JPH0137379B2 - - Google Patents

Info

Publication number
JPH0137379B2
JPH0137379B2 JP11044079A JP11044079A JPH0137379B2 JP H0137379 B2 JPH0137379 B2 JP H0137379B2 JP 11044079 A JP11044079 A JP 11044079A JP 11044079 A JP11044079 A JP 11044079A JP H0137379 B2 JPH0137379 B2 JP H0137379B2
Authority
JP
Japan
Prior art keywords
isobutylene
water
sulfone
tba
hydrocarbon mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11044079A
Other languages
Japanese (ja)
Other versions
JPS5634643A (en
Inventor
Yoshiharu Okumura
Katsuzo Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP11044079A priority Critical patent/JPS5634643A/en
Priority to GB8027443A priority patent/GB2060616B/en
Priority to DE19803031702 priority patent/DE3031702A1/en
Priority to CA359,042A priority patent/CA1129890A/en
Priority to FR8018789A priority patent/FR2464241A1/en
Publication of JPS5634643A publication Critical patent/JPS5634643A/en
Publication of JPH0137379B2 publication Critical patent/JPH0137379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、イソブチレンを含有するC4炭化水
素混合物から第3級ブチルアルコール(以下
TBAという)を高収率で製造する方法に関する。 さらに詳しくは、多孔性の酸型陽イオン交換樹
脂とスルホンとの存在下に、イソブチレンを含有
するC4炭化水素混合物からイソブチレンと水と
を選択的に反応させTBAを高収率で製造する方
法に関するものである。 酸性陽イオン交換樹脂および種々の溶媒の存在
下に、オレフイン系不飽和化合物を水和して対応
するアルコール類を製造する方法については多く
の提案がなされている。たとえば、イソブチレン
又はイソブチレン含有炭化水素混合物を酸性イオ
ン交換剤を触媒として有機酸水溶液で反応させる
方法(特開昭50−32116号、特公昭53−14044号公
報)、同様の触媒を用いて反応系中に1価アルコ
ールを添加して反応させる方法(特開昭50−
137906号公報)、同じく反応系中にグリコール、
グリコールエーテル、グリコールジエーテルなど
を添加して反応させる方法(特開昭51−59802号
公報、米国特許第4096194号明細書)などイソブ
チレンと水とを反応させてTBAを製造する方法、
あるいは、酸性イオン交換樹脂の触媒およびスル
ホンの存在下にオレフイン系不飽和化合物、特に
ブテン―1および/またはブテン―2と水とを
100〜220℃の温度で反応させ第2級ブチルアルコ
ール(以下SBAという)を製造する方法(特開
昭53−7605号公報)などが提案されている。 しかしながら、これら公知方法のうちイソブチ
レンを水和してTBAを製造する方法は、反応速
度的には若干の向上が認められるが、反応系に添
加して存在させる有機酸あるいは有機溶媒とイソ
ブチレンとの付加物などの副生物が生成する。ま
た、それら副生物および反応系に添加される溶媒
などは、TBAの沸点に近いかまたはそれ以下の
沸点を有するために、溶媒からTBAの分離回収
を困難あるいは経費のかかるものとしている。さ
らに、ブテン−1およびブテン−2と水とを100
〜220℃の温度で反応させてSBAを製造する方法
では、溶媒の安定性は認められるが、原料にイソ
ブチレンを含有するC4炭化水素混合物を用いイ
ソブチレンと水とを水和してTBAを製造する場
合に、SBAの生成およびイソブチレンの二量化
が起るため、イソブチレンを選択的に水和して高
収率でTBAを製造することができないという問
題がある。 本発明者らは、上記のような問題点を改善する
ために研究を重ねた結果、特定のイオン交換樹脂
と特定のスルホン類の存在下に、特定の条件下イ
ソブチレンと水を反応させることにより副反応を
抑制し、かつ反応速度と転化率を著しく促進する
ことを見出し本発明を完成したのである。 すなわち、本発明は、イソブチレンを含有する
C4炭化水素混合物からイソブチレンと水とを選
択的に反応させTBAを製造する方法において、
表面積0.5〜200m2/gおよび交換容量2〜
5meq/gのスルホン化スチレン−ジビニルベン
ゼン共重合体の多孔性の酸型陽イオン交換樹脂と
スルホレンまたは非環状スルホンの濃度が50〜97
重量%の水との混合液とを存在させ、イソブチレ
ン、n−ブテン類、ブタン類を含有するC4炭化
水素混合物中のイソブチレンの水/イソブチレン
のモル比を1〜10の割合とし、温度が40〜100℃、
該C4炭化水素混合物が液状を保持する圧力で反
応させることを特徴とするTBAの製造方法であ
る。 本発明に用いるイソブチレンを含有するC4
化水素混合物は特に限定されるものではなく、通
常は炭素数が4の炭化水素類で、たとえば、イソ
ブチレン、ブテン−1、ブテン−2、イソブタ
ン、n−ブタンなどを主体とするもので若干の
C3またはC5の炭化水素を含有していてもよい。
工業的には石油類の水蒸気分解、溶解分解などか
ら得られるイソブチレン含有のC4留分が用いら
れる。 本発明で用いられるスルホン類は、 スルホン、 または非環状のスルホンであるが、非環状のスル
ホンとしては、例えば
The present invention produces tertiary butyl alcohol (hereinafter referred to as
This invention relates to a method for producing TBA) with high yield. More specifically, a method for producing TBA in high yield by selectively reacting isobutylene and water from a C 4 hydrocarbon mixture containing isobutylene in the presence of a porous acidic cation exchange resin and sulfone. It is related to. Many proposals have been made regarding methods for producing corresponding alcohols by hydrating olefinically unsaturated compounds in the presence of acidic cation exchange resins and various solvents. For example, there is a method in which isobutylene or an isobutylene-containing hydrocarbon mixture is reacted with an aqueous organic acid solution using an acidic ion exchanger as a catalyst (Japanese Unexamined Patent Publication No. 50-32116, Japanese Patent Publication No. 53-14044), a reaction system using a similar catalyst, A method of reacting by adding monohydric alcohol to
137906), glycol is also included in the reaction system,
A method of producing TBA by reacting isobutylene with water, such as a method of adding and reacting glycol ether, glycol diether, etc. (Japanese Unexamined Patent Publication No. 51-59802, US Pat. No. 4,096,194);
Alternatively, an olefinically unsaturated compound, especially butene-1 and/or butene-2, and water in the presence of an acidic ion exchange resin catalyst and a sulfone.
A method of producing secondary butyl alcohol (hereinafter referred to as SBA) by reaction at a temperature of 100 to 220°C has been proposed (Japanese Patent Laid-Open No. 7605/1983). However, among these known methods, the method of producing TBA by hydrating isobutylene shows a slight improvement in the reaction rate, but the method of producing TBA by hydrating isobutylene has a slight improvement in the reaction rate. By-products such as adducts are produced. Furthermore, these by-products and the solvent added to the reaction system have boiling points close to or lower than the boiling point of TBA, making it difficult or expensive to separate and recover TBA from the solvent. Furthermore, butene-1 and butene-2 and water were added to 100%
In the method of producing SBA by reacting at a temperature of ~220°C, the stability of the solvent is recognized, but TBA is produced by hydrating isobutylene and water using a C 4 hydrocarbon mixture containing isobutylene as a raw material. When doing so, the formation of SBA and the dimerization of isobutylene occur, so there is a problem that it is not possible to selectively hydrate isobutylene and produce TBA in high yield. As a result of repeated research in order to improve the above-mentioned problems, the present inventors discovered that by reacting isobutylene and water under specific conditions in the presence of a specific ion exchange resin and specific sulfones. They have completed the present invention by discovering that side reactions can be suppressed and the reaction rate and conversion rate can be significantly accelerated. That is, the present invention contains isobutylene.
In a method for producing TBA by selectively reacting isobutylene and water from a C4 hydrocarbon mixture,
Surface area 0.5~ 200m2 /g and exchange capacity 2~
Porous acid type cation exchange resin of 5meq/g sulfonated styrene-divinylbenzene copolymer and sulfolene or acyclic sulfone concentration 50-97
% by weight of water is present, the water/isobutylene molar ratio of isobutylene in the C4 hydrocarbon mixture containing isobutylene, n-butenes, and butanes is from 1 to 10, and the temperature is 40~100℃,
The method for producing TBA is characterized in that the reaction is carried out at a pressure that maintains the C 4 hydrocarbon mixture in a liquid state. The C4 hydrocarbon mixture containing isobutylene used in the present invention is not particularly limited, and is usually a hydrocarbon having 4 carbon atoms, such as isobutylene, butene-1, butene-2, isobutane, n- Contains mainly butane, etc., with some
It may contain C3 or C5 hydrocarbons.
Industrially, isobutylene-containing C4 fractions obtained from steam cracking, dissolution cracking, etc. of petroleum are used. The sulfones used in the present invention include sulfone, or an acyclic sulfone, but as an acyclic sulfone, e.g.

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】【formula】

【式】などがあげられる。 また、これらスルホン類は混合物として用いるこ
ともできる。スルホン類は、通常水に溶解して使
用するが、その使用量は、水100重量部に対して
100〜3000部、特に200〜2000重量部が好ましい。 本発明において用いる多孔性の酸型陽イオン交
換樹脂は、スチレンとジビニルベンゼンとの共重
合体を母核として、これにスルホン酸基の入つた
ポリスチロールスルホン酸型樹脂であり、幾何学
的構造面からは物理的な細孔を有する多孔性(ポ
ーラス、ハイポーラス)型で、表面積が0.5m2
g〜200m2/g(乾燥重量)、交換容量2.0meq/
g〜5.0meq/g(乾燥重量)であることを要す
る。 触媒の使用量は、触媒を懸濁状で使用する場合
と、固定床で使用する場合で異なるが、前者の場
合はスルホン類の水溶液に対して0.1〜10重量%
が好ましい。 なお、イソブチレンに対する水のモル比は1以
下になると反応率が低下し、一方モル比が大き過
ぎると反応器の効率が低下するので1〜10の範囲
とする必要がある。 反応温度は40〜100℃である。反応圧力は、反
応温度における原料炭化水素混合物の蒸気圧ない
しはそれよりも若干加圧で操作するのが好まし
い。 反応器の型式は、回分式でもよいが、通常は多
孔性の酸型陽イオン交換樹脂を固定床とした連続
式で行われる。 反応時間は、回分式の場合は通常20分〜10時間
の範囲であり、連続式の場合は通常炭化水素の液
時空間速度(LHSV)0.3〜10hr-1の範囲が適当
である。 本発明の好ましい実施の態様は、上記の条件の
うちでも特に表面積3〜200m2/g、および交換
容量2.7〜5.0meq/gのスルホン化スチレン−ジ
ビニルベンゼン共重合体の多孔性の酸型陽イオン
交換樹脂と、スルホレン、ジエチルスルホン、ま
たはジメチルスルホンの濃度が60〜95重量%の水
との混合液で、イソブチレン、n−ブテン類、ブ
タン類を含有するC4炭化水素混合物中のイソブ
チレンの水/イソブチレンのモル比が1.6〜6.0の
割合で、温度が60〜100℃で、圧力が、7〜18
Kg/cm2で反応させるものである。 なぜならば、スルホン化スチレン−ジビニルベ
ンゼン共重合体の表面積が0.5m2/g以下の通常
のゲル型樹脂では交換容量が2.0meq/g以上で
も触媒としての活性は低く、また、交換容量が
2.0meq/g以下であれば表面積が0.5m2/g以上
であつてもその触媒活性は低い。また、スルホン
類の濃度が50〜97重量%において、水/イソブチ
レンのモル比1〜10においてイソブチレンの水和
反応が促進されるが、反応温度100〜200℃におい
てはイソブチレンの二量化反応およびn−ブテン
類の水和反応が促進されジイソブチレンおよび
SBAが生成するために、イソブチレンと水との
選択的反応においては40〜100℃の温度が効果的
である。 原料のイソブチレン含有C4炭化水素混合物と
スルホン水溶液とを触媒充填反応器において反応
させ、得られた水和反応生成物の混合物は蒸留し
て未反応炭化水素混合物とTBAを含むスルホン
水溶液とに分離し、この水溶液分については蒸留
を行なつて粗TBA(TBA/水共沸混合物)とス
ルホン水溶液とに分離する。粗TBAは常法によ
り水を除去して実質的に純粋なTBAとし、分離
された未反応炭化水素混合物とスルホン水溶液は
反応器に再循環して水和反応に用いることができ
る。 以上、本発明の方法によるとイソブチレン含有
C4炭化水素混合物からイソブチレンを選択的に
水和する方法において、イソブチレンの反応速
度、転化率が著しく増加されるとともに副反応を
抑制して高収率でTBAを製造することができる。
さらに、スルホン類の沸点はTBAに比べて相当
に高く、蒸留分離が容易であり、再使用が簡単で
ある。 また、本発明の方法を利用するとイソブチレン
を含有するC4炭化水素混合物からイソブチレン
を単離することができる。すなわち、イソブチレ
ン含有C4炭化水素混合物中のイソブチレンを本
発明の方法により選択的にTBAに転換し、引続
きTBA含有スルホン水溶液と未反応炭化水素混
合物とを分離し、TBA含有スルホン水溶液より
蒸留によりTBAを分離した後、公知の方法によ
りTBAを脱水してイソブチレンを得る方法で、
きわめて高純度のイソブチレンを得ることができ
る。 以下に本発明をさらに具体的に説明するために
実施例および比較例を示す。なお、実施例および
比較例における%はモル%を示す。 実施例 1〜11 撹拌際つきのオートクレーブを使用して、スル
ホン化されたスチレン−ジビニルベンゼン共重合
体の多孔性(ハイポーラス)型の陽イオン交換樹
脂を触媒とし、水にスルホン類を添加した水溶液
でイソブチレン含有C4炭化水素混合物(イソブ
チレン40.0%、n−ブテン類40.0%、ブタン類
20.0%)の水和反応を第1表に示す条件で行つ
た。反応終了後、急冷して反応生成物をガスクロ
マトグラフで分析し、イソブチレンおよびn−ブ
テンの転化率並びにTBAおよびSBAの選択率を
求めてその結果を第1表に併記した。
Examples include [Formula]. Moreover, these sulfones can also be used as a mixture. Sulfones are usually used dissolved in water, but the amount used is 100 parts by weight of water.
100 to 3000 parts by weight, especially 200 to 2000 parts by weight are preferred. The porous acid type cation exchange resin used in the present invention is a polystyrene sulfonic acid type resin containing a sulfonic acid group in a core of a copolymer of styrene and divinylbenzene, and has a geometric structure. From the surface, it is a porous (porous, high porous) type with physical pores, and the surface area is 0.5 m 2 /
g~200m 2 /g (dry weight), exchange capacity 2.0meq/
g to 5.0 meq/g (dry weight). The amount of catalyst used differs depending on whether the catalyst is used in suspension or in a fixed bed, but in the former case it is 0.1 to 10% by weight based on the aqueous solution of sulfones.
is preferred. Note that if the molar ratio of water to isobutylene is less than 1, the reaction rate will decrease, while if the molar ratio is too large, the efficiency of the reactor will decrease, so it is necessary to keep it in the range of 1 to 10. The reaction temperature is 40-100°C. The reaction pressure is preferably operated at or slightly higher than the vapor pressure of the raw hydrocarbon mixture at the reaction temperature. Although the reactor type may be a batch type, it is usually a continuous type using a fixed bed of porous acid type cation exchange resin. The reaction time is usually in the range of 20 minutes to 10 hours in the case of a batch method, and in the case of a continuous method, the liquid hourly space velocity (LHSV) of the hydrocarbon is usually in the range of 0.3 to 10 hr −1 . A preferred embodiment of the present invention is a porous acid-type sulfonated styrene-divinylbenzene copolymer having a surface area of 3 to 200 m 2 /g and an exchange capacity of 2.7 to 5.0 meq/g. A mixture of ion exchange resin and water with a concentration of 60 to 95% by weight of sulfolene, diethyl sulfone, or dimethyl sulfone to remove isobutylene in a C4 hydrocarbon mixture containing isobutylene, n-butenes, and butanes. The molar ratio of water/isobutylene is 1.6-6.0, the temperature is 60-100℃, and the pressure is 7-18℃.
The reaction is carried out at Kg/ cm2 . This is because the sulfonated styrene-divinylbenzene copolymer has a surface area of 0.5 m 2 /g or less, and the catalytic activity is low even if the exchange capacity is 2.0 meq/g or more.
If it is 2.0 meq/g or less, the catalytic activity is low even if the surface area is 0.5 m 2 /g or more. Furthermore, when the concentration of sulfones is 50 to 97% by weight and the molar ratio of water/isobutylene is 1 to 10, the hydration reaction of isobutylene is promoted, but at a reaction temperature of 100 to 200°C, the dimerization reaction of isobutylene and n - The hydration reaction of butenes is promoted and diisobutylene and
Temperatures of 40-100°C are effective in the selective reaction of isobutylene and water to form SBA. The raw material isobutylene-containing C 4 hydrocarbon mixture and sulfone aqueous solution are reacted in a catalyst-packed reactor, and the resulting hydration reaction product mixture is distilled to separate the unreacted hydrocarbon mixture and the sulfone aqueous solution containing TBA. This aqueous solution is then distilled to separate it into crude TBA (TBA/water azeotrope) and an aqueous sulfone solution. Water is removed from the crude TBA by conventional methods to obtain substantially pure TBA, and the separated unreacted hydrocarbon mixture and aqueous sulfone solution can be recycled to the reactor for use in the hydration reaction. As described above, according to the method of the present invention, isobutylene-containing
In the method of selectively hydrating isobutylene from a C4 hydrocarbon mixture, the reaction rate and conversion rate of isobutylene are significantly increased, side reactions are suppressed, and TBA can be produced in high yield.
Furthermore, the boiling point of sulfones is considerably higher than that of TBA, making it easier to separate by distillation and reuse. Also, the method of the present invention can be used to isolate isobutylene from C 4 hydrocarbon mixtures containing isobutylene. That is, isobutylene in an isobutylene-containing C4 hydrocarbon mixture is selectively converted to TBA by the method of the present invention, followed by separating a TBA-containing sulfone aqueous solution from an unreacted hydrocarbon mixture, and distilling the TBA-containing sulfone aqueous solution to convert TBA into TBA. After separating, TBA is dehydrated using a known method to obtain isobutylene.
Very high purity isobutylene can be obtained. Examples and comparative examples are shown below to further specifically explain the present invention. Note that % in Examples and Comparative Examples indicates mol%. Examples 1 to 11 An aqueous solution in which sulfones were added to water using a porous cation exchange resin of sulfonated styrene-divinylbenzene copolymer as a catalyst using an autoclave with a stirring stand. C4 hydrocarbon mixture containing isobutylene (isobutylene 40.0%, n-butenes 40.0%, butanes
20.0%) was carried out under the conditions shown in Table 1. After the reaction was completed, the reaction product was rapidly cooled and analyzed by gas chromatography to determine the conversion rates of isobutylene and n-butene and the selectivity of TBA and SBA, and the results are also listed in Table 1.

【表】 比施例 1〜9 実施例と同様の反応器、触媒、原料炭化水素を
用いるイソブチレンの水和反応において、反応系
中にスルホン類を添加しない場合と、触媒の表面
積が0.5m2/g以下あるいは交換容量が2.0meq/
g以下の場合、反応温度が100℃以上の場合と40
℃以下の場合及びスルホン類の濃度が97重量%以
上と50重量%以下の場合について比較実験を行つ
た。実験条件並びに実験結果を第2表に併記し
た。 なお、イソブチレン、n−ブテンの転化率およ
びTBA,SBAの選択率は実施例と同様にして求
めた。
[Table] Comparative Examples 1 to 9 In the hydration reaction of isobutylene using the same reactor, catalyst, and raw material hydrocarbon as in the example, the case where no sulfones were added to the reaction system and the case where the surface area of the catalyst was 0.5 m 2 /g or less or exchange capacity is 2.0meq/
If the reaction temperature is 100℃ or higher,
A comparative experiment was conducted for cases where the temperature was below 0.degree. C. and when the concentration of sulfones was 97% by weight or more and 50% by weight or less. The experimental conditions and experimental results are also listed in Table 2. Incidentally, the conversion rates of isobutylene and n-butene and the selectivities of TBA and SBA were determined in the same manner as in the examples.

【表】【table】

Claims (1)

【特許請求の範囲】 1 イソブチレンを含有するC4炭化水素混合物
からイソブチレンと水とを選択的に反応させ第3
級ブチルアルコールを製造する方法において、表
面積0.5〜200m2/gおよび交換容量2〜5meq/
gのスルホン化スチレン−ジビニルベンゼン共重
合体の多孔性の酸型陽イオン交換樹脂とスルホレ
ンまたは非環状スルホンの濃度が50〜97重量%の
水との混合液とを存在させ、イソブチレン、n−
ブテン類、ブタン類を含有するC4炭化水素混合
物中のイソブチレンの水/イソブチレンのモル比
を1〜10の割合とし、温度が40〜100℃、該C4
化水素混合物が液状を保持する圧力で反応させる
ことを特徴とする第3級ブチルアルコールを製造
する方法。 2 非環状スルホンがジエチルスルホンまたはジ
メチルスルホンであることを特徴とする特許請求
の範囲1に記載の方法。
[Claims] 1. A method of selectively reacting isobutylene with water from a C 4 hydrocarbon mixture containing isobutylene.
In the method for producing grade butyl alcohol, the surface area is 0.5 to 200 m 2 /g and the exchange capacity is 2 to 5 meq/g.
g of a porous acid type cation exchange resin of sulfonated styrene-divinylbenzene copolymer and water with a concentration of 50 to 97% by weight of sulfolene or acyclic sulfone are present, and isobutylene, n-
The water/isobutylene molar ratio of isobutylene in a C 4 hydrocarbon mixture containing butenes and butanes is set at a ratio of 1 to 10, the temperature is 40 to 100°C, and the pressure at which the C 4 hydrocarbon mixture remains liquid A method for producing tertiary butyl alcohol, which comprises reacting with. 2. The method according to claim 1, wherein the acyclic sulfone is diethyl sulfone or dimethyl sulfone.
JP11044079A 1979-08-31 1979-08-31 Preparation of tertiary butyl alcohol Granted JPS5634643A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11044079A JPS5634643A (en) 1979-08-31 1979-08-31 Preparation of tertiary butyl alcohol
GB8027443A GB2060616B (en) 1979-08-31 1980-08-22 Process for the production of tertiary butyl alcohol
DE19803031702 DE3031702A1 (en) 1979-08-31 1980-08-22 METHOD FOR PRODUCING TERT.-BUTANOL
CA359,042A CA1129890A (en) 1979-08-31 1980-08-26 Process for the production of tertiary butyl alcohol
FR8018789A FR2464241A1 (en) 1979-08-31 1980-08-29 PROCESS FOR PRODUCING TERTIARY BUTYL ALCOHOL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11044079A JPS5634643A (en) 1979-08-31 1979-08-31 Preparation of tertiary butyl alcohol

Publications (2)

Publication Number Publication Date
JPS5634643A JPS5634643A (en) 1981-04-06
JPH0137379B2 true JPH0137379B2 (en) 1989-08-07

Family

ID=14535768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11044079A Granted JPS5634643A (en) 1979-08-31 1979-08-31 Preparation of tertiary butyl alcohol

Country Status (5)

Country Link
JP (1) JPS5634643A (en)
CA (1) CA1129890A (en)
DE (1) DE3031702A1 (en)
FR (1) FR2464241A1 (en)
GB (1) GB2060616B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3628008C1 (en) * 1986-08-19 1987-11-05 Deutsche Texaco Ag, 2000 Hamburg, De
JPH11193255A (en) * 1997-12-26 1999-07-21 Mitsubishi Rayon Co Ltd Production of tertiary butyl alcohol
TW200514767A (en) * 2003-08-21 2005-05-01 Mitsubishi Rayon Co Method of producing tertiary alcohols
DE10338581A1 (en) 2003-08-22 2005-03-17 Oxeno Olefinchemie Gmbh Process for producing tert-butanol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2297196A1 (en) * 1975-01-10 1976-08-06 Chaplits Donat Isobutylene recovery from 4C hydrocarbon fractions - by intermediate conversion to tert. butanol and dehydration of the alcohol
GB1518461A (en) * 1976-05-13 1978-07-19 Shell Int Research Hydration of unsaturated compounds
US4180688A (en) * 1977-07-29 1979-12-25 Nippon Oil Co., Ltd. Method for continuously producing tert-butyl alcohol
JPS5682580A (en) * 1979-12-07 1981-07-06 Hitachi Maxell Ltd Manufacture of button-type battery

Also Published As

Publication number Publication date
GB2060616B (en) 1983-10-26
JPS5634643A (en) 1981-04-06
FR2464241B1 (en) 1984-10-19
GB2060616A (en) 1981-05-07
DE3031702A1 (en) 1981-03-19
FR2464241A1 (en) 1981-03-06
CA1129890A (en) 1982-08-17

Similar Documents

Publication Publication Date Title
JP5368791B2 (en) Reactive distillation in olefin recycling
US20060135823A1 (en) Process for preparing dimethylether from methanol
CS207465B2 (en) Method of making the clean methyl-terc.butylether
US4287379A (en) Process for obtaining isobutene from C4 -hydrocarbon mixtures containing isobutene
AU694889B2 (en) Dehydration of primary alcohols
EP0629601B1 (en) Method for the removal of dimethyl ether from methyl tertiary butyl ether
CA1140945A (en) Process for preparation of high purity isobutylene
KR101075381B1 (en) 3 Process for preparing tert-butanol
US2070258A (en) Production of tertiary butyl alcohol
JPS6058894B2 (en) Manufacturing method of tertiary alcohol
US4270011A (en) Process for the production of tertiary butyl alcohol
CA1086333A (en) Hydration reactions
JPH0137379B2 (en)
US5157162A (en) One step synthesis of methyl t-butyl ether from t-butanol using fluorosulfonic acid-modified clay catalysts
GB2024812A (en) Process for producing tert-butanol from a mixture of isobutylene and n-butene
NO873642L (en) PROTON CATALYzed REACTIONS.
CA1188711A (en) Process for production of secondary alcohols
JPH04225930A (en) Process for producing alcohol or ether by hydration of olefinic material
JPS6058893B2 (en) Method for producing tertiary alcohol
JPS60149535A (en) Alcohol continuous manufacture
US5157161A (en) One-step synthesis of methyl t-butyl ether from t-butanol using hydrogen fluoride-modified montmorillonite clays
US5563301A (en) Sequential reaction of TBA and isobutylene with methanol
US5214218A (en) One step synthesis of methyl t-butyl ether from t-butanol using haloacid-modified clay catalysts
US5183947A (en) One step synthesis of methyl t-butyl ether from t-butanol using fluorophosphoric acid-modified clay catalysts
EP0313905B1 (en) Process for the direct hydration of linear olefins