JPH0137584B2 - - Google Patents

Info

Publication number
JPH0137584B2
JPH0137584B2 JP58213879A JP21387983A JPH0137584B2 JP H0137584 B2 JPH0137584 B2 JP H0137584B2 JP 58213879 A JP58213879 A JP 58213879A JP 21387983 A JP21387983 A JP 21387983A JP H0137584 B2 JPH0137584 B2 JP H0137584B2
Authority
JP
Japan
Prior art keywords
injection
amount
valve
fuel
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58213879A
Other languages
Japanese (ja)
Other versions
JPS60108544A (en
Inventor
Asao Tadokoro
Haruo Okimoto
Masato Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58213879A priority Critical patent/JPS60108544A/en
Publication of JPS60108544A publication Critical patent/JPS60108544A/en
Publication of JPH0137584B2 publication Critical patent/JPH0137584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10177Engines having multiple fuel injectors or carburettors per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの燃料噴射装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a fuel injection device for an engine.

(従来技術) エンジンの各気筒に対して2つの吸気通路を設
け、それぞれの吸気通路に燃料噴射弁を配設し、
エンジンの負荷等の運転状態に応じて各吸気通路
に配設した絞り弁の開閉を行つて吸気量を制御す
るとともに、各燃料噴射弁からの燃料噴射量を制
御し、第1噴射弁からは低吸気量域を含む全運転
領域で燃料を噴射し、第2噴射弁からは高吸気量
域で燃料を噴射するようにして、低負荷域から高
負荷域に至るまで精度の良い燃料供給制御が実現
できるようにした燃料噴射装置は、例えば特開昭
51−12025号に見られるように公知である。
(Prior art) Two intake passages are provided for each cylinder of the engine, and a fuel injection valve is arranged in each intake passage.
The intake air amount is controlled by opening and closing throttle valves installed in each intake passage according to the engine load and other operating conditions, and the amount of fuel injected from each fuel injection valve is controlled. Fuel is injected in the entire operating range, including the low intake air volume range, and fuel is injected from the second injection valve in the high intake air volume range, providing highly accurate fuel supply control from low load ranges to high load ranges. For example, the fuel injection device that made it possible to realize
No. 51-12025.

上記のような燃料噴射装置では、高負荷時にお
ける多量の燃料噴射を1本の燃料噴射弁で行う
と、低負荷時の少量の燃料噴射を行うときの精度
が低下するのに対し、低流量域での供給精度の良
い第1噴射弁で低負荷域の燃料噴射を行う一方、
この第1噴射弁では供給できない高流量域では第
2噴射弁からも燃料噴射を行うようにしたもので
ある。しかして、第2噴射弁からの燃料噴射の開
始時期は前記先行例のように、エンジンの運転状
態に応じて演算した燃料噴射量(燃料噴射パルス
幅)の大きさに対応し、この演算噴射量が設定値
を越えたときに第2噴射弁からも燃料の噴射を行
うようにしたものでは、高流量域用の第2吸気通
路が第2絞り弁によつて開かれる前に第2噴射弁
から燃料噴射が行われる問題を有するものであ
る。
In the above-mentioned fuel injection device, if a large amount of fuel is injected under high load using a single fuel injection valve, the accuracy will decrease when injecting a small amount of fuel under low load, whereas low flow rate While injecting fuel in the low load range with the first injector, which has good supply accuracy in the low load range,
In a high flow rate region that cannot be supplied by the first injection valve, fuel is also injected from the second injection valve. Therefore, as in the preceding example, the start timing of fuel injection from the second injector corresponds to the magnitude of the fuel injection amount (fuel injection pulse width) calculated according to the operating state of the engine, and this calculated injection In the case where fuel is also injected from the second injection valve when the amount exceeds a set value, the second injection is performed before the second intake passage for the high flow rate range is opened by the second throttle valve. This has the problem that fuel is injected from the valve.

すなわち、例えばエンジン冷間時には吸気量に
対する燃料噴射量を増大して良好な暖機性を得る
ために、演算噴射量を増大する冷間時補正を行う
とともに、冷間時のエンジン回転数を上昇するた
めに吸気量を増大するようにしている。そして、
上記補正において、エンジンの実際の運転状態は
第1噴射弁のみによる燃料噴射量だけれども、エ
ンジン温度および吸気量の検出に基づく演算噴射
量が前記設定値を越えて第2噴射弁からも燃料噴
射を行う領域となることがある。
In other words, for example, when the engine is cold, in order to increase the fuel injection amount relative to the intake air volume and obtain good warm-up performance, a cold-time correction is performed to increase the calculated injection amount, and at the same time, the engine speed is increased when the engine is cold. In order to do this, the amount of air intake is increased. and,
In the above correction, although the actual operating state of the engine is the amount of fuel injected only by the first injector, if the calculated injection amount based on the detection of engine temperature and intake air amount exceeds the set value, fuel is injected also from the second injector. It may be an area where

よつて、この場合に、第2絞り弁が開かれてい
ないのに第2噴射弁から燃料が噴射されることに
なり、この燃料は燃焼室に流入せず吸気通路に溜
るものであつて、所定の燃料が燃焼室に供給され
ず失火の恐れがあるとともに、燃料の微粒化およ
びミキシングの悪化をもたらす不具合を有するも
のである。
Therefore, in this case, fuel is injected from the second injection valve even though the second throttle valve is not opened, and this fuel does not flow into the combustion chamber but accumulates in the intake passage. There is a risk that a predetermined amount of fuel may not be supplied to the combustion chamber, resulting in a misfire, and there are also problems that result in atomization of the fuel and worsening of mixing.

(発明の目的) 本発明は上記事情に鑑み、冷間時補正等によつ
て演算噴射量が増大しても、第2吸気通路が第2
絞り弁によつて開かれていないときには、上記演
算噴射量の大きさにかかわらず、第2噴射弁によ
る燃料噴射は行わず、第1噴射弁のみによつて第
1吸気通路に燃料噴射を行うようにしたエンジン
の燃料噴射装置を提供することを目的とするもの
である。
(Object of the Invention) In view of the above circumstances, the present invention provides that even if the calculated injection amount increases due to cold correction etc., the second intake passage
When the throttle valve is not opened, the second injection valve does not inject fuel, and only the first injection valve injects fuel into the first intake passage, regardless of the magnitude of the calculated injection amount. It is an object of the present invention to provide a fuel injection device for an engine as described above.

(発明の構成) 本発明のエンジンの燃料噴射装置は、各気筒に
対して低吸気量域を含む全運転領域で吸気を供給
する第1吸気通路と、高吸気量域で吸気を供給す
る第2吸気通路とを接続し、第1吸気通路には第
1噴射弁と第1絞り弁とを設け、第2吸気通路に
は第2噴射弁と第2絞り弁とを設け、吸入空気量
検出手段で検出した吸気量に応じて燃料噴射量演
算手段で燃料噴射量を演算し、噴射弁作動手段は
燃料噴射量演算手段による演算噴射量が設定値以
下のときには第1噴射弁を駆動し、この演算噴射
量が設定値を越えたときに第1および第2噴射弁
を駆動するものであつて、この噴射弁作動手段に
対し第2絞り弁の閉じている領域では演算噴射量
が設定値を越えていても第2噴射弁の作動を停止
する第2噴射弁停止手段とを備えたことを特徴と
するものである。
(Structure of the Invention) The fuel injection device for an engine of the present invention includes a first intake passage that supplies intake air to each cylinder in all operating ranges including a low intake air amount range, and a first intake passage that supplies intake air in a high intake air amount range to each cylinder. 2 intake passages are connected, the first intake passage is provided with a first injection valve and a first throttle valve, and the second intake passage is provided with a second injection valve and a second throttle valve, and the intake air amount is detected. The fuel injection amount calculating means calculates the fuel injection amount according to the intake air amount detected by the means, and the injection valve operating means drives the first injection valve when the injection amount calculated by the fuel injection amount calculating means is less than a set value; When this calculated injection amount exceeds a set value, the first and second injection valves are driven, and in a region where the second throttle valve is closed with respect to this injection valve actuating means, the calculated injection amount exceeds the set value. The present invention is characterized by comprising a second injection valve stopping means for stopping the operation of the second injection valve even if the second injection valve is exceeded.

上記第2噴射弁停止手段としては、冷間時に第
2噴射弁からの燃料噴射を開始する設定値を大き
くするもの、もしくは、第2噴射弁の開度を検出
して閉弁時には第2噴射弁を不作動とするものな
どが採用される。
The above-mentioned second injection valve stopping means may be one that increases the setting value for starting fuel injection from the second injection valve when the second injection valve is cold, or one that detects the opening degree of the second injection valve and starts the second injection when the valve is closed. A type with a non-operating valve is adopted.

(発明の効果) 本発明によれば、低吸気量域では第1噴射弁に
よつて精度の良い燃料噴射を行うとともに、演算
噴射量が設定値を越えた高吸気量域では適正な時
期に第2噴射弁からも燃料噴射を行うようにして
燃料微粒化を促進する一方、冷間時補正等によつ
て演算噴射量が所定値を越えて第1噴射弁および
第2噴射弁の両方から燃料を噴射する大きさであ
つても、第2噴射弁を配設している第2吸気通路
の第2絞り弁が閉じている領域では第2噴射弁か
らの燃料噴射を行わないようにしたために、吸気
のない吸気通路への燃料噴射を阻止して運転状態
に対応した的確な燃料噴射を行い、良好な着火
性、燃焼性を確保することができるものである。
(Effects of the Invention) According to the present invention, the first injector performs fuel injection with high precision in the low intake air amount range, and at the appropriate time in the high intake air amount area where the calculated injection amount exceeds the set value. While fuel atomization is promoted by injecting fuel from the second injection valve as well, if the calculated injection amount exceeds a predetermined value due to cold correction etc. Even if the size is large enough to inject fuel, fuel injection from the second injector is not performed in the area where the second throttle valve of the second intake passage where the second injector is installed is closed. Furthermore, it is possible to prevent fuel injection into an intake passage where there is no intake air, perform accurate fuel injection corresponding to the operating condition, and ensure good ignitability and combustibility.

(実施例) 以下、図面により本発明の実施態様を詳細に説
明する。
(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例 1 この実施例は第1図ないし第5図に示し、第1
図は全体構成図で、エンジン1の各気筒の燃焼室
2に対し、2つの第1および第2吸気ポート3お
よび4が開口するとともに、2つの第1および第
2排気ポート5および6がそれぞれ開口してい
る。
Example 1 This example is shown in FIGS.
The figure is an overall configuration diagram, in which two first and second intake ports 3 and 4 are open to the combustion chamber 2 of each cylinder of the engine 1, and two first and second exhaust ports 5 and 6 are open, respectively. It's open.

上記吸気ポート3,4には吸入空気を供給する
吸気通路7が接続されている。この吸気通路7は
上流端にエアクリーナ8を有し、このエアクリー
ナ8の下流側に吸気量を検出する吸入空気量検出
手段9(エアフロメータ)が介装され、この吸入
空気量検出手段9より下流側の吸気通路7が、第
1吸気通路7aと第2吸気通路7bとに分岐形成
されている。第1吸気通路7aは拡張室7cを介
して各燃焼室2の第1吸気ポート3にそれぞれ接
続される一方、第2吸気通路7bは拡張室7dを
介して各燃焼室2の第2吸気ポート4にそれぞれ
接続されている。
An intake passage 7 for supplying intake air is connected to the intake ports 3 and 4. This intake passage 7 has an air cleaner 8 at the upstream end, and an intake air amount detection means 9 (air flow meter) for detecting the intake air amount is installed downstream of this air cleaner 8, and downstream from this intake air amount detection means 9. The side intake passage 7 is branched into a first intake passage 7a and a second intake passage 7b. The first intake passage 7a is connected to the first intake port 3 of each combustion chamber 2 via an expansion chamber 7c, while the second intake passage 7b is connected to the second intake port of each combustion chamber 2 via an expansion chamber 7d. 4 are connected to each other.

上記第1吸気通路7aの入口部分には、この第
1吸気通路7aを流れる吸気量を制御する第1絞
り弁10が介設されるとともに、上記第2吸気通
路7bの入口部分には、この第2吸気通路7bを
流れる吸気量を制御する第2絞り弁11が介設さ
れ、両絞り弁10,11はスロツトル操作に連係
して開閉作動される。第1絞り弁10は低負荷時
から開いて負荷の上昇に伴つて全開状態となり、
第2絞り弁11は第1絞り弁10が設定開度以上
となつたときに開き始め負荷の上昇とともに全開
状態となるものである。
A first throttle valve 10 for controlling the amount of intake air flowing through the first intake passage 7a is provided at the entrance of the first intake passage 7a, and a first throttle valve 10 is provided at the entrance of the second intake passage 7b. A second throttle valve 11 is provided to control the amount of intake air flowing through the second intake passage 7b, and both throttle valves 10 and 11 are opened and closed in conjunction with throttle operation. The first throttle valve 10 opens when the load is low and becomes fully open as the load increases,
The second throttle valve 11 begins to open when the first throttle valve 10 reaches a set opening or more, and becomes fully open as the load increases.

上記第1吸気通路7aには低吸気量域を含む全
運転領域で燃料を噴射する第1噴射弁12が各気
筒に対してそれぞれ配設されるとともに、上記第
2吸気通路7bには高吸気量域で燃料を噴射する
第2噴射弁13が各気筒に対してそれぞれ配設さ
れている。この第1および第2噴射弁12,13
にはコントロールユニツト14(マイクロコンピ
ユータ)からの燃料制御信号として燃料噴射パル
スが出力され、その噴射パルス幅に応じた所定量
の燃料噴射を行う。
The first intake passage 7a is provided with a first injection valve 12 for each cylinder, which injects fuel in all operating ranges including the low intake air amount range, and the second intake passage 7b is provided with a high intake air amount. A second injection valve 13 that injects fuel in a quantity range is provided for each cylinder. These first and second injection valves 12, 13
A fuel injection pulse is output as a fuel control signal from the control unit 14 (microcomputer), and a predetermined amount of fuel is injected according to the width of the injection pulse.

また、上記吸気通路7には第1の絞り弁10を
バイパスしたバイパス通路15が設けられ、この
バイパス通路15の途中にバイパスエア量を制御
するバイパス制御弁16が介装され、このバイパ
ス制御弁16は前記コントロールユニツト14の
制御信号に基づくリニアソレノイド16aの作動
によつてその開度が調整されて、エンジン温度
(冷却水温度)が低い程バイパスエア量を増大す
るように制御するものである。
Further, the intake passage 7 is provided with a bypass passage 15 that bypasses the first throttle valve 10, and a bypass control valve 16 for controlling the amount of bypass air is interposed in the middle of this bypass passage 15. Reference numeral 16 is a linear solenoid 16a whose opening degree is adjusted by the operation of a linear solenoid 16a based on a control signal from the control unit 14, and controls such that the amount of bypass air increases as the engine temperature (cooling water temperature) decreases. .

上記コントロールユニツト14には前記吸入空
気量検出手段9からの吸気量信号が入力されると
ともに、回転数センサー17からエンジン回転数
信号および水温センサー18からエンジン冷却水
温度信号が入力される。
The control unit 14 receives an intake air amount signal from the intake air amount detection means 9, an engine rotation speed signal from the rotation speed sensor 17, and an engine cooling water temperature signal from the water temperature sensor 18.

このコントロールユニツト14は、吸入空気量
検出手段9および回転数センサー17、水温セン
サー18の出力に応じて冷間時補正を含めた運転
状態に対応した燃料噴射量および時期(噴射回
数)を演算する燃料噴射量演算手段19と、この
燃料噴射量演算手段19による演算噴射量(噴射
パルス幅)に基づき、この演算噴射量が設定値以
下のときには第1噴射弁12に噴射パルスを出力
して駆動し、設定値を越えたときに第1および第
2噴射弁12,13に噴射パルスを出力して駆動
する噴射弁作動手段20と、上記水温センサー1
8の信号を受けエンジン冷間時には上記噴射弁作
動手段20の設定値を冷間増量に対応して高く
し、第2噴射弁13の噴射開始時期を遅らせ、少
なくとも第2絞り弁11が閉じている領域では第
2噴射弁13からの噴射作動を停止する第2噴射
弁停止手段21と、前記水温センサー18の出力
に基づいてエンジン温度が低い程バイパス通路1
5のバイパス制御弁16を開いてバイパスエア量
を増大するような制御信号をリニアソレノイド1
6aに出力するバイパス制御弁駆動手段22とを
有している。
This control unit 14 calculates the fuel injection amount and timing (injection number) corresponding to the operating state including cold time correction according to the outputs of the intake air amount detection means 9, the rotation speed sensor 17, and the water temperature sensor 18. Based on the fuel injection amount calculating means 19 and the calculated injection amount (injection pulse width) by this fuel injection amount calculating means 19, when this calculated injection amount is less than a set value, an injection pulse is output to the first injection valve 12 to drive it. and an injection valve operating means 20 that outputs an injection pulse to the first and second injection valves 12 and 13 to drive them when the set value is exceeded, and the water temperature sensor 1.
8, when the engine is cold, the set value of the injection valve operating means 20 is increased in accordance with the cold increase, the injection start timing of the second injection valve 13 is delayed, and at least the second throttle valve 11 is closed. The second injection valve stop means 21 stops the injection operation from the second injection valve 13 in the area where the engine temperature is lower based on the output of the water temperature sensor 18,
The linear solenoid 1 sends a control signal to open the bypass control valve 16 of No. 5 to increase the amount of bypass air.
6a.

上記コントロールユニツト14による燃料噴射
制御は、第2図に示すように、エンジン回転数N
と吸気量Qaとの関係において、温間時には設定
曲線Aを境にして下方の領域が第1噴射弁12
による噴射領域であり、領域が第1および第2
噴射弁12,13による噴射領域である。この設
定曲線Aがほぼ第2絞り弁11の開弁曲線に相当
するものであり、低吸気量域では第1噴射弁12
のみによつて燃料を供給し、吸気量Qaすなわち
燃料噴射量が設定値(噴射パルス幅の設定値)に
達すると、第2噴射弁13による燃料噴射を開始
するものであり、冷間時には破線で示すようにこ
の設定曲線Bが高い値に設定され、燃料噴射量が
増大しても第2噴射弁13による噴射開始を遅ら
せることにより、冷間時の燃料増量、バイパスエ
ア量の増大に伴う第2絞り弁11開作動前の第2
噴射弁13の燃料噴射を阻止するものである。
The fuel injection control by the control unit 14 is performed as shown in FIG.
In the relationship between the intake air amount Qa and the intake air amount Qa, when the temperature is warm, the area below the setting curve A is the first injector 12.
and the area is the first and second injection area.
This is the injection area by the injection valves 12 and 13. This setting curve A approximately corresponds to the valve opening curve of the second throttle valve 11, and in the low intake air amount region, the first injection valve 12
When the intake air amount Qa, that is, the fuel injection amount reaches a set value (set value of injection pulse width), fuel injection by the second injector 13 is started, and when it is cold, the dashed line As shown in , this setting curve B is set to a high value, and even if the fuel injection amount increases, the start of injection by the second injector 13 is delayed, so that the amount of fuel increases during cold conditions and the amount of bypass air increases. The second throttle valve 11 before opening operation
This prevents the fuel injection valve 13 from injecting fuel.

第3図は上記コントロールユニツト14の動作
を説明するためのフローチヤートであり、スター
ト後、ステツプS1で水温センサー18による水
温信号を入力し、ステツプS2で運転状態に対応
する燃料噴射量を演算するものであつて、吸入空
気量検出手段9による吸入空気量Qa、回転数セ
ンサー17によるエンジン回転数N、定数K、補
正係数αなどから燃料噴射パルス幅τ(噴射時間)
を求める。なお、補正係数αは冷間時等の補正増
量を行うためのもので、加算補正値τoは燃料噴
射パルスが第1もしくは第2噴射弁12,13に
出力されても、実際に燃料の噴射が開始されるま
でに一定時間を要することから、この立上りの時
間を補正するためのものである。また、τaは冷
間補正等を加味した基本噴射時間で、τbは加速
増量時間である。
FIG. 3 is a flowchart for explaining the operation of the control unit 14. After starting, the water temperature signal from the water temperature sensor 18 is input in step S1, and the fuel injection amount corresponding to the operating condition is calculated in step S2. The fuel injection pulse width τ (injection time) is determined from the intake air amount Qa detected by the intake air amount detection means 9, the engine rotation speed N detected by the rotation speed sensor 17, the constant K, the correction coefficient α, etc.
seek. Note that the correction coefficient α is for correcting and increasing the amount during cold periods, etc., and the additional correction value τo is for correcting the amount of fuel actually injected even if the fuel injection pulse is output to the first or second injection valve 12, 13. This is to correct the rise time since it takes a certain amount of time for the start of the rise. Further, τa is the basic injection time taking into account cold correction, etc., and τb is the acceleration increase time.

続いて、冷却水温tに応じバイパス制御弁16
の制御量を読出し(S3)、この制御量に応じてバ
イパス制御弁16のリニアソレノイド16aを駆
動する(S4)。また、第2噴射弁13の噴射を開
始する設定パルス幅τvを読出し(S5)、前記ステ
ツプS2による演算噴射量としての噴射パルス幅
τa+τbがこの設定パルス幅τv以上かどうか判断
し(S6)、この判断がNO(低噴射量域)のときに
は非同期加速スイツチがオンかどうかを判断し
(S7)、非同期加速スイツチがオン(YES)とな
つている大きな加速状態のときにはステツプS8
で非同期噴射を行う一方、この非同期加速スイツ
チがオフ(NO)のときには非同期噴射を行うこ
となく、第1噴射弁12用の噴射パルスτpと第
2噴射弁13用の噴射パルスτsとを演算する
(S9)。上記低噴射量域では、第2噴射弁13用
の噴射パルスτsが零に設定されており、この第2
噴射弁13からの燃料噴射を行うことなく、第1
噴射弁12のみによつてステツプS2で求めた噴
射パルス幅τpの制御信号によつて第1噴射弁1
2を駆動して燃料噴射を行う(S13)。
Subsequently, the bypass control valve 16 is activated depending on the cooling water temperature t.
The control amount is read (S3), and the linear solenoid 16a of the bypass control valve 16 is driven in accordance with this control amount (S4). Further, the set pulse width τv for starting the injection of the second injection valve 13 is read out (S5), and it is determined whether the injection pulse width τa + τb as the calculated injection amount in step S2 is greater than or equal to the set pulse width τv (S6); When this judgment is NO (low injection amount region), it is judged whether the asynchronous acceleration switch is on (S7), and when the asynchronous acceleration switch is on (YES) and the engine is in a large acceleration state, step S8 is performed.
On the other hand, when this asynchronous acceleration switch is off (NO), the injection pulse τp for the first injection valve 12 and the injection pulse τs for the second injection valve 13 are calculated without performing the asynchronous injection. (S9). In the above-mentioned low injection amount region, the injection pulse τs for the second injection valve 13 is set to zero;
without injecting fuel from the injection valve 13.
The first injector 1 is controlled by the control signal of the injection pulse width τp determined in step S2 only by the injector 12.
2 to perform fuel injection (S13).

一方、上記ステツプS6の判断がYESで高噴射
量域のときには、同様に非同期加速スイツチがオ
ンかどうかを判断し(S10)、非同期加速スイツ
チがオン(YES)となつている大きな加速状態
のときにはステツプS11で非同期噴射を行う一
方、非同期加速スイツチがオフ(NO)のときに
は非同期噴射を行うことなく、第1噴射弁12用
の噴射パルスτpと第2噴射弁13用の噴射パル
スτsとを演算し(S12)、この制御信号によつて
第1および第2噴射弁12,13を駆動して燃料
噴射を行う(S13)。なお、この例では第1噴射
弁12と第2噴射弁13とは同量(半分ずつ)の
燃料を噴射するように設定されている。
On the other hand, if the determination in step S6 is YES and the injection amount is in the high injection amount region, it is similarly determined whether the asynchronous acceleration switch is on (S10), and if the asynchronous acceleration switch is on (YES) and the injection is in a large acceleration state, While performing asynchronous injection in step S11, when the asynchronous acceleration switch is off (NO), the injection pulse τp for the first injection valve 12 and the injection pulse τs for the second injection valve 13 are calculated without performing the asynchronous injection. (S12), and the first and second injection valves 12, 13 are driven by this control signal to perform fuel injection (S13). In this example, the first injection valve 12 and the second injection valve 13 are set to inject the same amount (half each) of fuel.

このとき上記ステツプS5で読出す設定値τvの
値は、第5図のような特性に設定されている。す
なわち、水温センサー18により検出した冷却水
温tが暖機完了温度to以下の低温時には大きな設
定値τvを、越えたときは小さな設定値τvを読出
すように設定されているものである。
At this time, the value of the set value τv read out in step S5 is set to have the characteristics as shown in FIG. That is, when the cooling water temperature t detected by the water temperature sensor 18 is lower than the warm-up completion temperature to, a large set value τv is read out, and when it exceeds it, a small set value τv is read out.

上記燃料噴射において、高噴射量域で非同期噴
射を行う場合の噴射パルスτp,τsの出力は、第4
図に示すようになる。
In the above fuel injection, the output of injection pulses τp and τs when performing asynchronous injection in the high injection amount region is
The result will be as shown in the figure.

実施例 2 この実施例は第6図に全体構成を、第7図にフ
ローチヤートを示している。本例では冷却水温度
の検出に代えて第2絞り弁11の開度をスロツト
ルセンサー23によつて直接検出し、この検出信
号をコントロールユニツト14の第2噴射弁停止
手段21に出力し、燃料噴射量演算手段19でエ
ンジンの運転状態に応じて演算した燃料噴射量
が、噴射弁作動手段20における設定値を越えて
いるときでも、第2絞り弁11が閉じている信号
が第2噴射弁停止手段21出力されている場合に
は、第2噴射弁13の作動を停止し、演算噴射量
を全部第1噴射弁12によつて噴射する制御信号
を出力するものである。その他は前例と同様に設
けられ、第1図と同一構造には同一符号を付して
説明を省略する。
Embodiment 2 In this embodiment, the overall configuration is shown in FIG. 6, and the flowchart is shown in FIG. 7. In this example, instead of detecting the cooling water temperature, the opening degree of the second throttle valve 11 is directly detected by the throttle sensor 23, and this detection signal is output to the second injection valve stopping means 21 of the control unit 14. Even when the fuel injection amount calculated by the fuel injection amount calculation means 19 according to the operating state of the engine exceeds the set value in the injection valve actuation means 20, the signal indicating that the second throttle valve 11 is closed indicates that the second injection is performed. When the valve stop means 21 is outputting, it outputs a control signal to stop the operation of the second injection valve 13 and cause the first injection valve 12 to inject the entire calculated injection amount. The rest is provided in the same manner as in the previous example, and the same structures as those in FIG.

第7図は上記特性を得るための本例のコントロ
ールユニツト14の動作を示すフローチヤートで
あり、スタート後、ステツプS1で運転状態に対
応する燃料噴射量を演算するものであつて、吸入
空気量検出手段9による吸入空気量Qa、回転数
センサー17によるエンジン回転数N、定数K、
補正係数αなどから燃料噴射パルス幅τを求め
る。続いて、第2噴射弁13の燃料噴射を開始す
る設定パルス幅τvを読出し(S2)、前記ステツプ
S1で演算した噴射パルス幅τa+τbがこの設定パ
ルス幅τv以上はどうかを判断し(S3)、この判断
がNO(低噴射量域)のときには非同期加速スイ
ツチがオンかどうかを判断し(S4)、非同期加速
スイツチがオン(YES)となつている大きな加
速状態のときにはステツプS5で非同期噴射を行
う一方、この非同期加速スイツチがオフ(NO)
のときには非同期噴射を行うことなく、第1噴射
弁12用の噴射パルスτpと第2噴射弁13用の
噴射パルスτsとを演算する(S6)。上記低噴射量
域では第2噴射弁13用の噴射パルスτsが零に設
定されており、第2噴射弁13からの燃料噴射を
行うことなく、第1噴射弁12のみによつて前記
ステツプS1で求めた噴射パルス幅τpの制御信号
によつて第1噴射弁12を駆動して燃料噴射を行
う(S11)。
FIG. 7 is a flowchart showing the operation of the control unit 14 of this example to obtain the above characteristics. After the start, in step S1, the fuel injection amount corresponding to the operating condition is calculated, and the intake air amount is calculated. Intake air amount Qa detected by detection means 9, engine rotation speed N detected by rotation speed sensor 17, constant K,
The fuel injection pulse width τ is determined from the correction coefficient α and the like. Next, the set pulse width τv for starting fuel injection from the second injection valve 13 is read out (S2), and the step
It is determined whether the injection pulse width τa + τb calculated in S1 is greater than or equal to the set pulse width τv (S3), and when this determination is NO (low injection amount region), it is determined whether the asynchronous acceleration switch is on (S4), When the asynchronous acceleration switch is turned on (YES) and there is a large acceleration state, asynchronous injection is performed in step S5, while this asynchronous acceleration switch is turned off (NO).
In this case, the injection pulse τp for the first injection valve 12 and the injection pulse τs for the second injection valve 13 are calculated without performing asynchronous injection (S6). In the low injection amount region, the injection pulse τs for the second injection valve 13 is set to zero, and the step S1 is performed only by the first injection valve 12 without injecting fuel from the second injection valve 13. The first injection valve 12 is driven to perform fuel injection using the control signal having the injection pulse width τp determined in (S11).

一方、高噴射量域で上記ステツプS3の判断が
YESのときには、ステツプS7でスロツトルセン
サー23の信号から第2絞り弁11が開いている
かどうか判断し、閉じている(NO)ときには前
記ステツプS4からS6に進んで、第2噴射弁13
の作動は行わない。上記ステツプS7の判断が
YESで第2絞り弁11が開いているときには、
非同期加速スイツチがオンかどうかを判断し
(S8)、非同期加速スイツチがオン(YES)とな
つている大きな加速状態のときにはステツプS9
で非同期噴射を行う一方、非同期加速スイツチが
オフ(NO)のときには非同期噴射を行うことな
く、ステツプS10で第1噴射弁12用の噴射パル
スτpと第2噴射弁13用の噴射パルスτsとを演算
し、この噴射パルスで第1および第2噴射弁1
2,13を駆動して燃料噴射を行う(S11)。な
お、この例では加速増量補正τbは全量を第1噴
射弁12によつて噴射するようにしている。
On the other hand, in the high injection amount region, the judgment in step S3 above is
If YES, it is determined in step S7 whether or not the second throttle valve 11 is open based on the signal from the throttle sensor 23, and if it is closed (NO), the process advances from step S4 to S6 and the second injector valve 13 is opened.
will not operate. The judgment in step S7 above is
When the second throttle valve 11 is open with YES,
Determine whether the asynchronous acceleration switch is on (S8), and if the asynchronous acceleration switch is on (YES) and is in a large acceleration state, step S9
On the other hand, when the asynchronous acceleration switch is off (NO), the asynchronous injection is not performed and the injection pulse τp for the first injection valve 12 and the injection pulse τs for the second injection valve 13 are This injection pulse is used to control the first and second injection valves 1.
2 and 13 to perform fuel injection (S11). In this example, the acceleration increase correction τb is such that the entire amount is injected by the first injection valve 12.

以上説明したように、演算噴射量(噴射パルス
幅τa+τb)が設定値τvを越えているときでも、
第2絞り弁11が閉じているときには第2噴射弁
13による燃料噴射は行わないようにしたもので
ある。
As explained above, even when the calculated injection amount (injection pulse width τa + τb) exceeds the set value τv,
When the second throttle valve 11 is closed, fuel injection by the second injection valve 13 is not performed.

なお、上記実施例において、第1図に示すよう
に第1噴射弁12は比較的燃焼室2に近い第1吸
気通路7aの下流側部分に配設し、この第1噴射
弁12から噴射された燃料が速やかに燃焼室2に
供給されるようにして、吸気量の増減に対する燃
料の応答性を良好にしているものであり、一方、
第2噴射弁13は第1噴射弁12より上流側の第
2吸気通路7bに配設して噴射燃料と吸気との混
合、微粒化を良好にして、霧化を促進するように
しているものである。
In the above embodiment, as shown in FIG. 1, the first injector 12 is disposed in the downstream portion of the first intake passage 7a relatively close to the combustion chamber 2, and the first injector 12 injects air. The fuel is quickly supplied to the combustion chamber 2 to improve the responsiveness of the fuel to increases and decreases in the amount of intake air, and on the other hand,
The second injection valve 13 is disposed in the second intake passage 7b on the upstream side of the first injection valve 12 to improve mixing and atomization of the injected fuel and intake air, thereby promoting atomization. It is.

また、第1吸気通路7aを流れる吸気量を制御
する第1絞り弁10は、第1図のように第1吸気
通路7aの入口部に介設する他、第2絞り弁11
より上流側の吸気通路7に介設しても同様の制御
作用が得られる。
In addition, the first throttle valve 10 that controls the amount of intake air flowing through the first intake passage 7a is provided at the entrance of the first intake passage 7a as shown in FIG.
A similar control effect can be obtained even if the intake passage 7 is provided in the intake passage 7 on the more upstream side.

さらに、上記実施例では各気筒の燃焼室に各々
吸気通路に接続した2つの吸気ポートを独立して
開口し、それぞれ吸気弁で開閉するようにしてい
るが、単一の吸気ポートを開口し、これに接続し
た吸気通路を複数の吸気通路に区画するようにし
てもよい。
Furthermore, in the above embodiment, two intake ports connected to the intake passages are opened independently in the combustion chamber of each cylinder, and each is opened and closed by an intake valve, but a single intake port is opened, The intake passage connected to this may be divided into a plurality of intake passages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例におけるエンジ
ンの燃料噴射装置の概略構成図、第2図は第1の
実施例におけるエンジン回転数と吸気量との関係
において噴射弁の噴射領域の制御特性を示す説明
図、第3図は第1の実施例におけるコントロール
ユニツトのフローチヤート図、第4図は第3図に
よつて噴射弁に出力される燃料噴射パルスの一例
を示す説明図、第5図は第3図における冷却水温
に対する設定値の特性を示す説明図、第6図は第
2の実施例におけるエンジンの燃料噴射装置の概
略構成図、第7図は第2の実施例におけるコント
ロールユニツトのフローチヤート図である。 1……エンジン、2……燃焼室、3,4……吸
気ポート、7……吸気通路、7a……第1吸気通
路、7b……第2吸気通路、9……吸入空気量検
出手段、10……第1絞り弁、11……第2絞り
弁、12……第1噴射弁、13……第2噴射弁、
14……コントロールユニツト、18……水温セ
ンサー、19……燃料噴射量演算手段、20……
噴射弁作動手段、21……第2噴射弁停止手段、
23……スロツトルセンサー。
FIG. 1 is a schematic configuration diagram of an engine fuel injection device according to a first embodiment of the present invention, and FIG. 2 is a control of the injection region of an injector in relation to the engine speed and intake air amount in the first embodiment. FIG. 3 is a flowchart of the control unit in the first embodiment. FIG. 4 is an explanatory diagram showing an example of the fuel injection pulse output to the injection valve according to FIG. 3. Fig. 5 is an explanatory diagram showing the characteristics of the set value with respect to the cooling water temperature in Fig. 3, Fig. 6 is a schematic configuration diagram of the engine fuel injection device in the second embodiment, and Fig. 7 is a control diagram in the second embodiment. FIG. 3 is a flowchart of the unit. DESCRIPTION OF SYMBOLS 1... Engine, 2... Combustion chamber, 3, 4... Intake port, 7... Intake passage, 7a... First intake passage, 7b... Second intake passage, 9... Intake air amount detection means, 10...First throttle valve, 11...Second throttle valve, 12...First injection valve, 13...Second injection valve,
14...Control unit, 18...Water temperature sensor, 19...Fuel injection amount calculation means, 20...
Injection valve operating means, 21... second injection valve stopping means,
23...Throttle sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 各気筒に対して低吸気量域を含む全運転領域
で吸気を供給する第1吸気通路と、高吸気量域で
吸気を供給する第2吸気通路と、第1吸気通路に
設けられる第1噴射弁と、第2吸気通路に設けら
れる第2噴射弁と、第1吸気通路の吸気量を制御
する第1絞り弁と、第2吸気通路の吸気量を制御
する第2絞り弁と、吸気量を検出する吸入空気量
検出手段と、吸入空気量検出手段の出力に応じて
燃料噴射量を演算する燃料噴射量演算手段と、該
燃料噴射量演算手段による演算噴射量が設定値以
下のときには第1噴射弁を駆動し、この演算噴射
量が設定値を越えたときに第1および第2噴射弁
を駆動する噴射弁作動手段と、該噴射弁作動手段
に対し第2絞り弁の閉じている領域では前記演算
噴射量が設定値を越えていても第2噴射弁の作動
を停止する第2噴射弁停止手段とを備えたことを
特徴とするエンジンの燃料噴射装置。
1 A first intake passage that supplies intake air to each cylinder in all operating ranges including a low intake air volume range, a second intake passage that supplies intake air in a high intake air volume range, and a first intake passage provided in the first intake passage. an injection valve, a second injection valve provided in the second intake passage, a first throttle valve that controls the amount of intake air in the first intake passage, a second throttle valve that controls the amount of intake air in the second intake passage; intake air amount detection means for detecting the intake air amount; a fuel injection amount calculation means for calculating the fuel injection amount according to the output of the intake air amount detection means; and when the injection amount calculated by the fuel injection amount calculation means is less than a set value. an injection valve operating means that drives the first injection valve and drives the first and second injection valves when the calculated injection amount exceeds a set value; 2. A fuel injection device for an engine, comprising: second injection valve stopping means for stopping operation of the second injection valve in a region where the calculated injection amount exceeds a set value.
JP58213879A 1983-11-14 1983-11-14 Fuel injection device of engine Granted JPS60108544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213879A JPS60108544A (en) 1983-11-14 1983-11-14 Fuel injection device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213879A JPS60108544A (en) 1983-11-14 1983-11-14 Fuel injection device of engine

Publications (2)

Publication Number Publication Date
JPS60108544A JPS60108544A (en) 1985-06-14
JPH0137584B2 true JPH0137584B2 (en) 1989-08-08

Family

ID=16646521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213879A Granted JPS60108544A (en) 1983-11-14 1983-11-14 Fuel injection device of engine

Country Status (1)

Country Link
JP (1) JPS60108544A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5161278B2 (en) * 2010-09-22 2013-03-13 日立オートモティブシステムズ株式会社 Fuel injection control device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917269A (en) * 1982-07-21 1984-01-28 Hitachi Ltd Accommodating magazine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917269A (en) * 1982-07-21 1984-01-28 Hitachi Ltd Accommodating magazine

Also Published As

Publication number Publication date
JPS60108544A (en) 1985-06-14

Similar Documents

Publication Publication Date Title
US6079396A (en) Automotive cold start fuel volatility compensation
JPS6119816B2 (en)
US4442815A (en) Optimum air-fuel ratio control for internal combustion engine
JPH0412151A (en) Air fuel ratio controller of internal combustion engine
KR920005851B1 (en) Electric fuel control device
JPH0137584B2 (en)
JPS6118663B2 (en)
JPH04279742A (en) Fuel injection control device of internal combustion engine
JPH0313416B2 (en)
JPH0137585B2 (en)
JPS60108529A (en) Suction device of engine
JPH0618047Y2 (en) Fuel injection engine
JP3627462B2 (en) Control device for internal combustion engine
JP2764515B2 (en) Fuel supply device for internal combustion engine
JPS62237023A (en) Cooling water controller for engine
JPH0672562B2 (en) Engine fuel injector
JPS6119815B2 (en)
JPS6118662B2 (en)
JPH071021B2 (en) Air-fuel ratio controller for engine
JPS60108545A (en) Fuel injection device of engine
JP2703259B2 (en) Engine fuel supply
JPS62237025A (en) Cooling water controller for engine
JPS6118661B2 (en)
JPS6223546A (en) Electronically controlled fuel injection device for internal-combustion engine
JPH0660584B2 (en) Fuel injector for multi-cylinder engine