JP3602917B2 - Cold cathode ionization gauge - Google Patents

Cold cathode ionization gauge Download PDF

Info

Publication number
JP3602917B2
JP3602917B2 JP17624396A JP17624396A JP3602917B2 JP 3602917 B2 JP3602917 B2 JP 3602917B2 JP 17624396 A JP17624396 A JP 17624396A JP 17624396 A JP17624396 A JP 17624396A JP 3602917 B2 JP3602917 B2 JP 3602917B2
Authority
JP
Japan
Prior art keywords
cathode
vacuum vessel
anode
vacuum
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17624396A
Other languages
Japanese (ja)
Other versions
JPH1019711A (en
Inventor
望 高木
沈  国華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP17624396A priority Critical patent/JP3602917B2/en
Publication of JPH1019711A publication Critical patent/JPH1019711A/en
Application granted granted Critical
Publication of JP3602917B2 publication Critical patent/JP3602917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷陰極電離真空計に関するものである。
【0002】
【従来の技術】
従来、冷陰極型電離真空計としては、図7及び図8に示すようなペニング型のもの、図9に示すようなマグネトロン型のもの、また図10に示すような逆マグネトロン型のもの等が知られている。
【0003】
図7に示すペニング型の冷陰極型電離真空計では、被測定真空容器のフランジAに取り付けられるようにされたフランジBを備えた真空容器C内に、円筒状のアノードD及び円筒状のアノードDを挾んで板状のカソードEがそれぞれ軸線と同軸に配置され、アノードDは接続部Fを介して電極Gに接続され、この電極Gは絶縁体Hで絶縁されており、通常2乃至3.5kVの直流電圧が印加される。板状のカソードEは、図示していないが接地されている。また真空容器Cの外側には円筒状のアノードDの軸方向に磁界を形成する円筒状磁石Iが配置され、符号Jで示す磁力線を形成している。
【0004】
図8に示すペニング型の冷陰極型電離真空計においては、真空容器C内に、円筒状のアノードDは軸線方向に対して横向きに配置され、絶縁体Hで絶縁されて真空容器Cの壁に取り付けられた電極Gに接続され、この電極Gには通常2乃至3.5kVの直流電圧が印加される。板状のカソードEはアノードDを挾んで左右に配置され、そして図示していないが接地されている。また真空容器Cの外側には円筒状のアノードDの軸線方向に磁界を形成する2枚の板状の磁石Kが配置され、符号Lで示す磁力線が形成される。
【0005】
図9に示すマグネトロン型の冷陰極電離真空計においては、被測定真空容器のフランジAに取り付けられるフランジBを備えた真空容器C内に、円筒状のアノードDが真空容器Cの軸線と同軸に配置され、このアノードDは接続部Fを介して電極Gに接続され、電極Gは絶縁体Hで絶縁されて真空容器Cの壁を貫通して外部へ延び通常2乃至3.5kVの直流電圧が印加される。Mは真空容器Cの軸線に沿ってのびる細い棒の両端に円板を備えたカソードであり、図示してないが接地されている。Iは円筒状のアノードDの軸方向に磁界を形成する円筒状磁石で、符号Jで示す磁力線が形成されている。
【0006】
図10に示す逆マグネトロン型の冷陰極電離真空計においては、被測定真空容器のフランジAに取り付けられるフランジBを備えた真空容器C内に、円筒状で両端にドーナツ状の円板を備えたカソードNが真空容器Cの軸線と同軸に配置され、図示してないが接地されている。Oは真空容器Cの軸線に沿ってのびる細い棒状のアノードで、電極Gに接続されている。電極Gは絶縁体Hで絶縁されており、通常2乃至3.5kVの直流電圧が印加される。Iは細い棒状のアノードOの軸方向に磁界を形成する円筒状磁石で、符号Jで示す磁力線が形成されている。
【0007】
図7及び図8に示すペニング型の冷陰極型電離真空計の場合、円筒状のアノードDと板状のカソードEで挟まれた空間には電界と磁界が存在している。また図9のマグネトロン型の冷陰極電離真空計の場合、円筒状のアノードDとカソードMで挟まれた空間には電界と磁界が存在している。さらに図10の場合も、円筒状で両端にドーナツ状の円板を備えたカソードNと細い棒状のアノードOで挟まれた空間には電界と磁界が形成されている。
これらの空間で電界放出や宇宙線などの原因で電子が発生した場合、電子は負電極から正電極に向かって加速されるが、磁界が存在するためにローレンツの力を受けて、すぐには正電極に到達せず、空間内で螺旋運動して、長い距離を飛行する。その結果、空間内の残留ガスと衝突して残留ガスをイオン化する確率が増し、負電極と正電極の間に持続放電が発生する。放電電流は空間の残留ガスの量に依存するので、放電電流を測定することによって空間内の圧力、ひいては真空計が取り付けられている被測定真空容器の圧力を知ることができる。
【0008】
【発明が解決しようとする課題】
従来の冷陰極電離真空計においては、放電空間に磁界を発生させるために、真空計容器の外側に円筒状もしくは板状の磁石を配置ししかも一般的に1,000乃至1,500ガウスの磁界が必要であるので、使用される磁石は比較的大きくなり、そのため真空計自体が重く且つ大きくなるという問題点があった。
【0009】
そこで、本発明は、このような従来装置にも伴う問題点を解決し、小型軽量化できる冷陰極電離真空計を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1の発明では、被測定真空容器に取り付けるようにされたフランジ真空容器内に、外部直流電圧源に接続されるアノードと、接地されるカソードとを配置し、磁石による磁場を利用してアノードとカソードとで画定される空間に持続放電を発生させ、その放電電流から真空度を測定するようにした冷陰極型電離真空計において、円筒形磁石を真空容器内に真空容器の軸線に同軸に配置し、この円筒形磁石でアノードを構成したことを特徴としている。
【0011】
また、本発明の第2の発明では、被測定真空容器に取り付けるようにされたフランジ真空容器内に、外部直流電圧源に接続されるアノードと、接地されるカソードとを配置し、磁石による磁場を利用してアノードとカソードとで画定される空間に持続放電を発生させ、その放電電流から真空度を測定するようにした冷陰極型電離真空計において、円筒形磁石が真空容器内で真空容器の軸線に対して横向きに配置され、この円筒形磁石でアノードを構成したことを特徴としている。
さらに、本発明の第3の発明では、被測定真空容器に取り付けるようにされたフランジ真空容器内に、外部直流電圧源に接続されるアノードと、接地されるカソードとを配置し、磁石による磁場を利用してアノードとカソードとで画定される空間に持続放電を発生させ、その放電電流から真空度を測定するようにした冷陰極型電離真空計において、真空容器内に配置した磁石が両端に円板を備えた円筒形であり、真空容器の軸線に対して同軸に配置され、カソードを構成し、またアノードが円筒形磁石を貫通して設けられていることを特徴としている。
【0012】
【作用】
このように構成した本発明の冷陰極型電離真空計においては、磁石を真空容器内に配置すると共にペニング型及びマグネトロン型として実施する場合には、アノードを円筒状磁石で構成し、逆マグネトロン型として実施する場合には、カソードを円筒状磁石で構成しているので、使用する磁石自体小型でよくしかも真空計の構造を単純にでき、その結果真空計を小型軽量化できるようになる。
【0013】
【実施例】
以下、本発明の実施例を添付図面図1〜図6を参照して説明する。
図1には、ペニング型の冷陰極型電離真空計の一実施例を示す。図示真空計は真空容器1を有し、この真空容器1はフランジ2を介して被測定真空容器のフランジ3に取り付けられる。4はアノードで、真空容器1の軸線に同軸に配置された円筒状の磁石で構成されており、接続部5を介して電極6に接続されている。電極6は絶縁体7を介して真空容器1の壁に取り付けられており、通常2乃至3.5kVの直流電圧が印加される。また、8はアノード4の上下に真空容器1の軸線に同軸に配置された板状のカソードであり、図示していないが接地されている。円筒状の磁石から成るアノード4は符号9で示すように磁力線を形成する。
【0014】
図2にはペニング型の冷陰極型電離真空計の別の実施例を示し、アノード及びカソードの構造において図1の実施例と相違し、その他の構成は図1の実施例と実質的に同じある。従って図1の実施例における構成要素と対応した部分は同じ符号で示す。図2の装置において、円筒状の磁石で構成されたアノード4は真空容器1の軸線に対して横向きにすなわち真空容器1の軸線に直交して配置されており、そして電極6に直接接続されている。
この場合も電極6には通常2乃至3.5kVの直流電圧が印加される。磁力線は図面に符号10で示すように真空容器1の軸線に対して直交する方向に沿って形成される。
【0015】
図3にはマグネトロン型として実施した別の実施例を示す。この例でも前述の実施例に対応した部分は同じ符号で示す。すなわち、真空容器1はフランジ2を介して被測定真空容器のフランジ3に取り付けられる。アノード4は、図示したように真空容器1の軸線に同軸に配置された円筒状の磁石で構成されており、接続部5を介して電極6に接続されている。電極6は絶縁体7を介して真空容器1の壁に取り付けられており、そして電極6には通常2乃至3.5kVの直流電圧が印 加される。また、11は真空容器1の軸線に同軸に配置されたカソードで、細い棒部材11aとその両端に取り付けられた円板11bとで構成されている。またカソード11は図示していないが接地されている。円筒状の磁石から成るアノード4は符号9で示すように磁力線を形成する。
【0016】
図4には逆マグネトロン型として実施した別の実施例を示し、アノード及びカソードの構造において図3のマグネトロン型の実施例と相違し、その他の構成は図3の実施例と実質的に同じあり、従って図3の実施例における構成要素と対応した部分は同じ符号で示す。
図4に示すように、12は真空容器1の軸線に同軸に配置されたカソードで、円筒状の磁石12aの両端にドーナツ状の円板12bを備えて構成されている。カソード12は、図示していないが接地されている。13は細い棒部材から成るアノードで、真空容器1の軸線上に配置され、そして電極6に直接接続されている。電極6には通常2乃至3.5kVの直流電圧が印加される。カソード12によって磁力線9が形成される。
【0017】
図5及び図6にはそれぞれ図3及び図4の実施例の装置の電気回路を示し、AMは放電電流を測定するための電流計であり、図示したように電気的に接続されている。電流計AMには放電電流が流れる。
【0018】
図1〜図4に示すように構成した真空計の動作において、図1及び図2の実施例の場合、円筒状アノード4と板状のカソード8で挟まれた空間に、電界と磁石製アノード4自体の磁石により発生された磁界が存在している。また図3の実施例の場合、円筒状アノード4とカソード11で挟まれた空間に、電界とアノード4自体の磁石により発生された磁界が存在している。さらに図4に示す実施例の場合も、カソード12と細い棒状アノード13で挟まれた空間には磁界とカソード12自体の磁石により発生された磁界が存在している。
これらの空間で電界放出や宇宙線などの原因で電子が発生すると、発生した電子は負電極から正電極に向かって加速されるが、磁界が存在するためローレンツの力を受けて、すぐには正電極に到達せず、空間内で螺旋運動して、長い距離を飛行する。その結果、電子が空間内の残留ガスと衝突して、残留ガスをイオン化する確率が増し、負電極と正電極との間に持続放電が発生する。放電電流は空間の残留ガス量に依存するので、この放電電流を電流計AM(図5及び図6参照)で測定することによって空間の圧力、ひいては真空計が取り付けられている被測定容器の圧力を知ることができる。
【0021】
【発明の効果】
以上説明してきたように、本発明による磁石による磁場を利用した冷陰極真空計においては、円筒形磁石を真空計容器内に設け、且つ、その磁石でアノードを構成しているので、部品数が少なくなり、そして真空計容器の外側に磁石を設けた従来技術のものに比べて使用する磁石を小さくでき、真空計を小型軽量化することが可能になる。また磁石が小さいために、真空計外部の機器に及ぼす磁界の影響が従来のものに比べて小さくなる。
【図面の簡単な説明】
【図1】本発明の一実施例によるペニング型の冷陰極型電離真空計の概略 断面図。
【図2】本発明の別の実施例によるペニング型の冷陰極型電離真空計の概 略断面図。
【図3】本発明のさらに別の実施例によるマグネトロン型の冷陰極型電離 真空計の概略断面図。
【図4】本発明のさらに別の実施例による逆マグネトロン型の冷陰極型電 離真空計の概略断面図。
【図5】図3の真空計の電気回路図。
【図6】図4の真空計の電気回路図。
【図7】従来技術によるペニング型の冷陰極型電離真空計の一例を示す概 略断面図。
【図8】従来技術によるペニング型の冷陰極型電離真空計の別の例を示す 概略断面図。
【図9】従来技術によるマグネトロン型の冷陰極型電離真空計の一例を示 す概略断面図。
【図10】従来技術による逆マグネトロン型の冷陰極型電離真空計の一例を 示す概略断面図。
【符号の説明】
1: 真空計の真空容器
2: 真空計のフランジ
3: 被測定真空容器のフランジ
4: アノード
5: 接続部
6: 電極
7: 絶縁体
8: カソード
9: 磁力線
10: 磁力線
11: カソード
12: カソード
13: アノード
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cold cathode ionization vacuum gauge.
[0002]
[Prior art]
Conventionally, as a cold cathode ionization gauge, a penning type as shown in FIGS. 7 and 8, a magnetron type as shown in FIG. 9, and an inverted magnetron type as shown in FIG. Are known.
[0003]
In the Penning type cold cathode ionization vacuum gauge shown in FIG. 7, a cylindrical anode D and a cylindrical anode are placed in a vacuum vessel C having a flange B adapted to be attached to a flange A of a vacuum vessel to be measured. A plate-shaped cathode E is disposed coaxially with the axis with respect to D, and an anode D is connected to an electrode G via a connection portion F. The electrode G is insulated by an insulator H, and is usually 2 to 3.5. A DC voltage of kV is applied. The plate-shaped cathode E is not shown but is grounded. A cylindrical magnet I that forms a magnetic field in the axial direction of the cylindrical anode D is arranged outside the vacuum vessel C, and forms a magnetic line of force indicated by reference symbol J.
[0004]
In the Penning-type cold-cathode ionization gauge shown in FIG. 8, a cylindrical anode D is disposed in a vacuum vessel C transversely to the axial direction, and is insulated by an insulator H so that the wall of the vacuum vessel C is insulated. And a DC voltage of 2 to 3.5 kV is normally applied to the electrode G. The plate-like cathode E is disposed on the left and right sides of the anode D, and is grounded (not shown). Outside the vacuum vessel C, two plate-shaped magnets K for forming a magnetic field in the axial direction of the cylindrical anode D are arranged, and lines of magnetic force L are formed.
[0005]
In the magnetron type cold cathode ionization gauge shown in FIG. 9, a cylindrical anode D is coaxial with the axis of the vacuum vessel C in a vacuum vessel C having a flange B attached to the flange A of the vacuum vessel to be measured. The anode D is connected to an electrode G via a connection portion F. The electrode G is insulated by an insulator H, extends through the wall of the vacuum vessel C to the outside, and a DC voltage of usually 2 to 3.5 kV is applied. Applied. M is a cathode provided with disks at both ends of a thin rod extending along the axis of the vacuum vessel C, and is grounded (not shown). I is a cylindrical magnet that forms a magnetic field in the axial direction of the cylindrical anode D, and has magnetic lines of force indicated by reference symbol J.
[0006]
In the inverted magnetron type cold cathode ionization gauge shown in FIG. 10, a cylindrical donut disk is provided at both ends in a vacuum vessel C having a flange B attached to a flange A of a vacuum vessel to be measured. The cathode N is arranged coaxially with the axis of the vacuum vessel C and is grounded (not shown). O is a thin rod-shaped anode extending along the axis of the vacuum vessel C and connected to the electrode G. The electrode G is insulated by an insulator H, and a DC voltage of 2 to 3.5 kV is normally applied. I is a cylindrical magnet that forms a magnetic field in the axial direction of the thin rod-shaped anode O, and has magnetic lines of force indicated by J.
[0007]
In the case of the Penning-type cold-cathode ionization gauge shown in FIGS. 7 and 8, an electric field and a magnetic field exist in a space between a cylindrical anode D and a plate-shaped cathode E. In the case of the magnetron type cold cathode ionization gauge shown in FIG. 9, an electric field and a magnetic field exist in a space between the cylindrical anode D and the cathode M. Further, also in the case of FIG. 10, an electric field and a magnetic field are formed in a space between a cathode N having a cylindrical donut-shaped disk at both ends and a thin rod-shaped anode O.
When electrons are generated in these spaces due to field emission or cosmic rays, the electrons are accelerated from the negative electrode toward the positive electrode.However, due to the presence of a magnetic field, the electrons receive Lorentz's force and immediately Instead of reaching the positive electrode, it spirals in space and flies a long distance. As a result, the probability of colliding with the residual gas in the space and ionizing the residual gas increases, and a sustained discharge occurs between the negative electrode and the positive electrode. Since the discharge current depends on the amount of residual gas in the space, by measuring the discharge current, it is possible to know the pressure in the space, and thus the pressure of the vacuum vessel to which the vacuum gauge is attached.
[0008]
[Problems to be solved by the invention]
In a conventional cold cathode ionization vacuum gauge, a cylindrical or plate-shaped magnet is arranged outside the vacuum gauge container in order to generate a magnetic field in the discharge space, and a magnetic field of 1,000 to 1,500 gauss is generally used. Is required, the magnet used is relatively large, and thus the vacuum gauge itself is heavy and large.
[0009]
Accordingly, an object of the present invention is to solve the problems associated with such a conventional device and to provide a cold cathode ionization vacuum gauge that can be reduced in size and weight.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to a first aspect of the present invention, an anode connected to an external DC voltage source, a cathode grounded, and a flanged vacuum vessel adapted to be attached to a vacuum vessel to be measured are provided. In a cold-cathode ionization gauge, a continuous discharge is generated in a space defined by an anode and a cathode using a magnetic field generated by a magnet, and the degree of vacuum is measured from the discharge current. Are arranged coaxially with the axis of the vacuum vessel in the vacuum vessel, and the anode is constituted by this cylindrical magnet.
[0011]
According to a second aspect of the present invention, an anode connected to an external DC voltage source and a grounded cathode are arranged in a flanged vacuum vessel adapted to be attached to a vacuum vessel to be measured, and a magnetic field generated by a magnet is provided. In a cold cathode ionization gauge that generates a sustained discharge in a space defined by an anode and a cathode by using the above, and measures the degree of vacuum from the discharge current, a cylindrical magnet has a vacuum vessel inside a vacuum vessel. And the anode is constituted by this cylindrical magnet.
Further, in the third invention of the present invention, an anode connected to an external DC voltage source and a cathode grounded are arranged in a flanged vacuum vessel adapted to be attached to a vacuum vessel to be measured, and a magnetic field generated by a magnet is provided. In a cold-cathode ionization gauge that generates a sustained discharge in the space defined by the anode and the cathode by using the magnet and measures the degree of vacuum from the discharge current, magnets arranged in a vacuum vessel are at both ends. It is cylindrical with a disk, is arranged coaxially with respect to the axis of the vacuum vessel, constitutes a cathode, and is characterized in that an anode is provided through a cylindrical magnet.
[0012]
[Action]
In the cold-cathode ionization gauge of the present invention configured as described above, when the magnet is arranged in the vacuum vessel and implemented as a Penning type and a magnetron type, the anode is formed of a cylindrical magnet, and an inverted magnetron type In this case, since the cathode is formed of a cylindrical magnet, the magnet used can be small and the structure of the vacuum gauge can be simplified, and as a result, the vacuum gauge can be reduced in size and weight.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings FIGS.
FIG. 1 shows an embodiment of a Penning type cold cathode ionization gauge. The illustrated vacuum gauge has a vacuum vessel 1, which is attached via a flange 2 to a flange 3 of the vacuum vessel to be measured. Reference numeral 4 denotes an anode, which is constituted by a cylindrical magnet arranged coaxially with the axis of the vacuum vessel 1, and is connected to the electrode 6 via the connection part 5. The electrode 6 is attached to the wall of the vacuum vessel 1 via an insulator 7, and a DC voltage of usually 2 to 3.5 kV is applied. Reference numeral 8 denotes a plate-like cathode disposed above and below the anode 4 coaxially with the axis of the vacuum vessel 1, and is grounded, not shown. The anode 4 formed of a cylindrical magnet forms magnetic lines of force as indicated by reference numeral 9.
[0014]
FIG. 2 shows another embodiment of the Penning type cold cathode ionization gauge, which differs from the embodiment of FIG. 1 in the structure of the anode and the cathode, and other configurations are substantially the same as those of the embodiment of FIG. is there. Therefore, parts corresponding to the components in the embodiment of FIG. 1 are denoted by the same reference numerals. In the device of FIG. 2, the anode 4 constituted by a cylindrical magnet is arranged transversely to the axis of the vacuum vessel 1, ie perpendicular to the axis of the vacuum vessel 1, and is connected directly to the electrode 6. I have.
Also in this case, a DC voltage of 2 to 3.5 kV is normally applied to the electrode 6. The lines of magnetic force are formed along a direction orthogonal to the axis of the vacuum vessel 1 as indicated by reference numeral 10 in the drawing.
[0015]
FIG. 3 shows another embodiment implemented as a magnetron type. Also in this example, portions corresponding to the above-described embodiment are denoted by the same reference numerals. That is, the vacuum vessel 1 is attached to the flange 3 of the vacuum vessel to be measured via the flange 2. The anode 4 is composed of a cylindrical magnet arranged coaxially with the axis of the vacuum vessel 1 as shown in the figure, and is connected to the electrode 6 via the connection part 5. The electrode 6 is mounted on the wall of the vacuum vessel 1 via an insulator 7, and a DC voltage of usually 2 to 3.5 kV is applied to the electrode 6. Reference numeral 11 denotes a cathode which is arranged coaxially with the axis of the vacuum vessel 1, and comprises a thin rod member 11a and disks 11b attached to both ends thereof. Although not shown, the cathode 11 is grounded. The anode 4 formed of a cylindrical magnet forms magnetic lines of force as indicated by reference numeral 9.
[0016]
FIG. 4 shows another embodiment implemented as an inverted magnetron type. The structure of the anode and the cathode is different from that of the magnetron type shown in FIG. 3, and other configurations are substantially the same as those of the embodiment shown in FIG. Therefore, parts corresponding to the components in the embodiment of FIG. 3 are denoted by the same reference numerals.
As shown in FIG. 4, reference numeral 12 denotes a cathode which is arranged coaxially with the axis of the vacuum vessel 1, and is provided with a donut-shaped disk 12b at both ends of a cylindrical magnet 12a. The cathode 12 is grounded, not shown. Reference numeral 13 denotes an anode composed of a thin rod member, which is arranged on the axis of the vacuum vessel 1 and is directly connected to the electrode 6. Normally, a DC voltage of 2 to 3.5 kV is applied to the electrode 6. The lines of magnetic force 9 are formed by the cathode 12.
[0017]
FIGS. 5 and 6 show the electric circuits of the devices of the embodiments of FIGS. 3 and 4, respectively, where AM is an ammeter for measuring the discharge current, which is electrically connected as shown. A discharge current flows through the ammeter AM.
[0018]
In the operation of the vacuum gauge configured as shown in FIGS. 1 to 4, in the case of the embodiment of FIGS. 1 and 2, an electric field and an anode made of magnet are provided in a space between the cylindrical anode 4 and the plate-like cathode 8. 4 there is a magnetic field generated by its own magnet. In the case of the embodiment shown in FIG. 3, an electric field and a magnetic field generated by the magnet of the anode 4 exist in the space between the cylindrical anode 4 and the cathode 11. Further, also in the embodiment shown in FIG. 4, a magnetic field and a magnetic field generated by the magnet of the cathode 12 itself exist in the space between the cathode 12 and the thin rod-shaped anode 13.
When electrons are generated in these spaces due to field emission or cosmic rays, the generated electrons are accelerated from the negative electrode toward the positive electrode. Instead of reaching the positive electrode, it spirals in space and flies a long distance. As a result, the probability that the electrons collide with the residual gas in the space and ionize the residual gas increases, and a sustained discharge occurs between the negative electrode and the positive electrode. Since the discharge current depends on the amount of residual gas in the space, the discharge current is measured by an ammeter AM (see FIGS. 5 and 6) to determine the pressure in the space, and thus the pressure in the container to be measured, to which the vacuum gauge is attached. You can know.
[0021]
【The invention's effect】
As described above, in the cold cathode vacuum gauge utilizing the magnetic field generated by the magnet according to the present invention, the cylindrical magnet is provided in the vacuum gauge container, and the magnet constitutes the anode. The number of magnets to be used can be smaller than that of the prior art in which magnets are provided outside the vacuum gauge container, and the vacuum gauge can be reduced in size and weight. Further, since the magnet is small, the influence of the magnetic field on the device outside the vacuum gauge is smaller than that of the conventional one.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a Penning-type cold cathode ionization gauge according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view of a Penning-type cold cathode ionization gauge according to another embodiment of the present invention.
FIG. 3 is a schematic sectional view of a magnetron-type cold cathode ionization vacuum gauge according to still another embodiment of the present invention.
FIG. 4 is a schematic sectional view of an inverted magnetron cold cathode ionization gauge according to still another embodiment of the present invention.
FIG. 5 is an electric circuit diagram of the vacuum gauge of FIG. 3;
FIG. 6 is an electric circuit diagram of the vacuum gauge of FIG. 4;
FIG. 7 is a schematic cross-sectional view showing an example of a Penning type cold cathode ionization gauge according to the related art.
FIG. 8 is a schematic sectional view showing another example of a Penning-type cold cathode ionization gauge according to the related art.
FIG. 9 is a schematic sectional view showing an example of a magnetron type cold cathode ionization gauge according to the related art.
FIG. 10 is a schematic cross-sectional view showing an example of a conventional magnetron type cold cathode ionization vacuum gauge according to the related art.
[Explanation of symbols]
1: Vacuum vessel of vacuum gauge 2: Flange of vacuum gauge 3: Flange of vacuum vessel to be measured 4: Anode 5: Connection 6: Electrode 7: Insulator 8: Cathode 9: Line of magnetic force
10: Magnetic field lines
11: Cathode
12: Cathode
13: Anode

Claims (3)

被測定真空容器に取り付けるようにされたフランジ真空容器内に、外部直流電圧源に接続されるアノードと、接地されるカソードとを配置し、磁石による磁場を利用してアノードとカソードとで画定される空間に持続放電を発生させ、その放電電流から真空度を測定するようにした冷陰極型電離真空計において、円筒形磁石を真空容器内に真空容器の軸線に同軸に配置し、この円筒形磁石でアノードを構成したことを特徴とする冷陰極電離真空計。An anode connected to an external DC voltage source and a cathode grounded are arranged in a flanged vacuum vessel adapted to be attached to the vacuum vessel to be measured, and are defined by the anode and the cathode using a magnetic field by a magnet. In a cold-cathode ionization gauge in which a sustained discharge is generated in a space and the degree of vacuum is measured from the discharge current, a cylindrical magnet is arranged in a vacuum vessel coaxially with the axis of the vacuum vessel. cold cathode ionization vacuum gauge, characterized by being configured to anodic a magnet. 被測定真空容器に取り付けるようにされたフランジ真空容器内に、外部直流電圧源に接続されるアノードと、接地されるカソードとを配置し、磁石による磁場を利用してアノードとカソードとで画定される空間に持続放電を発生させ、その放電電流から真空度を測定するようにした冷陰極型電離真空計において、円筒形磁石が真空容器内で真空容器の軸線に対して横向きに配置され、この円筒形磁石でアノードを構成したことを特徴とする冷陰極電離真空計。 An anode connected to an external DC voltage source and a cathode grounded are arranged in a flanged vacuum vessel adapted to be attached to the vacuum vessel to be measured, and are defined by the anode and the cathode using a magnetic field by a magnet. In a cold-cathode ionization gauge that generates a sustained discharge in a space and measures the degree of vacuum from the discharge current, a cylindrical magnet is disposed in the vacuum vessel in a direction transverse to the axis of the vacuum vessel. A cold-cathode ionization gauge , wherein the anode is constituted by a cylindrical magnet . 被測定真空容器に取り付けるようにされたフランジ真空容器内に、外 部直流電圧源に接続されるアノードと、接地されるカソードとを配置し、磁石による磁場を利用してアノードとカソードとで画定される空間に持続放電を発生させ、その放電電流から真空度を測定するようにした冷陰極型電離真空計において、真空容器内に配置した磁石が両端に円板を備えた円筒形であり、真空容器の軸線に対して同軸に配置され、カソードを構成し、またアノードが円筒形磁石を貫通して設けられていることを特徴とする冷陰極電離真空計。 Defined in in the flange vacuum containers to be attached to the vacuum vessel to be measured, an anode connected to an external DC voltage source, is arranged and a cathode grounded, the anode and the cathode by utilizing the magnetic field generated by magnet In a cold-cathode ionization gauge in which a sustained discharge is generated in a space to be measured and the degree of vacuum is measured from the discharge current, a magnet arranged in a vacuum vessel has a cylindrical shape having disks at both ends, A cold-cathode ionization gauge which is arranged coaxially with respect to the axis of a vacuum vessel, constitutes a cathode, and has an anode provided through a cylindrical magnet .
JP17624396A 1996-07-05 1996-07-05 Cold cathode ionization gauge Expired - Lifetime JP3602917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17624396A JP3602917B2 (en) 1996-07-05 1996-07-05 Cold cathode ionization gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17624396A JP3602917B2 (en) 1996-07-05 1996-07-05 Cold cathode ionization gauge

Publications (2)

Publication Number Publication Date
JPH1019711A JPH1019711A (en) 1998-01-23
JP3602917B2 true JP3602917B2 (en) 2004-12-15

Family

ID=16010156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17624396A Expired - Lifetime JP3602917B2 (en) 1996-07-05 1996-07-05 Cold cathode ionization gauge

Country Status (1)

Country Link
JP (1) JP3602917B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257377A (en) * 2010-05-14 2011-12-22 Canon Anelva Corp Cold cathode ionization vacuum gauge, vacuum processing apparatus equipped with cold cathode ionization vacuum gauge, discharge starting auxiliary electrode used for cold cathode ionization vacuum gauge, and method of measuring pressure using cold cathode ionization vacuum gauge

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151623A (en) 2008-12-25 2010-07-08 Canon Anelva Corp Cold cathode ionization gauge and discharge start assist electrode plate for use in the same
JP5632644B2 (en) 2009-05-28 2014-11-26 キヤノンアネルバ株式会社 Cold cathode ionization vacuum gauge, discharge starting auxiliary electrode and vacuum processing apparatus
CH707685A1 (en) * 2013-03-06 2014-09-15 Inficon Gmbh Ionization vacuum measuring cell with shielding.
JP6111129B2 (en) * 2013-04-18 2017-04-05 有限会社真空実験室 Reverse magnetron type cold cathode ionization vacuum device
JP6131113B2 (en) 2013-06-13 2017-05-17 キヤノンアネルバ株式会社 Cold cathode ionization vacuum gauge and inner wall protection member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257377A (en) * 2010-05-14 2011-12-22 Canon Anelva Corp Cold cathode ionization vacuum gauge, vacuum processing apparatus equipped with cold cathode ionization vacuum gauge, discharge starting auxiliary electrode used for cold cathode ionization vacuum gauge, and method of measuring pressure using cold cathode ionization vacuum gauge

Also Published As

Publication number Publication date
JPH1019711A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
CN1308983C (en) Vacuum insulated switching apparatus
US5568053A (en) Ionization gauge having a non-time varying magnetic field generator of separated opposed magnets
JP6019121B2 (en) Ionization vacuum measuring cell
JP2005527941A (en) Device for confining plasma in a volume
JP3602917B2 (en) Cold cathode ionization gauge
JP4171026B2 (en) Sputter ion pump
US2820142A (en) Charged-particle accelerator
JP2008304360A (en) Auxiliary ignition device and cold cathode ionization vacuum gage with the same
US3263162A (en) Apparatus and method for measuring the pressure inside a vacuum circuit interrupter
US4833921A (en) Gas pressure measurement device
JP6111129B2 (en) Reverse magnetron type cold cathode ionization vacuum device
JP2011003425A (en) Ion pump
RU2515212C2 (en) High-sensitivity ionisation vacuum-gauge converter
WO2019082893A1 (en) Gas analyzer
EP2562786B1 (en) Ion pump system
US3324729A (en) Method and apparatus for detecting leaks
JP3400885B2 (en) Flange mount type hot cathode ionization gauge
US3287589A (en) Electron-collision ion source, particularly for electric mass spectrometers
JP2000223064A (en) Ion source and mass spectrometer using it
KR102417574B1 (en) Ionizing Vacuum Gauges and Cartridges
US6495786B1 (en) Vacuum exhaust element of vacuum switch
JP2011133386A (en) Cold cathode ionization vacuum gauge
JP4029495B2 (en) Ion source
JPH095198A (en) Cold cathode gauge
US6220821B1 (en) Ion pump having protective mask components overlying the cathode elements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term