JPH0136467B2 - - Google Patents

Info

Publication number
JPH0136467B2
JPH0136467B2 JP56107712A JP10771281A JPH0136467B2 JP H0136467 B2 JPH0136467 B2 JP H0136467B2 JP 56107712 A JP56107712 A JP 56107712A JP 10771281 A JP10771281 A JP 10771281A JP H0136467 B2 JPH0136467 B2 JP H0136467B2
Authority
JP
Japan
Prior art keywords
trifluoromethylpyridine
reaction
lutidine
picoline
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56107712A
Other languages
Japanese (ja)
Other versions
JPS5810569A (en
Inventor
Ryuzo Nishama
Kanichi Fujikawa
Isao Yokomichi
Yasuhiro Tsujii
Shigeyuki Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP56107712A priority Critical patent/JPS5810569A/en
Publication of JPS5810569A publication Critical patent/JPS5810569A/en
Publication of JPH0136467B2 publication Critical patent/JPH0136467B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)

Description

【発明の詳細な説明】 本発明はα−ピコリン、γ−ピコリン又はルチ
ジンから直接トリフルオロメチルピリジン類を製
造する方法に関し、詳しくは触媒及び希釈剤の存
在下にα−ピコリン、γ−ピコリン又はルチジン
(以下ピリジン化合物と略称する)と塩素及び無
水弗化水素とを気相で反応させて、α或はγ−ト
リフルオロメチルピリジン、ビストリフルオロメ
チルピリジン又はそれらのピリジン核の塩素化物
(以下トリフルオロメチルピリジン類と略称する)
を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing trifluoromethylpyridines directly from α-picoline, γ-picoline or lutidine. Lutidine (hereinafter abbreviated as pyridine compound) is reacted with chlorine and anhydrous hydrogen fluoride to form α- or γ-trifluoromethylpyridine, bistrifluoromethylpyridine, or chlorinated products of their pyridine nuclei (hereinafter trifluoromethylpyridine). (abbreviated as fluoromethylpyridines)
Relating to a method of manufacturing.

前記トリフルオロメチルピリジン類は除草剤、
殺虫剤などの原料として有用な化合物である。
The trifluoromethylpyridines are herbicides,
It is a compound useful as a raw material for insecticides, etc.

トリフルオロメチルピリジン類の製造法として
は、(1)ピリジン化合物を液相で紫外線の照射下に
塩素ガスと反応させたり、或は希釈剤の存在下に
高温で気相にて塩素ガスと反応させたりして、対
応するトリクロロメチルピリジン類を生成させ、
次いで、(2)これらトリクロロメチルピリジン類を
液相で無水弗化水素又は三弗化アンチモンと反応
させて製造する方法が知られている。しかしなが
ら、この方法の塩素化反応では多くの種類の副生
物が発生して目的化合物の分離が困難であり、ま
た弗素化反応では反応に長時間を要する他、高価
な弗素化剤の使用或は加圧下での反応が必要にな
り、工業的には望ましくない。
The methods for producing trifluoromethylpyridines include (1) reacting a pyridine compound with chlorine gas in the liquid phase under ultraviolet irradiation, or reacting with chlorine gas in the gas phase at high temperature in the presence of a diluent; to generate the corresponding trichloromethylpyridines,
Next, (2) a method of producing trichloromethylpyridines by reacting them with anhydrous hydrogen fluoride or antimony trifluoride in a liquid phase is known. However, the chlorination reaction of this method generates many types of by-products, making it difficult to separate the target compound.Furthermore, the fluorination reaction requires a long time, and requires the use of expensive fluorinating agents. This requires reaction under pressure, which is industrially undesirable.

本発明は、触媒及び希釈剤の存在下にピリジン
化合物と塩素及び無水弗化水素とを気相で接触反
応させると、単独工程でかつ短時間に、トリフル
オロメチルピリジン類が生成することの知見にも
とずいている。
The present invention is based on the knowledge that trifluoromethylpyridines are produced in a single step and in a short time when a pyridine compound is catalytically reacted with chlorine and anhydrous hydrogen fluoride in the gas phase in the presence of a catalyst and a diluent. It is based on

即ち、本発明は、弗化銅を含む触媒及び希釈剤
の存在下に、α−ピコリン、γ−ピコリン又はル
チジンと塩素及び無水弗化水素とを気相で反応さ
せてα−トリフルオロメチルピリジン、γ−トリ
フルオロメチルピリジン、ビストリフルオロメチ
ルピリジン又はそれらのピリジン核の塩素化物の
トリフルオロメチルピリジン類を製造することを
特徴とする、トリフルオロメチルピリジン類の製
造方法である。
That is, the present invention produces α-trifluoromethylpyridine by reacting α-picoline, γ-picoline, or lutidine with chlorine and anhydrous hydrogen fluoride in the gas phase in the presence of a catalyst and diluent containing copper fluoride. , γ-trifluoromethylpyridine, bistrifluoromethylpyridine, or trifluoromethylpyridines of chlorinated products of their pyridine nuclei.

本発明で触媒として使用される弗化銅として
は、弗化第一銅(CuF)、弗化第二銅(CuF2)又
はそれらの混合物が挙げられ、その使用量は、反
応条件により一概に規定できないが、普通、原料
のピリジン化合物1モルに対して0.001〜3モル
である。通常、この触媒は活性炭、活性アルミナ
などの担体と混合し、適当な大きさの粒状、ペレ
ツト状に成型してから、原料物質、希釈剤、反応
生成物を含むガス流中に固定床又は流動床として
存在させる。また触媒は弗化銅の型態で直接、反
応管に入れて存在させる方法もあるが、工業的に
は、前記金属元素の酸化物、塩化物、水酸化物、
炭酸塩などの型態で、或はそれらの水和物の型態
で反応管に入れ、無水弗化水素と反応させて弗化
物に変換させることによつて存在させる方法が有
利である。例えばアルミナの担体に塩化第二銅を
担持させた成型物を反応管に入れ、予め無水弗化
水素を導入して200〜600℃で反応させ、前記金属
元素の弗化物に変換させてから本発明に係る反応
を行なう。
Copper fluoride used as a catalyst in the present invention includes cuprous fluoride (CuF), cupric fluoride (CuF 2 ), or a mixture thereof, and the amount used generally depends on the reaction conditions. Although it cannot be specified, it is usually 0.001 to 3 moles per mole of the raw material pyridine compound. Usually, this catalyst is mixed with a carrier such as activated carbon or activated alumina, formed into granules or pellets of appropriate size, and then placed in a fixed bed or fluidized bed in a gas stream containing raw materials, diluent, and reaction products. Let it exist as a floor. There is also a method in which the catalyst is placed directly in the reaction tube in the form of copper fluoride, but industrially, oxides, chlorides, hydroxides,
Advantageously, they are present in the form of carbonates or their hydrates by introducing them into a reaction tube and converting them into fluorides by reaction with anhydrous hydrogen fluoride. For example, a molded product in which cupric chloride is supported on an alumina carrier is placed in a reaction tube, and anhydrous hydrogen fluoride is introduced in advance and reacted at 200 to 600°C to convert it into a fluoride of the metal element. carrying out the reaction according to the invention;

希釈剤としては四塩化炭素、クロロホルム、塩
化メチレン、F−112(CFCl2・CFCl2)、F−113
(CF2Cl・CFCl2)などのハロゲン化炭化水素の有
機溶媒、窒素、ヘリウム、アルゴンなどの不活性
気体が使用でき、これら希釈剤は燃焼、炭化、タ
ール状副生物の生成などを抑制する機能を有する
ものである。
Diluents include carbon tetrachloride, chloroform, methylene chloride, F-112 (CFCl 2 / CFCl 2 ), F-113
Organic solvents for halogenated hydrocarbons such as (CF 2 Cl/CFCl 2 ) and inert gases such as nitrogen, helium, and argon can be used, and these diluents suppress combustion, carbonization, and the formation of tar-like byproducts. It has a function.

本発明の実施に当つては、原料物質及び希釈剤
を別々に反応器へ供給できる他、これらの混合状
態でも供給でき、また、これらを同時に又は順次
に、或は一括又は分割して供給できる。例えばピ
リジン化合物と希釈剤との混合物、或は塩素と無
水弗化水素との混合物を別々に供給する。
In carrying out the present invention, the raw materials and diluent can be supplied to the reactor separately, or they can be supplied in a mixed state, and they can be supplied simultaneously or sequentially, all at once or in parts. . For example, a mixture of a pyridine compound and a diluent or a mixture of chlorine and anhydrous hydrogen fluoride are fed separately.

塩素及び無水弗化水素の使用量は原料のピリジ
ン化合物の種類、目的物の種類、反応装置などの
違いによつて一概に規定できないが、一般に原料
のピリジン化合物1モル当りそれぞれ3.5〜15モ
ル及び3〜20モルである。希釈剤の使用量は普
通、原料のピリジン化合物1モル当り3〜70モル
である。反応温度は一般に350〜600℃であり、反
応混合物の反応帯域における滞留時間は普通1〜
60秒である。
The amount of chlorine and anhydrous hydrogen fluoride to be used cannot be absolutely specified depending on the type of pyridine compound used as a raw material, the type of target product, the reaction equipment, etc., but generally it is 3.5 to 15 mol and 15 mol, respectively, per 1 mol of pyridine compound used as a raw material. It is 3 to 20 moles. The amount of diluent used is usually 3 to 70 moles per mole of starting pyridine compound. The reaction temperature is generally 350-600°C, and the residence time of the reaction mixture in the reaction zone is usually 1-600°C.
It is 60 seconds.

通常、反応器からはトリフルオロメチルピリジ
ン類を主成分とする生成弗素化物、未反応の弗化
水素及び塩素、中間生成物、副生塩化水素、更に
は希釈剤を含有するガス状物質が排出されるが、
適当な冷却、凝縮装置を経てトリフルオロメチル
ピリジン類は液体混合物として採取される。液体
混合物には一般に、α−ピコリンを原料とする場
合にはα−トリフルオロメチルピリジンの他に、
2−クロロ、2,4−ジクロロ、2,5−ジクロ
ロ、2,3,5−トリクロロ−6−トリフルオロ
メチルピリジンなどのα−トリフルオロメチルピ
リジンの核塩素化物が含まれる。γ−ピコリンを
原料とする場合にはγ−トリフルオロメチルピリ
ジンの他に、2−クロロ、2,6−ジクロロ−4
−トリフルオロメチルピリジンなどのその核塩素
化物が含まれる。ルチジンを原料とする場合に
は、このルチジン自体が異性体、たとえば2,4
−ルチジン、2,5−ルチジン、2,6−ルチジ
ン、3,5−ルチジンなどを有しているので、ど
れを原料とするかによつて生成物も異なつてく
る。例えば2,4−ルチジンを原料とする場合に
は2,4−ビストリフルオロメチルピリジンの他
に、6−クロロ、5,6−ジクロロ、3,5,6
−トリクロロ−2,4−ビストリフルオロメチル
ピリジンなどのその核塩素化物が含まれ、3,5
−ルチジンを原料とする場合には3,5−ビスト
リフルオロメチルピリジンの他に、2−クロロ、
2,6−ジクロロ、2,4,6−トリクロロ−
3,5−ビストリフルオロメチルピリジンなどの
その核塩素化物が含まれ、2,6−ルチジンを原
料とする場合には、2,6−ビストリフルオロメ
チルピリジンの他に、4−クロロ、3,4−ジク
ロロ、3,4,5−トリクロロ−2,6−ビスト
リフルオロメチルピリジンなどのその核塩素化物
が含まれる。
Normally, gaseous substances containing produced fluorides mainly composed of trifluoromethylpyridines, unreacted hydrogen fluoride and chlorine, intermediate products, by-product hydrogen chloride, and diluents are discharged from the reactor. However,
Trifluoromethylpyridines are collected as a liquid mixture through appropriate cooling and condensation equipment. In addition to α-trifluoromethylpyridine, the liquid mixture generally contains, when α-picoline is the raw material,
Nuclear chlorides of α-trifluoromethylpyridine such as 2-chloro, 2,4-dichloro, 2,5-dichloro, 2,3,5-trichloro-6-trifluoromethylpyridine are included. When using γ-picoline as a raw material, in addition to γ-trifluoromethylpyridine, 2-chloro, 2,6-dichloro-4
-Includes its nuclear chlorinated products such as trifluoromethylpyridine. When lutidine is used as a raw material, this lutidine itself is an isomer, for example, 2,4
-lutidine, 2,5-lutidine, 2,6-lutidine, 3,5-lutidine, etc., so the products will differ depending on which one is used as the raw material. For example, when 2,4-lutidine is used as a raw material, in addition to 2,4-bistrifluoromethylpyridine, 6-chloro, 5,6-dichloro, 3,5,6
- including its nuclear chlorinated products such as trichloro-2,4-bistrifluoromethylpyridine, 3,5
- When using lutidine as a raw material, in addition to 3,5-bistrifluoromethylpyridine, 2-chloro,
2,6-dichloro, 2,4,6-trichloro-
It includes its nuclear chlorinated products such as 3,5-bistrifluoromethylpyridine, and when 2,6-lutidine is used as a raw material, in addition to 2,6-bistrifluoromethylpyridine, 4-chloro, 3,4 - dichloro, 3,4,5-trichloro-2,6-bistrifluoromethylpyridine, and its nuclear chlorinated products.

本発明方法によれば、トリフルオロメチルピリ
ジン類は例えば75%以上の生成率で得られる。採
取した液体混合物中に、目的のトリフルオロメチ
ルピリジン類の生成迄達していない中間生成物が
含まれているときには、これら中間生成物は未反
応原料、又は希釈剤と共に分離、回収し、反応帯
域へ循環使用することができる。更に上記のトリ
フルオロメチルピリジン類には抽出、蒸留、晶析
などの通常の精製処理が加えられることによつ
て、例えば2−クロロ−6−トリフルオロメチル
ピリジン、2−クロロ−4−トリフルオロメチル
ピリジン、6−クロロ−2,4−ビストリフルオ
ロメチルピリジン、2,6−ジクロロ−3,5−
ビストリフルオロメチルピリジンなどの単一化合
物を高純度で得ることができる。
According to the method of the present invention, trifluoromethylpyridines can be obtained at a production rate of, for example, 75% or more. If the collected liquid mixture contains intermediate products that have not reached the level of production of the target trifluoromethylpyridines, these intermediate products are separated and collected together with unreacted raw materials or diluent, and then transferred to the reaction zone. Can be used for circulation. Furthermore, the above trifluoromethylpyridines are subjected to ordinary purification treatments such as extraction, distillation, and crystallization to produce, for example, 2-chloro-6-trifluoromethylpyridine, 2-chloro-4-trifluoromethylpyridine, etc. Methylpyridine, 6-chloro-2,4-bistrifluoromethylpyridine, 2,6-dichloro-3,5-
Single compounds such as bistrifluoromethylpyridine can be obtained in high purity.

次に本発明方法の実施例を記載するが、本発明
方法の範囲はこれらの記載によつて何ら限定され
るものでない。
Next, examples of the method of the present invention will be described, but the scope of the method of the present invention is not limited by these descriptions.

実施例 1 反応器として、反応部が内径80mm、高さ1000mm
であり、かつ触媒充填部が底部から高さ500mmで
ある触媒流動床を有するインコネル製堅型反応器
を設置し、反応器底部に内径20mm、長さ1500mmの
インコネル製予熱管を2本接続し、反応管及び予
熱管を温度制御できるように、その外部を電熱器
及び断熱材で覆つた。
Example 1 As a reactor, the reaction part has an inner diameter of 80 mm and a height of 1000 mm.
An Inconel rigid reactor with a catalyst fluidized bed was installed, and the catalyst filling part was 500 mm in height from the bottom, and two Inconel preheating tubes with an inner diameter of 20 mm and a length of 1500 mm were connected to the bottom of the reactor. In order to control the temperature of the reaction tube and preheating tube, the outside of the tube was covered with an electric heater and a heat insulating material.

塩化第二銅を粒径105〜210メツシユの活性炭に
担持(重量比67:1000)したもの(1870g)を予
め弗素化触媒充填部に充填し、200℃で無水弗化
水素を10N/分の割合にて導入して触媒を活性
化した。
Cupric chloride supported on activated carbon with a particle size of 105 to 210 mesh (weight ratio 67:1000) (1870 g) was packed in advance into the fluorination catalyst packing section, and anhydrous hydrogen fluoride was added at 10 N/min at 200°C. The catalyst was activated.

反応器を420℃に加熱し、200g/時間のα−ピ
コリンとα−ピコリンの5倍モルの窒素ガスとを
一方の予熱管を通じ、またα−ピコリンの7倍モ
ルの無水弗化水素とα−ピコリンの5倍モルの塩
素ガスとを他方の予熱管を通じ、それぞれ反応器
に導入して5時間にわたつて反応させた。反応混
合物の器内滞留時間は約8.2秒であつた。
The reactor was heated to 420°C, and 200 g/hour of α-picoline and 5 times the mole of α-picoline nitrogen gas were passed through one preheating tube, and anhydrous hydrogen fluoride and α - Chlorine gas in an amount 5 times the mole of picoline was introduced into the reactor through the other preheating tube and reacted for 5 hours. The residence time of the reaction mixture in the vessel was approximately 8.2 seconds.

反応器より排出するガスは、冷縮塔、水洗塔を
通じて捕集し、捕集された反応物をアンモニア水
で中和後、水蒸気蒸留を行なつて、油状物2250g
を得た。
The gas discharged from the reactor is collected through a cooling tower and a water washing tower, and the collected reactants are neutralized with aqueous ammonia and steam distilled to produce 2250 g of oily material.
I got it.

この油状物を昇温ガスクロマトグラフイーによ
り分析したところ、その組成は2−トリフルオロ
メチルピリジン10.6%、6−クロロ−2−トリフ
ルオロメチルピリジン41.2%、4,6−ジクロロ
−2−トリフルオロメチルピリジン4.6%及びク
ロロ−2−パークロロフルオロメチルピリジン類
など43.6%であつた。
Analysis of this oil by heating gas chromatography revealed that its composition was 10.6% 2-trifluoromethylpyridine, 41.2% 6-chloro-2-trifluoromethylpyridine, 4,6-dichloro-2-trifluoromethyl The content was 4.6% pyridine and 43.6% chloro-2-perchlorofluoromethylpyridines.

実施例 2 反応器として、反応部が内径100mm、高さ2300
mmであり、かつ触媒充填部が底部から高さ800mm
である触媒流動床を有するインコネル製堅型反応
器を設置し、反応器底部に内径20mm、長さ1500mm
のインコネル製予熱管を2本接続し、反応管及び
予熱管を温度制御できるように、その外部を電熱
器及び断熱材で覆つた。
Example 2 As a reactor, the reaction part has an inner diameter of 100 mm and a height of 2300 mm.
mm, and the height of the catalyst filling part is 800 mm from the bottom.
An Inconel rigid reactor with a catalyst fluidized bed was installed at the bottom of the reactor with an inner diameter of 20 mm and a length of 1500 mm.
Two Inconel preheating tubes were connected, and the outside of the reaction tube and preheating tube was covered with an electric heater and a heat insulating material so that the temperature of the reaction tube and the preheating tube could be controlled.

塩化第二銅を粒径105〜255μの三弗化アルミニ
ウムに担持(重量44:1000)したもの(3800g)
を予め弗素化処理されたものを触媒充填部に充填
し、反応器を340〜400℃に加熱した。250g/時
間のγ−ピコリンとγ−ピコリンの5倍モルの窒
素ガスとを一方の予熱管を通じ、またγ−ピコリ
ンの5倍モルの無水弗化水素及び塩素ガスを他方
の予熱管を通じ、それぞれ反応器に導入して6時
間にわたつて反応させた。反応混合物の器内滞留
時間は約27〜30であつた。
Cupric chloride supported on aluminum trifluoride (weight 44:1000) with particle size 105-255μ (3800g)
was previously fluorinated and filled into the catalyst filling section, and the reactor was heated to 340 to 400°C. 250 g/hour of γ-picoline and 5 times the mole of nitrogen gas of γ-picoline were passed through one preheating tube, and anhydrous hydrogen fluoride and chlorine gas of 5 times the mole of γ-picoline were passed through the other preheating tube. The mixture was introduced into a reactor and reacted for 6 hours. The residence time of the reaction mixture in the vessel was approximately 27-30 minutes.

反応器より排出するガスは、冷縮塔、水洗塔を
通じて捕集し、捕集された反応物をアンモニア水
で中和後、水蒸気蒸留を行なつて、油状物2350g
を得た。
The gas discharged from the reactor is collected through a cooling tower and a water washing tower, and the collected reactants are neutralized with aqueous ammonia and steam distilled to produce 2350 g of oily material.
I got it.

この油状物を昇温ガスクロマトグラフイーによ
り分析したところ、その組成は4−トリフルオロ
メチルピリジン19.2%、2−クロロ−4−トリフ
ルオロメチルピリジン47.6%、3−クロロ−4−
トリフルオロメチルピリジン2.8%、2,6−ジ
クロロ−4−トリフルオロメチルピリジン16.2%
及びクロロ−4−パークロロフルオロメチルピリ
ジン類など14.2%であつた。
Analysis of this oil by temperature-rising gas chromatography revealed that its composition was 19.2% 4-trifluoromethylpyridine, 47.6% 2-chloro-4-trifluoromethylpyridine, and 3-chloro-4-trifluoromethylpyridine.
Trifluoromethylpyridine 2.8%, 2,6-dichloro-4-trifluoromethylpyridine 16.2%
and 14.2% of chloro-4-perchlorofluoromethylpyridines.

実施例 3 反応器として実施例1で用いたものと同様のも
のを使用した。触媒として塩化第二銅を粒径105
〜255μの三弗化アルミニウムに担持(重量比
67:1000)したもの(1500g)を予め弗素化処理
されたものを触媒充填部に充填した。反応器を
420℃に加熱し、3,5−ルチジンを140g/時間
及び3,5−ルチジンの6倍モルの窒素ガスを一
方の予熱管を通じ、また、3,5−ルチジンの10
倍モルの無水弗化水素及び同8倍モルの塩素ガス
を他方の予熱管を通じて2時間反応させた。反応
混合物の器内滞留時間は約10秒であつた。前記実
施例1の場合と同様にして油状物を得、通常の精
留、晶析手段によつて処理して2−クロロ−3,
5−ビス(トリフルオロメチル)ピリジン390g
を得た。
Example 3 A reactor similar to that used in Example 1 was used. Particle size 105 with cupric chloride as a catalyst
Supported on ~255μ aluminum trifluoride (weight ratio
67:1000) (1500 g) which had been previously fluorinated was charged into the catalyst filling section. reactor
Heating to 420°C, 140 g/hour of 3,5-lutidine and 6 times the mole of 3,5-lutidine nitrogen gas was passed through one preheating tube, and 10 g/hour of 3,5-lutidine
Two times the mole of anhydrous hydrogen fluoride and eight times the same mole of chlorine gas were reacted for 2 hours through the other preheating tube. The residence time of the reaction mixture in the vessel was about 10 seconds. An oily substance was obtained in the same manner as in Example 1, and treated by conventional rectification and crystallization means to obtain 2-chloro-3,
390g of 5-bis(trifluoromethyl)pyridine
I got it.

Claims (1)

【特許請求の範囲】[Claims] 1 弗化銅を含む触媒及び希釈剤の存在下に、α
−ピコリン、γ−ピコリン又はルチジンと塩素及
び無水弗化水素とを気相で反応させて、α−トリ
フルオロメチルピリジン、γ−トリフルオロメチ
ルピリジン、ビストリフルオロメチルピリジン又
はそれらのピリジン核の塩素化物のトリフルオロ
メチルピリジン類を製造することを特徴とする、
トリフルオロメチルピリジン類の製造方法。
1 In the presence of a catalyst and diluent containing copper fluoride, α
- Reacting picoline, γ-picoline or lutidine with chlorine and anhydrous hydrogen fluoride in the gas phase to produce α-trifluoromethylpyridine, γ-trifluoromethylpyridine, bistrifluoromethylpyridine or chlorinated pyridine nuclei thereof. characterized by producing trifluoromethylpyridines of
A method for producing trifluoromethylpyridines.
JP56107712A 1981-07-10 1981-07-10 Preparation of trifluoromethylpyridine Granted JPS5810569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56107712A JPS5810569A (en) 1981-07-10 1981-07-10 Preparation of trifluoromethylpyridine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56107712A JPS5810569A (en) 1981-07-10 1981-07-10 Preparation of trifluoromethylpyridine

Publications (2)

Publication Number Publication Date
JPS5810569A JPS5810569A (en) 1983-01-21
JPH0136467B2 true JPH0136467B2 (en) 1989-07-31

Family

ID=14466028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56107712A Granted JPS5810569A (en) 1981-07-10 1981-07-10 Preparation of trifluoromethylpyridine

Country Status (1)

Country Link
JP (1) JPS5810569A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059710A1 (en) * 2006-12-18 2008-06-19 Freie Universität Berlin Substituted 4-hydroxypyridines
WO2019134477A1 (en) * 2018-01-05 2019-07-11 浙江省化工研究院有限公司 Method for preparation of 2-chloro-5-trifluoromethylpyridine
JP2021118993A (en) * 2018-04-23 2021-08-12 石原産業株式会社 Internal, fluidized bed reaction apparatus, and method for manufacturing trifluoromethyl pyridine-based compound

Also Published As

Publication number Publication date
JPS5810569A (en) 1983-01-21

Similar Documents

Publication Publication Date Title
US4241213A (en) Process for producing 2-chloro-5-trichloromethyl pyridine
JP2670466B2 (en) Method for producing 3-trifluoromethylpyridine
PL123917B1 (en) Process for manufacturing derivatives of pyridine substituted in position beta with trifluormethyl group
JP7223827B2 (en) Method for producing 2-chloro-5-trifluoromethylpyridine
EP0078410B1 (en) Process for producing 3-chloro-5-trifluoromethylpyridines
GB2045761A (en) Process for producing chloro-trifluoromethylpyridines
JPH0133465B2 (en)
JPS6135181B2 (en)
EP0004636B1 (en) Process for preparing benzotrifluoride and its derivatives
CA1067521A (en) Process for the production of chlorofluorinated aromatic hydrocarbons
US4417055A (en) Process for producing a β-trifluoromethylpyridine
JPH0136467B2 (en)
US4420618A (en) Process for producing 5-chloro-β-trifluoromethylpyridines
EP0544267B1 (en) Selective gas phase chlorination of polychlorinated beta-picolines to produce 2,3,5,6-tetrachloropyridine and its precursors
US3235608A (en) Fluorination with uranium hexafluoride
JPH0219108B2 (en)
JPS6130667B2 (en)
JPS6130663B2 (en)
JPH0643398B2 (en) Production of fluoropyridines
CN116120149B (en) Method for preparing fluorine-containing alkyne by dehydrohalogenating saturated halogenated hydrocarbon
JPH0411541B2 (en)
JPS6130666B2 (en)
JPS6130664B2 (en)
JPS6134415B2 (en)
JPS6130665B2 (en)