JPH0134107Y2 - - Google Patents

Info

Publication number
JPH0134107Y2
JPH0134107Y2 JP1983093129U JP9312983U JPH0134107Y2 JP H0134107 Y2 JPH0134107 Y2 JP H0134107Y2 JP 1983093129 U JP1983093129 U JP 1983093129U JP 9312983 U JP9312983 U JP 9312983U JP H0134107 Y2 JPH0134107 Y2 JP H0134107Y2
Authority
JP
Japan
Prior art keywords
tubular member
anode
magnetic field
cathode
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983093129U
Other languages
Japanese (ja)
Other versions
JPS60534U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9312983U priority Critical patent/JPS60534U/en
Publication of JPS60534U publication Critical patent/JPS60534U/en
Application granted granted Critical
Publication of JPH0134107Y2 publication Critical patent/JPH0134107Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【考案の詳細な説明】 本考案は、ペニング真空計の改良に関する。[Detailed explanation of the idea] The present invention relates to improvements in Penning vacuum gauges.

質量分析装置等に使用される真空測定装置とし
てペニング真空計が広く使用されており、その構
造を第1図及び第1図をA−A′方向から眺めた
第2図に示す。図中1は陰極としての管状部材を
示し、該部材1の外側2ケ所には凹部2,3が設
けられており、該凹部2,3には2つの永久磁石
4,5が嵌め込まれ、該磁石4,5によつて管状
部材1の内部に上下方向の磁界Bを形成する。管
状部材1の一方の開放端には、Oリング6やビス
7によつて他の真空容器と接続するための接続管
8が取り付けられている。管状部材1の他方の開
放端には、Oリング9とビス10によつて蓋体1
1が取り付けられているが、該蓋体11には電気
絶縁素子12を介して第3図に示す様な短かい筒
状のリングからなる陽極13が前記磁界B内に挿
入されるように取り付けられている。陽極13に
は直流電圧電源14の出力が印加されており、該
電源14を流れる電流は電流計15によつて測定
される。
A Penning vacuum gauge is widely used as a vacuum measuring device used in mass spectrometers and the like, and its structure is shown in FIG. 1 and FIG. 2, which is a view of FIG. 1 from the direction A-A'. In the figure, reference numeral 1 indicates a tubular member as a cathode, and recesses 2 and 3 are provided at two outside locations of the member 1. Two permanent magnets 4 and 5 are fitted into the recesses 2 and 3. The magnets 4 and 5 form a vertical magnetic field B inside the tubular member 1. A connecting tube 8 for connecting to another vacuum container is attached to one open end of the tubular member 1 using an O-ring 6 and screws 7. A lid 1 is attached to the other open end of the tubular member 1 with an O-ring 9 and a screw 10.
1 is attached to the lid body 11, and an anode 13 consisting of a short cylindrical ring as shown in FIG. It is being The output of a DC voltage power source 14 is applied to the anode 13, and the current flowing through the power source 14 is measured by an ammeter 15.

以上の構成のペニング真空計は、10-3
10-6Torr程度の圧力を測定するために用いられ、
上記範囲の圧力のとき陽極13と陰極としての管
状部材1の間に電源14によつて数Kv程度の電
圧を印加すると、管状部材1の陽極13の対向面
1aより冷陰極放出により電子が放出される。こ
の電子は、磁石4,5によつて形成される磁界B
によつて螺旋運動しながら真空室16内の気体分
子をイオン化し、数μA〜数mAの放電電流とな
る。この放電電流を電流計15によつて測定し、
該電流値を真空度に換算することによつて真空度
が測定される。
The Penning vacuum gauge with the above configuration is 10 -3 ~
Used to measure pressures around 10 -6 Torr,
When a voltage of about several KV is applied between the anode 13 and the tubular member 1 as a cathode by the power supply 14 at the pressure in the above range, electrons are emitted from the opposing surface 1a of the anode 13 of the tubular member 1 by cold cathode emission. be done. These electrons are exposed to the magnetic field B formed by the magnets 4 and 5.
The gas molecules in the vacuum chamber 16 are ionized while making a spiral motion, resulting in a discharge current of several μA to several mA. This discharge current is measured by an ammeter 15,
The degree of vacuum is measured by converting the current value into the degree of vacuum.

ところで、上記ペニング真空計における陰極と
しての管状部材1は機械加工が容易で腐蝕性に強
く、又アウトガスも少ないなどの理由からステン
レス(SUS)が使用されていた。しかしながら、
陽極13と管状部材1との放電において、対向面
1bの中心が強くスパツタされてステンレスを構
成する元素、鉄(Fe)、ニツケル(Ni)、クロム
(Cr)が互いに分離され、このうち磁性を示す元
素が磁界Bの作用によつて針状に成長し、ついに
は陽極13と対向面1bが短絡する。特に、質量
分析装置の様にイオン源にアルゴンガス(Ar)、
又はキセノンガス(Xe)のような重いガスを使
用する装置では、質量分析装置の真空室とペニン
グ真空計の真空室16が連通口8aによつて連通
しているため、これらのガスによつて対向面1b
のスパツタ量が多くなり、従つて、陽極13と対
向面1bは短絡しやすくなりペニング真空計が故
障する原因となつていた。
By the way, stainless steel (SUS) has been used for the tubular member 1 as the cathode in the Penning vacuum gauge because it is easy to machine, is resistant to corrosion, and produces less outgas. however,
During the discharge between the anode 13 and the tubular member 1, the center of the opposing surface 1b is strongly sputtered, and the elements constituting stainless steel, iron (Fe), nickel (Ni), and chromium (Cr), are separated from each other. The element shown grows into a needle shape under the action of the magnetic field B, and finally the anode 13 and the opposing surface 1b are short-circuited. In particular, argon gas (Ar) is used in the ion source, such as in mass spectrometers.
Alternatively, in devices that use heavy gases such as xenon gas (Xe), the vacuum chamber of the mass spectrometer and the vacuum chamber 16 of the Penning vacuum gauge are communicated through the communication port 8a, so these gases Opposing surface 1b
The amount of spatter increases, and therefore, the anode 13 and the opposing surface 1b are likely to be short-circuited, causing the Penning vacuum gauge to malfunction.

本考案は以上の点に鑑みなされたもので、磁束
を透過させる材質からなる管状部材と、該部材の
外側に取り付けられ管状部材の管内を横切る磁界
を発生させる磁石と、管状部材の一方の開放端を
塞ぐ蓋体に絶縁を保つて取り付けられ、前記管状
部材内の磁界中に挿入されるリング状陽極とを備
え、前記管状部材の内側を非磁性元素より成る物
質で覆うようにしたことを特徴としている。
The present invention was devised in view of the above points, and includes a tubular member made of a material that transmits magnetic flux, a magnet attached to the outside of the member to generate a magnetic field that crosses the inside of the tubular member, and an opening at one end of the tubular member. A ring-shaped anode is attached to a lid body that closes the end while maintaining insulation, and is inserted into the magnetic field within the tubular member, and the inside of the tubular member is covered with a substance made of a non-magnetic element. It is a feature.

以下本考案の一実施例を添付図面に基づき説明
する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第4図は本考案の一実施例の概略構成図であ
り、第5図は第4図の一実施例装置のC−C′断面
図である。尚、第1図と同一構成要素には同一番
号を付してその説明を省略する。第4図におい
て、第1図の従来装置と異なる点は陰極の内面、
すなわち、陽極に対向する面1a,1bを例えば
第6図に示す様なタンタルで形成した楕円状の円
筒17で覆い、又陽極13は第7図に示す様な棒
状材で形成したリングを用いた点にある。つま
り、タンタルで形成された円筒17の内側表面は
放電現象によりスパツタされるが、その粒子は非
磁性体のため磁界Bによつても針状に成長せず、
従つて陽極18と対向面1bは短絡することもな
い。又、リング18は従来装置の円筒状リング1
3のように対向面1bの中心部周辺のみをスパツ
タせず円筒17の内側表面を一様にスパツタしス
パツタされる量も少なくなる。
FIG. 4 is a schematic diagram of an embodiment of the present invention, and FIG. 5 is a sectional view taken along line C-C' of the embodiment of the device shown in FIG. It should be noted that the same components as in FIG. 1 are given the same numbers and their explanations will be omitted. In Fig. 4, the difference from the conventional device shown in Fig. 1 is that the inner surface of the cathode,
That is, the surfaces 1a and 1b facing the anode are covered with an elliptical cylinder 17 made of tantalum as shown in FIG. 6, and the anode 13 is a ring made of a rod-shaped material as shown in FIG. It is at the point where it was. In other words, the inner surface of the cylinder 17 made of tantalum is spattered by the discharge phenomenon, but since the particles are non-magnetic, they do not grow into acicular shapes even in the magnetic field B.
Therefore, there will be no short circuit between the anode 18 and the opposing surface 1b. Furthermore, the ring 18 is different from the cylindrical ring 1 of the conventional device.
Instead of sputtering only around the center of the opposing surface 1b as in 3, the inner surface of the cylinder 17 is sputtered uniformly, and the amount of spatter is reduced.

尚、本考案は以上の実施例に限定されず変形が
可能であり、本実施例では円筒17をタンタルで
形成したが、他の非磁性元素からなる金属で形成
しても良い。
It should be noted that the present invention is not limited to the above-described embodiments and can be modified, and although the cylinder 17 is made of tantalum in this embodiment, it may be made of a metal made of other non-magnetic elements.

以上の様に本考案は、真空中に設けられた陰極
と陽極との間に高電圧を印加して、該陰極と陽極
との間に生ずる放電現象を利用して真空を測定す
る装置において、陰極を非磁性元素から成る金属
で覆うことにより陰極と陽極とのスパツタ粒子に
依る短絡事故を防止し、故障の少ないペニング真
空計を提供する。
As described above, the present invention provides an apparatus for measuring vacuum by applying a high voltage between a cathode and an anode provided in a vacuum and utilizing the discharge phenomenon that occurs between the cathode and anode. To provide a Penning vacuum gauge with fewer failures by preventing short circuit accidents caused by spatter particles between the cathode and anode by covering the cathode with a metal made of a non-magnetic element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は従来装置を説明す
るための図、第4図は本考案の一実施例を示す構
成略図、第5図は第4図の一実施例のC−C′断面
図、第6図、第7図は第4図の一実施例装置の要
部の概略図である。 1:陰極、4,5:磁石、6,9:Oリング、
7,10:ビス、8:接続管、11:蓋体、1
2:絶縁体、13,18:陽極、14:直流高圧
電源、15:電流計、16:真空室、17:円筒
電極。
1, 2, and 3 are diagrams for explaining a conventional device, FIG. 4 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 5 is a C-C diagram of an embodiment of the present invention. The C' sectional view, FIGS. 6 and 7 are schematic diagrams of essential parts of the embodiment of the apparatus shown in FIG. 4. 1: cathode, 4, 5: magnet, 6, 9: O ring,
7, 10: Screw, 8: Connection pipe, 11: Lid, 1
2: Insulator, 13, 18: Anode, 14: DC high voltage power supply, 15: Ammeter, 16: Vacuum chamber, 17: Cylindrical electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 磁束を透過させる材質からなる管状部材と、該
管状部材の外側に取り付けられ管状部材の管内を
横切る磁界を発生させる磁石と、管状部材の一方
の開放端を塞ぐ蓋体に絶縁を保つて取り付けら
れ、前記管状部材内の磁界中に挿入されるリング
状陽極とを備え、前記管状部材の内側を非磁性元
素より成る物質で覆うようにしたことを特徴とす
るペニング真空計。
A tubular member made of a material that transmits magnetic flux, a magnet that is attached to the outside of the tubular member and generates a magnetic field that crosses the inside of the tubular member, and a lid that closes one open end of the tubular member while maintaining insulation. A Penning vacuum gauge, comprising: a ring-shaped anode inserted into a magnetic field within the tubular member; and the inside of the tubular member is covered with a material made of a non-magnetic element.
JP9312983U 1983-06-17 1983-06-17 penning vacuum gauge Granted JPS60534U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9312983U JPS60534U (en) 1983-06-17 1983-06-17 penning vacuum gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9312983U JPS60534U (en) 1983-06-17 1983-06-17 penning vacuum gauge

Publications (2)

Publication Number Publication Date
JPS60534U JPS60534U (en) 1985-01-05
JPH0134107Y2 true JPH0134107Y2 (en) 1989-10-17

Family

ID=30223766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9312983U Granted JPS60534U (en) 1983-06-17 1983-06-17 penning vacuum gauge

Country Status (1)

Country Link
JP (1) JPS60534U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017433A (en) * 2001-06-28 2003-01-17 Tokyo Electron Ltd Chamber sensor port
JP5000386B2 (en) * 2007-06-08 2012-08-15 株式会社アルバック Cold cathode ionization gauge
JP4568321B2 (en) * 2007-11-27 2010-10-27 有限会社真空実験室 Cold cathode ionization gauge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233901U (en) * 1975-08-29 1977-03-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233901U (en) * 1975-08-29 1977-03-10

Also Published As

Publication number Publication date
JPS60534U (en) 1985-01-05

Similar Documents

Publication Publication Date Title
US5568053A (en) Ionization gauge having a non-time varying magnetic field generator of separated opposed magnets
JP6019121B2 (en) Ionization vacuum measuring cell
EP0081331A1 (en) Vacuum sputtering apparatus
JP4171026B2 (en) Sputter ion pump
JPH0134107Y2 (en)
US3088657A (en) Glow discharge vacuum pump apparatus
US4672323A (en) Device for measuring the internal pressure of an operationally built built-in vacuum switch
JP2010096763A (en) Molecular shield for ionization vacuum gauge
RU2389990C2 (en) Combined ionisation vacuum-gauge transducer
RU2515212C2 (en) High-sensitivity ionisation vacuum-gauge converter
US2235517A (en) Magnetron
JP3602917B2 (en) Cold cathode ionization gauge
US3028071A (en) Glow discharge apparatus
JPS63151835A (en) Penning ionization gage
JPH0772030A (en) Vacuum gage
SU637749A1 (en) Magnetic discharge pressure gauge
JPH095198A (en) Cold cathode gauge
US20070170926A1 (en) Method and device for measuring ultrahigh vacuum
Kaneda The plasma parameter of a positive column in a transverse magnetic field
CN208399080U (en) A kind of novel trans magnetic control rule and Pirani gauge compound sensor
GB147856A (en) Improvements in electric discharge tubes
US5923172A (en) Penning type gauge head with ignition aid
JPH0551137B2 (en)
CN203367219U (en) Magnet type cold-cathode ionization gauge tube and vacuum measurement system equipped therewith
Herzog et al. Cold cathode ionization gage has rigid metal housing