicon.

しかし、上述した従来の単結晶シリコン引上装
置においては、保温筒7とチヤンバー1間が上部
ヒートシールド10で塞がれた状態になつている
ので、生成したSiOガスを含むアルゴンガス等の
不活性ガスの排気が良好に行われない。この結
果、SiOガスがチヤンバー1の上部内壁に付着し
やすく、単結晶シリコン引上操作中にSiO粉とし
て溶融シリコン16面に落下し、単結晶シリコン
の有転位化を引き起こし易いという欠点がある。
このことは、近年の引上げ単結晶の大口径化、長
尺化の傾向のもとにあつてはより顕著になつてき
ている。
However, in the conventional single-crystal silicon pulling apparatus described above, the space between the heat insulating cylinder 7 and the chamber 1 is closed with the upper heat shield 10. Active gas is not properly exhausted. As a result, SiO gas tends to adhere to the upper inner wall of the chamber 1, and falls as SiO powder onto the surface of the molten silicon 16 during the single-crystal silicon pulling operation, which tends to cause dislocations in the single-crystal silicon.
This has become more noticeable as pulled single crystals have tended to have larger diameters and longer lengths in recent years.

また、熱誘起微小欠陥の原因となる物質は、
1400℃以上の高温下で行われる単結晶シリコン引
上げにおいて結晶中に含まれる酸素不純物及び炭
素不純物である。通常、酸素不純物は過飽和な状
態で最大3×1018atoms/c.c.(ASTM F121−76
変換)程度、炭素不純物は過飽和な状態で最大2
×1717atoms/c.c.(ASTM F123−74変換)程度
含まれる。単結晶シリコンの熱誘起欠陥は基本的
には、過飽酸素の析出によるものであると考えら
れている。しかし、酸素濃度がかなり高くても熱
処理時に酸素の析出が起こりにくい場合もあるこ
とが知られている。これは炭素原子が酸素析出物
の核として作用し、炭素濃度が低い場合には微小
欠陥が誘起されにくいからであると考えられる。
一方、酸素不純物はウエーハの熱誘起そりを抑制
する作用を有する。このため、熱誘起微小欠陥の
発生を抑えるためには、酸素不純物の混入を阻止
するよりも炭素不純物の混入を阻止する方が有効
である。
In addition, the substances that cause thermally induced microdefects are
Oxygen impurities and carbon impurities contained in crystals during single crystal silicon pulling performed at high temperatures of 1400°C or higher. Normally, oxygen impurities are present in a supersaturated state at a maximum of 3×10 18 atoms/cc (ASTM F121-76
conversion), carbon impurities can reach up to 2 in the supersaturated state.
Contains approximately ×17 17 atoms/cc (ASTM F123-74 conversion). It is believed that thermally induced defects in single crystal silicon are basically caused by the precipitation of supersaturated oxygen. However, it is known that even if the oxygen concentration is quite high, it may be difficult for oxygen to precipitate during heat treatment. This is thought to be because carbon atoms act as nuclei for oxygen precipitates, and when the carbon concentration is low, micro defects are less likely to be induced.
On the other hand, oxygen impurities have the effect of suppressing thermally induced warping of the wafer. Therefore, in order to suppress the occurrence of thermally induced microdefects, it is more effective to prevent the incorporation of carbon impurities than to prevent the incorporation of oxygen impurities.

上述した単結晶シリコン中の炭素不純物は雰囲
気中のCOガス量に依存する。このCOガスはチヤ
ンバー内のカーボン部材と雰囲気中のO2、H2O
等との間での以下に示す如き反応により生成す
る。
The above-mentioned carbon impurity in single crystal silicon depends on the amount of CO gas in the atmosphere. This CO gas is mixed with carbon members inside the chamber and O 2 and H 2 O in the atmosphere.
It is produced by the reaction shown below between

2C+O2→2CO C+H2O→CO+H2 これらの反応は主に保温筒7及び下部ヒートシ
ールド11のうちカーボンフエルト部9,12が
雰囲気ガスと接触している領域で起つていると考
えられる。これはカーボンフエルトがグラフアイ
トよりも粒子同士の間隔が大きく、O2、H2O等
を含んだ雰囲気ガスが入り込み易いためである。
したがつて、単結晶シリコン中の炭素不純物を減
少させるためには、このフエルト部9,12に何
らかの手段を講じる必要がある。
2C+O 2 →2CO C+H 2 O→CO+H 2 These reactions are thought to occur mainly in the regions of the heat insulating cylinder 7 and lower heat shield 11 where the carbon felt portions 9 and 12 are in contact with the atmospheric gas. This is because the spacing between particles of carbon felt is larger than that of graphite, and atmospheric gases containing O 2 , H 2 O, etc. can easily enter the carbon felt.
Therefore, in order to reduce the carbon impurities in the single crystal silicon, it is necessary to take some measures for the felt portions 9 and 12.

本発明は上記事情に鑑みてなされたものであ
り、無転位結晶で、かつ熱処理工程において熱誘
起微小欠陥を生じにくい単結晶シリコンの歩留り
を向上し得る単結晶シリコン引上装置を提供しよ
うとするものである。
The present invention has been made in view of the above circumstances, and aims to provide a single-crystal silicon pulling device that can improve the yield of single-crystal silicon that is dislocation-free and is less likely to generate thermally induced microdefects during a heat treatment process. It is something.

本発明者らは、SiOガスを含む雰囲気ガスが保
温筒とチヤンバーとの間にも流れるような手段を
採用した。こうすることによりSiOガスがチヤン
バーの上部内壁に付着し、SiO粉として溶融シリ
コン面に落下するのを防止して無転位結晶の歩留
まりを向上させることができる。しかし、上述し
た如き手段を採ると、雰囲気ガスと保温筒外側等
のカーボンフエルト部とが接触し易くなるため、
カーボンフエルト部でのCOガス生成反応が起り
易くなる可能性がある。そこで、従来雰囲気ガス
と接触していたフエルト部の全体をグラフアイト
材で覆うことにより、COガス生成反応を抑制し
た。こうすることにより単結晶シリコン中の炭素
不純物濃度を減少させ、熱誘起微小欠陥の発生を
抑えることができる。
The present inventors adopted a means for allowing atmospheric gas containing SiO gas to flow between the heat-insulating cylinder and the chamber. By doing so, it is possible to prevent SiO gas from adhering to the upper inner wall of the chamber and falling onto the molten silicon surface as SiO powder, thereby improving the yield of dislocation-free crystals. However, if the above-mentioned measures are adopted, the atmospheric gas and the carbon felt part on the outside of the heat insulating cylinder will easily come into contact with each other.
There is a possibility that CO gas generation reaction will occur more easily in the carbon felt part. Therefore, the CO gas production reaction was suppressed by covering the entire felt part, which was conventionally in contact with atmospheric gas, with graphite material. By doing so, the concentration of carbon impurities in single crystal silicon can be reduced, and the generation of thermally induced micro defects can be suppressed.

以下、本発明の実施例を第3図及び第4図a,
bを参照して説明する。ただし、第1図図示の単
結晶シリコン引上装置と同一部材には同一番号を
付して説明を省略する。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4 a,
This will be explained with reference to b. However, the same members as those in the single crystal silicon pulling apparatus shown in FIG. 1 are given the same numbers and their explanations will be omitted.

図中17は保温筒であり、この保温筒17はカ
ーボンフエルト部18の内外面がグラフアイト材
19,20で覆われ、かつ上下端にも環状のグラ
フアイト材21,21が被覆された構造となつて
いる。この保温筒17下部には下部ヒートシール
ド22が配設されている。この下部ヒートシール
ド22は円板状で支持棒4が挿通される中央部及
び電極6,6が挿通される部分に穴を有する。ま
た、この下部ヒートシールド22はカーボンフエ
ルト部23を前記各穴に対応する箇所を開孔され
たグラフアイト皿24で包囲し、これらの上面に
グラフアイト板25を載置した構造を有してい
る。更に、前記保温筒17と上部ヒートシールド
10間には第4図a及びbに示す如く多数の突起
26a…を有する王冠様リング26が配設されて
いる。
In the figure, 17 is a heat-insulating cylinder, and this heat-insulating cylinder 17 has a structure in which the inner and outer surfaces of a carbon felt portion 18 are covered with graphite materials 19 and 20, and the upper and lower ends are also covered with annular graphite materials 21 and 21. It is becoming. A lower heat shield 22 is disposed at the bottom of this heat retaining cylinder 17. The lower heat shield 22 has a disk shape and has holes at the center where the support rod 4 is inserted and at the center where the electrodes 6, 6 are inserted. The lower heat shield 22 has a structure in which a carbon felt portion 23 is surrounded by a graphite plate 24 having holes corresponding to the holes, and a graphite plate 25 is placed on the upper surface of the graphite plate 24. There is. Furthermore, a crown-like ring 26 having a large number of protrusions 26a is disposed between the heat retaining tube 17 and the upper heat shield 10, as shown in FIGS. 4a and 4b.

上述した単結晶シリコン引上装置を用いた単結
晶シリコンの引上げは従来の装置と同様な操作で
行うことができる。
Single-crystal silicon can be pulled using the above-described single-crystal silicon pulling device in the same manner as in conventional devices.

しかして、上記実施例の単結晶シリコン引上装
置によれば、王冠様リング26と上部ヒートシー
ルド10によつて、王冠様リング26の各突起2
6a…間に開孔部が形成される。SiOガスを含む
雰囲気ガスはこの開孔部を通して保温筒17とチ
ヤンバー1の間に流れ、外部へ良好に排気される
ので、チヤンバー1の上部内壁に付着するSiOガ
スは減少する。この結果、溶融シリコン16に
SiO粉が落下することが少なくなり、引上げられ
る単結晶シリコンの有転位化を防止することがで
きる。また、保温筒17及び下部ヒートシールド
22のフエルト部18,23の全体をグラフアイ
ト材で覆つたことにより、O2、H2O等を含む雰
囲気ガスとフエルト部18,23とが直接接触す
ることがなくなるためCOガスの生成反応が起こ
りにくくなる。この結果、単結晶シリコン中の酸
素不純物濃度が減少し、熱処理工程における熱誘
起微小欠陥の発生を抑制することができる。
According to the single crystal silicon pulling apparatus of the above embodiment, the crown-like ring 26 and the upper heat shield 10 each protrude 2 of the crown-like ring 26.
An opening is formed between 6a and 6a. Atmospheric gas containing SiO gas flows between the heat insulating tube 17 and the chamber 1 through this opening and is effectively exhausted to the outside, so that the amount of SiO gas adhering to the upper inner wall of the chamber 1 is reduced. As a result, the molten silicon 16
SiO powder is less likely to fall, and it is possible to prevent dislocations from forming in the pulled single crystal silicon. Furthermore, by covering the entirety of the felt parts 18 and 23 of the heat insulating tube 17 and the lower heat shield 22 with graphite material, the felt parts 18 and 23 are brought into direct contact with the atmospheric gas containing O 2 , H 2 O, etc. This makes it difficult for the CO gas production reaction to occur. As a result, the oxygen impurity concentration in single crystal silicon is reduced, and the generation of thermally induced micro defects in the heat treatment process can be suppressed.

上述したことは以下に述べる実験例でも確めら
れた。
The above was also confirmed in the experimental examples described below.

実験例 上記実施例の単結晶シリコン引上装置と従来の
単結晶シリコン引上装置を用いて夫々単結晶シリ
コンを引上げた。10torrのアルゴンガス雰囲気下
で15Kgの溶融多結晶シリコンから直径4インチ、
長さ40cmの無転位単結晶シリコンを引上げ、原料
を再供給して再び単結晶シリコンを引上げるとい
う操作を1週につき120時間連続して行い、、これ
を10週間続けた。
Experimental Example Single crystal silicon was pulled using the single crystal silicon pulling apparatus of the above example and the conventional single crystal silicon pulling apparatus. 4 inches in diameter from 15 kg of molten polycrystalline silicon under a 10 torr argon gas atmosphere.
The operation of pulling a 40 cm long dislocation-free single crystal silicon, resupplying the raw material, and pulling the single crystal silicon again was carried out for 120 hours a week, for 10 weeks.

単結晶シリコン引上げ中に実施例の単結晶シリ
コン引上装置のチヤンバー1内を観際したところ
SiOガスが王冠様リング26の突起26a…と上
部ヒートシールド10とで形成される開孔部を通
して排気されていることが確認された。また、
120時間の連続引上操作後、チヤンバーの上部内
壁へのSiOの付着を調べたところ実施例の単結晶
シリコン引上装置の方が従来の単結晶シリコン引
上装置よりもSiOの付着が減少していることが確
認された。
A view of the inside of chamber 1 of the single-crystal silicon pulling apparatus of the example during single-crystal silicon pulling
It was confirmed that SiO gas was exhausted through the opening formed by the projections 26a of the crown-like ring 26 and the upper heat shield 10. Also,
After 120 hours of continuous pulling operation, we investigated the adhesion of SiO to the upper inner wall of the chamber and found that the single-crystal silicon pulling device of the example showed less adhesion of SiO than the conventional single-crystal silicon pulling device. It was confirmed that

また、10週間で引上げられた無転位単結晶シリ
コンの本数は、従来の単結晶シリコン引上装置を
用いた場合が57本であつたのに対して、実施例の
単結晶シリコン引上装置を用いた場合は66本に増
加した。
In addition, the number of dislocation-free single crystal silicon pulled in 10 weeks was 57 when using the conventional single crystal silicon pulling equipment, whereas the number of pieces pulled using the single crystal silicon pulling equipment of the example was 57. When used, the number increased to 66.

更に、引上げられた単結晶シリコンの炭素不純
物濃度を赤外吸収法で調べた。ASTM F123−74
換算の平均炭素濃度は単結晶シリコンのヘツド側
において、従来の単結晶シリコン引上装置を用い
た場合は3.5×1016atoms/c.c.であつたのに対し
て、実施例の単結晶シリコン引上装置を用いた場
合は、2.0×1016atoms/c.c.以下に減少した。
Furthermore, the carbon impurity concentration of the pulled single crystal silicon was investigated using an infrared absorption method. ASTM F123−74
The converted average carbon concentration on the head side of single-crystal silicon was 3.5×10 16 atoms/cc when using a conventional single-crystal silicon pulling device, whereas in the case of single-crystal silicon pulling in the example When using the device, it decreased to 2.0×10 16 atoms/cc or less.

以上詳述した如く本発明によれば、無転位結晶
で、かつ熱誘起微小欠陥を生じにくい単結晶シリ
コンの歩留まりを向上し得る単結晶シリコン引上
装置を提供できるものである。
As detailed above, according to the present invention, it is possible to provide a single-crystal silicon pulling apparatus that can improve the yield of single-crystal silicon that is dislocation-free and less prone to thermally induced microdefects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の単結晶シリコン引上装置を示す
断面図、第2図aは上部ヒートシールドを示す平
面図、同図bは同図aのB−B線に沿う断面図、
第3図は本発明の実施例における単結晶シリコン
引上装置を示す断面図、第4図aは王冠様リング
を示す平面図、同図bは同図aのB′−B′線に沿
う断面図である。 1……チヤンバー、2……ルツボ、3……保護
体、4……支持棒、5……ヒータ、6……電極、
10……上部ヒートシールド、14……種結晶、
15……引上軸、16……溶融シリコン、17…
…保温筒、18……フエルト部、19,20,2
1……グラフアイト材、22……下部ヒートシー
ルド、23……フエルト部、24……グラフアイ
ト皿、25……グラフアイト板、26……王冠様
リング、26a……突起。
FIG. 1 is a sectional view showing a conventional single crystal silicon pulling apparatus, FIG. 2 a is a plan view showing an upper heat shield, and FIG.
FIG. 3 is a sectional view showing a single crystal silicon pulling apparatus in an embodiment of the present invention, FIG. 4 a is a plan view showing a crown-like ring, and FIG. FIG. 1... Chamber, 2... Crucible, 3... Protector, 4... Support rod, 5... Heater, 6... Electrode,
10... Upper heat shield, 14... Seed crystal,
15... Pulling shaft, 16... Molten silicon, 17...
...Heat insulation tube, 18...Felt part, 19, 20, 2
1...graphite material, 22...lower heat shield, 23...felt part, 24...graphite plate, 25...graphite plate, 26...crown-like ring, 26a...protrusion.

Claims (1)

【特許請求の範囲】[Claims] 1 チヤンバー内に石英ルツボを載置し、該ルツ
ボの外周に配設された黒鉛製ヒータによりルツボ
内のシリコン原料を加熱溶融し、該黒鉛製ヒータ
の外周に配設されたカーボン製保温筒及びこの保
温筒の上下部に配設されたカーボン製ヒートシー
ルドにより保温しつつ、不活性ガス雰囲気下で前
記溶融シリコンを引上げて単結晶シリコンを造る
装置において、前記保温筒と上部ヒートシールド
間に、上部に多数の突起を有する王冠様リングを
設けるとともに、保温筒及び下部ヒートシールド
をカーボンフエルト部と該フエルト部の全体を覆
うグラフアイト材とで構成したことを特徴とする
単結晶シリコン引上装置。
1. A quartz crucible is placed in a chamber, the silicon raw material in the crucible is heated and melted by a graphite heater arranged around the outer periphery of the crucible, and a carbon heat insulating cylinder and In an apparatus for producing single-crystal silicon by pulling up the molten silicon in an inert gas atmosphere while retaining heat with carbon heat shields disposed at the upper and lower parts of the heat-insulating cylinder, there is a space between the heat-insulating cylinder and the upper heat shield. A single-crystal silicon pulling device characterized in that a crown-like ring having a large number of protrusions is provided on the upper part, and a heat insulating cylinder and a lower heat shield are composed of a carbon felt part and a graphite material covering the entire felt part. .
JP2332882A 1982-02-16 1982-02-16 Pulling-up device for single crystal silicon Granted JPS58140393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332882A JPS58140393A (en) 1982-02-16 1982-02-16 Pulling-up device for single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332882A JPS58140393A (en) 1982-02-16 1982-02-16 Pulling-up device for single crystal silicon

Publications (2)

Publication Number Publication Date
JPS58140393A JPS58140393A (en) 1983-08-20
JPH0142920B2 true JPH0142920B2 (en) 1989-09-18

Family

ID=12107508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332882A Granted JPS58140393A (en) 1982-02-16 1982-02-16 Pulling-up device for single crystal silicon

Country Status (1)

Country Link
JP (1) JPS58140393A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138386A (en) * 1985-12-11 1987-06-22 Shin Etsu Handotai Co Ltd Device for pulling single crystal
JP2579778B2 (en) * 1987-10-01 1997-02-12 住友シチックス株式会社 Manufacturing method of single crystal for semiconductor

Also Published As

Publication number Publication date
JPS58140393A (en) 1983-08-20

Similar Documents

Publication Publication Date Title
US4956153A (en) Apparatus for Czochralski single crystal growing
JPH0218379A (en) Device for pulling up semiconductor single crystal
JP2686223B2 (en) Single crystal manufacturing equipment
US5895527A (en) Single crystal pulling apparatus
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
JP2005053722A (en) Single crystal production apparatus and single crystal production method
JPH0142920B2 (en)
JPH03115188A (en) Production of single crystal
JPH06340490A (en) Apparatus for production of silicon single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPS6018638B2 (en) Silicon single crystal pulling equipment
JP2800867B2 (en) Silicon single crystal manufacturing equipment
JPH1112091A (en) Production of spherical single crystal silicon
JPH0748200A (en) Production of single crystal
JP2000327479A (en) Single crystal production apparatus and single crystal production
JP2800482B2 (en) Method for producing silicon single crystal
JPH054358B2 (en)
ITMI20011120A1 (en) SILICON WAFERS HAVING CONTROLLED DISTRIBUTION OF DEFECTS, METHODS OF PREPARING THEMSELVES, AND CZOCHRALSKI EXTRACTORS FOR THE FACTORY
JP2558171Y2 (en) Heat shield for single crystal pulling
JPH0218375A (en) Device for pulling up semiconductor single crystal
JPH11292685A (en) Apparatus for extending life of graphite susceptor for growing silicon single crystal by coating with silicon nitride and extending method
JPH0364478B2 (en)
JPS5950627B2 (en) Single crystal silicon pulling equipment
JPH09328400A (en) Production of lithium tantalate single crystal
JPH02196082A (en) Production of silicon single crystal