JPH0132459B2 - - Google Patents

Info

Publication number
JPH0132459B2
JPH0132459B2 JP54133103A JP13310379A JPH0132459B2 JP H0132459 B2 JPH0132459 B2 JP H0132459B2 JP 54133103 A JP54133103 A JP 54133103A JP 13310379 A JP13310379 A JP 13310379A JP H0132459 B2 JPH0132459 B2 JP H0132459B2
Authority
JP
Japan
Prior art keywords
sample
rays
ray
sspa
spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54133103A
Other languages
Japanese (ja)
Other versions
JPS5655845A (en
Inventor
Toshihiko Nagamura
Koichi Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTSUKA DENSHI KK
Original Assignee
OOTSUKA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTSUKA DENSHI KK filed Critical OOTSUKA DENSHI KK
Priority to JP13310379A priority Critical patent/JPS5655845A/en
Publication of JPS5655845A publication Critical patent/JPS5655845A/en
Publication of JPH0132459B2 publication Critical patent/JPH0132459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 この発明は、X線分光測定に於いて試料の状態
変化を追つて測定することのできるX線分光吸収
の動的時間分解測定方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for dynamic time-resolved measurement of X-ray spectroscopic absorption, which can follow changes in the state of a sample in X-ray spectrometry.

物質の物理的又は化学的な状態変化を追跡する
手段としてはその物質のX線分光吸収を調べその
吸収端付近に生ずるEXAFS(Extended
Absorption Fine Structure)を解析することが
有効である。しかしながら、物質のEXAFSを測
定するにはX線の各波長に於ける吸収係数を高精
度に測定しなければならずそのためには長時間の
データの蓄積や高輝度のX線源、高感度の検出器
を必要とし、従来のゴニオメータ角度掃引による
X線分光測定ではX線源から照射されるX線の一
部の波長しか利用されないので無駄が多く各波長
毎に順に測定を行うので測定全波長領域を測定す
るのにかなりの長時間を要し物質の状態変化を追
う測定は到底不可能であつた。また、位置有感X
線検出器として一次元位置検出ガス比例計数管を
使用した場合は、検出器を移動させることなく一
次元X線吸収スペクトル像の測定全波長領域を同
時に測定することができるので測定時間の短縮が
ある程度可能であり、物質の状態変化の測定のた
めの時間サンプリングによる動的時間分解測定も
可能ではあるが、この一次元位置検出ガス比例計
数管はその計数管としての性質上不感時間を有し
誤差を生じるので高輝度のX線源が使用できず位
置検出分解能にも限界があるので高い精度が要求
されるEXAFSの測定には不向きであり、また、
光子計数のデジタル測定なのでデータ処理が面倒
であり測定装置自体も複雑であるという欠点を有
していた。
EXAFS (Extended
It is effective to analyze the Absorption Fine Structure. However, to measure the EXAFS of a material, the absorption coefficient at each wavelength of X-rays must be measured with high precision, which requires long-term data accumulation, a high-brightness X-ray source, and a highly sensitive Conventional X-ray spectroscopic measurement using a goniometer angle sweep requires a detector, and is wasteful because only a portion of the wavelengths of the X-rays emitted from the X-ray source are used, and each wavelength is measured in turn. It took a considerable amount of time to measure the area, and it was impossible to measure changes in the state of matter. Also, position sensitive
When a one-dimensional position detection gas proportional counter is used as a radiation detector, the entire wavelength range of the one-dimensional X-ray absorption spectrum image can be measured simultaneously without moving the detector, reducing measurement time. Although it is possible to some extent and dynamic time-resolved measurement using time sampling to measure changes in the state of substances is also possible, this one-dimensional position detection gas proportional counter has a dead time due to its nature as a counter. It is not suitable for EXAFS measurements, which require high accuracy, because it causes errors, so a high-brightness X-ray source cannot be used, and there is a limit to the position detection resolution.
Since it is a digital measurement of photon counting, data processing is troublesome and the measuring device itself is complicated.

この発明はこのような事情に鑑みなされたもの
であつて、物質のX線分光吸収特にEXAFSの測
定を高精度且つ短時間で行えるようにしこの測定
を連続的に繰り返すことによつて、物質の状態変
化を追跡することができるX線分光吸収の動的時
間分解測定方法及びその装置を得ることを目的と
する。つまり、この発明は、X線分光測定の検出
器として、一次元X線吸収スペクトル像の測定全
波長領域を同時に測定することができる高感度で
且つ位置検出分解能に優れた位置有感X線検出器
であつて、しかも、測定をアナログ量で行うこと
によつて計数管のような不感時間が無く高輝度の
X線源を使用しても数え落しによる誤差が生じな
い検出素子であるSSPA(Self―Scanning
Photodiode Array)を使用し、短時間に一次元
X線吸収スペクトル像を高精度に測定し得るよう
にして、X線源によるX線の試料への照射を高輝
度且つパルス状とすることを可能にし、このパル
ス状のX線の照射を連続的に繰り返すことによつ
て刻々と変化する物質の状態を時間分解測定によ
り動的に追跡し得ることを可能にしている。
This invention was made in view of the above circumstances, and it is possible to measure the X-ray spectroscopic absorption of substances, especially EXAFS, with high precision and in a short time, and by continuously repeating this measurement, it is possible to The object of the present invention is to obtain a method and apparatus for dynamic time-resolved measurement of X-ray spectroscopic absorption that can track state changes. In other words, the present invention provides a position-sensitive X-ray detector with high sensitivity and excellent position detection resolution that can simultaneously measure the entire measurement wavelength range of a one-dimensional X-ray absorption spectrum image as a detector for X-ray spectrometry. SSPA is a detection element that does not have dead time like a counter and does not cause errors due to counting errors even when using a high-intensity X-ray source because it measures analog quantities. Self-Scanning
Using a photodiode array, it is possible to measure a one-dimensional X-ray absorption spectrum image with high precision in a short time, making it possible to irradiate the sample with high-intensity X-rays from the X-ray source in a pulsed manner. By continuously repeating this pulsed X-ray irradiation, it is possible to dynamically track the ever-changing state of a substance by time-resolved measurement.

この発明の実施例を図面の記載に基づいて説明
する。この発明のX線分光吸収の動的時間分解測
定装置1は、第1図に示すように、発散X線を用
い位置有感X線検出器で測定を行う角度分散同時
計測法による光学系で構成され、X線管2から照
射される発散X線3が試料ホルダ4の試料内を通
過し分光結晶5によつて分散されSSPA検出器6
の受光部に測定全波長領域が達するように配置さ
れている。X線管2は、パルス状の印加電圧を発
生するパルス電源7によつて励起されパルス状の
連続波長X線を複数の異なる波長を含み且つ適当
な開き角を有して発散する発散X線3として試料
ホルダ4に向けて照射する。分光結晶5は、分解
能の良いLiF等の単結晶を使用し、試料ホルダ4
の試料内を通過した発散X線3をその入射角に応
じてブラツグ条件で定まるそれぞれの波長に角度
分散させ一次元X線吸収スペクトル像として
SSPA検出器6の受光部に送る。このようにする
と、SSPA上の位置の異なる点に異なる波長のX
線が入射することになる。SSPA検出器6は、
MOS半導体素子であるSSPAを受光部に使用し
た位置有感X線検出器であり、分光結晶5で分散
された一次元X線吸収スペクトル像をこのSSPA
の各波長に対応する位置に在る各単一ホトダイオ
ードに電荷量として、所定時間内でパルス毎に蓄
積した後、走査回路によつてアナログ量として読
み取るものである。SSPA検出器6で読み取られ
た一次元X線吸収スペクトル像の測定データは、
コントロール回路8を経てデータ処理装置9に送
られ一旦記憶されて演算処理が施される。試料ホ
ルダ4には、ストツプトフロー法、パルスフラツ
シユ光照射、温度ジヤンプ、圧力ジヤンプ又は変
動電場印加等の物理的又は化学的な摂動を試料に
為すための試料条件コントロール装置10を設け
てある。また、パルス電源7、データ処理装置9
及び試料条件コントロール装置10はタイミング
回路11によつて制御されていて、試料に為す摂
動に同期してX線管2からパルス状の発散X線3
を所定の時間内に繰り返し照射し試料の摂動によ
る化学変化の過程や物理的状態の変化を時間分解
測定しこの測定データを処理し得るようになつて
いる。
Embodiments of the invention will be described based on the drawings. As shown in FIG. 1, the dynamic time-resolved measurement device 1 for X-ray spectroscopic absorption according to the present invention is an optical system using a simultaneous angular dispersion measurement method that uses a position-sensitive X-ray detector to measure divergent X-rays. The divergent X-rays 3 emitted from the X-ray tube 2 pass through the sample in the sample holder 4, are dispersed by the spectroscopic crystal 5, and are sent to the SSPA detector 6.
The sensor is arranged so that the entire measurement wavelength range reaches the light receiving section of the sensor. The X-ray tube 2 is excited by a pulsed power supply 7 that generates a pulsed applied voltage, and converts pulsed continuous wavelength X-rays into diverging X-rays that include a plurality of different wavelengths and diverge at an appropriate opening angle. 3, the sample holder 4 is irradiated. The spectroscopic crystal 5 uses a single crystal such as LiF with good resolution, and the sample holder 4
The divergent X-rays 3 that have passed through the sample are angularly dispersed into respective wavelengths determined by bragging conditions according to the incident angle, and a one-dimensional X-ray absorption spectrum image is created.
It is sent to the light receiving section of the SSPA detector 6. In this way, X of different wavelengths can be placed at different points on the SSPA.
A line will be incident. The SSPA detector 6 is
This is a position-sensitive X-ray detector that uses an SSPA, which is a MOS semiconductor element, in the light receiving section.
After each single photodiode located at a position corresponding to each wavelength accumulates a charge as an amount for each pulse within a predetermined time, it is read as an analog amount by a scanning circuit. The measurement data of the one-dimensional X-ray absorption spectrum image read by the SSPA detector 6 is
The data is sent via the control circuit 8 to the data processing device 9, where it is temporarily stored and subjected to arithmetic processing. The sample holder 4 is provided with a sample condition control device 10 for applying physical or chemical perturbations to the sample such as a stop flow method, pulsed flash light irradiation, temperature jump, pressure jump, or application of a varying electric field. In addition, a pulse power source 7, a data processing device 9
The sample condition control device 10 is controlled by a timing circuit 11 to generate pulsed divergent X-rays 3 from the X-ray tube 2 in synchronization with perturbations made to the sample.
By repeatedly irradiating the sample within a predetermined period of time, it is possible to time-resolve the process of chemical change and change in physical state due to perturbation of the sample, and process this measurement data.

尚、パルス状の発散X線3を得るX線源として
は、実施例のようにパルス電源7を使用するので
はなく、X線管2のターゲツトの先に機械的チヨ
ツパーを設けこの機械的チヨツパーによる発散X
線3の照射のタイミングをタイミング回路11で
制御するようにしてもよい。また、測定装置の光
学系は、実施例では試料を分光結晶5よりもX線
管2側に配置したが、試料を分光結晶5よりも
SSPA検出器6側に配置することも可能であり、
試料その他の条件により適宜定め得るものであ
る。
As an X-ray source for obtaining pulsed divergent X-rays 3, instead of using the pulse power source 7 as in the embodiment, a mechanical chopper is provided at the tip of the target of the X-ray tube 2. Divergence by
The timing of irradiation of the line 3 may be controlled by the timing circuit 11. In addition, although the optical system of the measuring device placed the sample closer to the X-ray tube 2 than the spectroscopic crystal 5 in the example, the sample was placed closer to the X-ray tube 2 than the spectroscopic crystal 5.
It is also possible to place it on the SSPA detector 6 side,
It can be determined as appropriate depending on the sample and other conditions.

以上説明したようにこの発明のX線分光吸収の
動的時間分解測定方法及びその装置は、X線分光
測定に於いてパルス状のX線源とSSPA検出器を
組み合わせることにより摂動を為した試料の状態
変化を高精度に動的時間分解測定することを可能
にすると共に、SSPAが一次元X線吸収スペクト
ル像を一旦蓄積しその後走査回路によつてアナロ
グ量として読み取るので測定データの処理が容易
にできるという効果を有する。
As explained above, the method and apparatus for dynamic time-resolved measurement of X-ray spectroscopic absorption of the present invention can be applied to a perturbed sample by combining a pulsed X-ray source and an SSPA detector during X-ray spectrometry. In addition to making it possible to perform dynamic time-resolved measurement of state changes with high precision, SSPA once accumulates a one-dimensional X-ray absorption spectrum image and then reads it as an analog quantity using a scanning circuit, making it easy to process the measurement data. It has the effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のX線分光吸収の動的時間分
解測定装置の構成を示す説明図である。 1…X線分光吸収の動的時間分解測定装置、2
…X線管、4…試料ホルダ、5…分光結晶、6…
SSPA検出器、9…データ処理装置、10…試料
条件コントロール装置、11…タイミング回路。
FIG. 1 is an explanatory diagram showing the configuration of a dynamic time-resolved X-ray absorption measurement apparatus according to the present invention. 1...Dynamic time-resolved measurement device for X-ray spectroscopic absorption, 2
...X-ray tube, 4...sample holder, 5...spectroscopy crystal, 6...
SSPA detector, 9...data processing device, 10...sample condition control device, 11...timing circuit.

Claims (1)

【特許請求の範囲】 1 パルス状の連続波長X線を高輝度の発散X線
として所定の時間内に繰り返し試料に照射し、こ
の試料内を通過するX線を分光結晶で一次元吸収
スペクトル像に分散させまたは分光結晶で一次元
吸収スペクトル像に分散させた後前記試料内を通
過させてSSPA(Self―Scanning Photodiode
Array)でそれぞれパルス毎に又は、数パルス積
算の後に検出することによつて摂動を為した試料
の状態変化を測定するX線分光吸収の動的時間分
解測定方法。 2 パルス状の連続波長X線を高輝度の発散X線
として所定の時間内に繰り返し照射することので
きるX線源と、発散X線を波長毎の一次元吸収ス
ペクトル像に角度分散させる分光結晶と、試料に
摂動を為すために試料条件コントロール装置が設
けられた試料ホルダと、前記発散X線が試料内を
通過して前記分光結晶によつて角度分散され又は
分光結晶によつて角度分散されて前記試料内を通
過した前記X線の全波長領域が達するように配置
されたSSPA検出器と、該SSPA検出器からのア
ナログ量としての測定データを処理するデータ処
理装置と、該データ処理装置の動作と前記X線源
の照射及び前記試料条件コントロール装置との動
作を同期させるタイミング回路とを具備してなる
X線分光吸収の動的時間分解測定装置。
[Claims] 1. A sample is repeatedly irradiated with pulsed continuous wavelength X-rays as high-intensity divergent X-rays within a predetermined period of time, and a one-dimensional absorption spectrum image of the X-rays passing through the sample is obtained using a spectroscopic crystal. SSPA (Self-Scanning Photodiode)
A dynamic time-resolved measurement method for X-ray spectroscopic absorption that measures changes in the state of a perturbed sample by detecting each pulse or after integrating several pulses. 2. An X-ray source that can repeatedly irradiate pulsed continuous wavelength X-rays as high-intensity divergent X-rays within a predetermined time, and a spectroscopic crystal that angularly disperses the divergent X-rays into one-dimensional absorption spectrum images for each wavelength. a sample holder provided with a sample condition control device for perturbing the sample; and the divergent X-rays passing through the sample and being angularly dispersed by the spectroscopic crystal or angularly dispersed by the spectroscopic crystal. an SSPA detector arranged so that the entire wavelength range of the X-rays that have passed through the sample reach the SSPA detector, a data processing device that processes measurement data as an analog quantity from the SSPA detector, and the data processing device A dynamic time-resolved measurement device for X-ray spectroscopic absorption, comprising a timing circuit that synchronizes the operation of the X-ray source, the irradiation of the X-ray source, and the operation of the sample condition control device.
JP13310379A 1979-10-15 1979-10-15 Method and device for dynamic time resolving measurement of xxray spectral absorption Granted JPS5655845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13310379A JPS5655845A (en) 1979-10-15 1979-10-15 Method and device for dynamic time resolving measurement of xxray spectral absorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13310379A JPS5655845A (en) 1979-10-15 1979-10-15 Method and device for dynamic time resolving measurement of xxray spectral absorption

Publications (2)

Publication Number Publication Date
JPS5655845A JPS5655845A (en) 1981-05-16
JPH0132459B2 true JPH0132459B2 (en) 1989-06-30

Family

ID=15096880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13310379A Granted JPS5655845A (en) 1979-10-15 1979-10-15 Method and device for dynamic time resolving measurement of xxray spectral absorption

Country Status (1)

Country Link
JP (1) JPS5655845A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106393A (en) * 1973-02-09 1974-10-08
JPS5180277A (en) * 1975-01-06 1976-07-13 Kogyo Gijutsuin KEIKOSUPEKUTORUBUNPUJIDOKOSOKUDOSOKUTEISOCHI
JPS522538A (en) * 1975-06-16 1977-01-10 Ibm Spectrum analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106393A (en) * 1973-02-09 1974-10-08
JPS5180277A (en) * 1975-01-06 1976-07-13 Kogyo Gijutsuin KEIKOSUPEKUTORUBUNPUJIDOKOSOKUDOSOKUTEISOCHI
JPS522538A (en) * 1975-06-16 1977-01-10 Ibm Spectrum analyzer

Also Published As

Publication number Publication date
JPS5655845A (en) 1981-05-16

Similar Documents

Publication Publication Date Title
US4612660A (en) Time resolved extended X-ray absorption fine structure spectrometer
DE69723548D1 (en) METHOD AND DEVICE FOR MULTISPECTRAL ANALYSIS IN NON-INVASIVE INFRARED SPECTROSCOPY
US20050092114A1 (en) Contactless measurement of the surface temperature of naturally or artificially weathered samples
US4225233A (en) Rapid scan spectrophotometer
ATE546724T1 (en) HIGH SPEED ANALYZER USING NEAR INFRARED RADIATION SENT THROUGH THICK SAMPLES OF OPTICALLY DENSITY MATERIAL
US6853449B2 (en) Programmable diffraction grating sensor
DE4005670A1 (en) SPECTRAL PHOTOMETER WITH A MORE SENSITIVE RADIATION SENSOR FOR THE NEAR INFRARED AREA
JPH04232840A (en) Photo-detector for capillary chromatography
US4016419A (en) Non-dispersive X-ray fluorescence analyzer
US3803414A (en) Standardization of infrared measuring system
JPS59208445A (en) Method and device for measuring absorptive component quantity of sample
JPH0132459B2 (en)
US4501968A (en) Infrared radiation gas analyzer
JPH0136061B2 (en)
RU2367978C1 (en) Method for calibration of scintillation circuit
Mantena et al. Diffuse Reflectance Illumination Module Improvements in Near-Infrared Spectrometer for Heterogeneous Sample Analysis
JP2727691B2 (en) X-ray absorption fine structure analyzer
Zhang et al. Novel carbon dioxide gas sensor based on infrared absorption
JP2921597B2 (en) Total reflection spectrum measurement device
RU2696364C1 (en) Method of measuring absolute spectral sensitivity of ir mpdd
JP3740530B2 (en) Aligner for total internal reflection X-ray fluorescence analysis
US7852472B1 (en) Systems and methods for spectroscopy using opposing laser beams
Fotiou et al. Photothermal deflection densitometer with pulsed-UV laser excitation
US3698819A (en) Scanning light detectors
SU711378A1 (en) Photometer