JPH0132192B2 - - Google Patents

Info

Publication number
JPH0132192B2
JPH0132192B2 JP59059146A JP5914684A JPH0132192B2 JP H0132192 B2 JPH0132192 B2 JP H0132192B2 JP 59059146 A JP59059146 A JP 59059146A JP 5914684 A JP5914684 A JP 5914684A JP H0132192 B2 JPH0132192 B2 JP H0132192B2
Authority
JP
Japan
Prior art keywords
cbn
boron nitride
coating layer
ratio
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59059146A
Other languages
Japanese (ja)
Other versions
JPS60204686A (en
Inventor
Taijiro Sugisawa
Noribumi Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP5914684A priority Critical patent/JPS60204686A/en
Publication of JPS60204686A publication Critical patent/JPS60204686A/en
Publication of JPH0132192B2 publication Critical patent/JPH0132192B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高硬度の被加工物を切削する工具
として用いられるセラミツク部材に関し、その部
材は立方晶窒化硼素(以下、CBNで示す。)基セ
ラミツク基体の表面に耐摩耗性のより高い窒化硼
素(以下、BNで示す。)からなる被覆層を形成
したものである。 従来、CBNを30〜93容量%の範囲で含有した
切削工具材料として、分散相形成成分である
CBN粒子と、結合相形成成分の粉末を混合し、
これを50キロバール以上の高圧と1300℃以上の高
温の下で焼結した非常に硬度の高いセラミツクが
知られている。その特性は組成の変化によつて広
く変化する。例えば、CBN含有率が80容量%以
上といつた、CBN量が多い組成のセラミツクは、
ビツカース硬さが3000Kg/mm2以上の高硬度を持つ
ことができ、従つて高硬度のハイス、ダイス鋼、
チル化した鋳鉄、Co合金などの切削に適してい
る。一方、CBN含有率が30〜80容量%と、CBN
量を少なくすると、得られたセラミツクはビツカ
ース硬さで2000〜3300Kg/mm2の硬さを有し、浸炭
焼入鋼やある種の焼結合金などの切削に好適であ
る。又、CBN基セラミツク中の結合相形成成分
として、7〜70容量%で含有するTiの炭化物、
窒化物、酸化物、若しくは硼化物、Alの窒化物、
硼化物若しくは酸化物、又は窒化硼素などが知ら
れており、不純物程度の少量の鉄族金属が結合相
に含まれることも知られている。そして、CBN
基セラミツク中の結合相の組成や組織によつて
も、前記セラミツクの性能は大きく変化する。一
般に、CBN基セラミツクは従来の炭化タングス
テン基超硬合金やセラミツクスでは使用できなか
つた苛酷な切削条件に耐えることができるが、切
削工具として用いたときの尚一層の寿命の延長が
切望されている。 そこで、本発明者らは、切削工具寿命を延ばす
べく鋭意研究を重ねた結果、前記のようなCBN
基セラミツク部材の少なくとも切削面に、スパツ
タリング法あるいはイオンビーム法を用い、 B/N原子比:1.0〜1.2を有するBNからなり、
かつ非晶質BNからなる素地に、2〜30容量%の
割合で立方晶窒化硼素(以下CBNで示す)が分
散した組織を有する被覆層を0.2〜10μmの平均層
厚で形成すると、前記被覆層は、ビツカース硬さ
で3700〜5000Kg/mm2の著しく高い硬さをもつこと
から、耐摩耗性が向上し、切削工具寿命の一段の
延命化がはかられるようになるという知見を得た
のである。 この発明は、上記知見にもとづいてなされたも
のであつて、容量%で(以下%は容量%を示す)、 分散相形成成分として、CBN:30〜93%、 結合相形成成分として、Tiの炭化物、窒化物、
酸化物、および硼化物、Alの窒化物、硼化物、
および酸化物、並びに窒化珪素、さらにこれらの
2種以上の固溶体(以下、これらを総称して結合
相化合物という)のうちの1種以上と不可避不純
物:7〜70%、 からなる組成を有するCBN基セラミツク基体の
少なくとも切削面に、 B/N原子比:1.0〜1.2を有するBNからなり、
かつ非晶質BNからなる素地に、2〜30容量%の
割合でCBNが分散した組織を有する被覆層を、
0.2〜10μmの平均層厚で形成してなる切削工具用
表面被覆CBN基セラミツク部材に特徴を有する
ものである。 なお、この発明の表面被覆CBN基セラミツク
部材において、上記被覆層は、高純度のホツトプ
レス六方晶BN板材をターゲツトとして用い、N2
含有Arガス雰囲気中で高周波スパツタするスパ
ツタリング法や、BとNのイオンビームを同時に
蒸着させるイオンビーム法や、さらにBのみを通
常の化学蒸着法などを用いて蒸着し、ついでこの
B膜の中にNのイオンビームを打ち込む方法など
によつて形成することができ、また、この場合、
例えばスパツタリング法であれば、基体温度や
N2含有Arガス雰囲気中のN2分圧、さらにバイア
ス電圧などを制御することにより、B/N原子比
を調整することができ、この結果としてCBNの
割合が調整されるようになるものであり、さらに
上記被覆層におけるB/N原子比はオージエによ
る半定量的分析により同定することができ、また
同CBNの割合は電子顕微鏡による電子線回折に
より同定することができる。 つぎに、この発明の表面被覆CBN基セラミツ
ク部材において、基体の成分組成、並びに被覆層
のB/N原子比、CBN割合、および平均層厚を
上記の通りに限定した理由を説明する。 A 基体の成分組成 (a) CBN その含有量が30%未満では、得られた表面
被覆CBN基セラミツク部材の耐摩耗性が不
充分であり、逆に93%を越えると、セラミツ
ク基体の焼結性が不充分となり、ひいては得
られた表面被覆セラミツク部材の靭性が十分
でなくなることから、その含有量を30〜93%
と定めた。 (b) 結合相化合物 その含有量が7%未満では、セラミツク基
体の焼結性が不充分であつて、十分な靭性が
得られず、一方その含有量が70%を越える
と、相対的にCBNの含有量が少なくなり過
ぎて、硬さが低下し、耐摩耗性が低下するよ
うになることから、その含有量を7〜70%と
定めた。 B 被覆層 (a) B/N原子比およびCBN割合 B/N原子比は、非晶質BN素地に分散生
成されるCBNの割合に影響を及ぼすもので
あり、したがつてB/N原子比が1未満の場
合には、CBNの割合が2容量%未満になつ
てしまい、被覆層の硬さが低下し、ビツカー
ス硬さで3700Kg/mm2以上の高硬度を確保する
ことができなくなり、一方B/N原子比が
1.2を越えると、CBNの割合が30容量%を越
えて多くなり、ビツカース硬さで5000Kg/mm2
を越えた高硬度をもつようになる反面、気孔
が発生し易くなつて、緻密な被覆層が得られ
なくなるほか、基体に対する付着強度も低下
するようになり、実用に際しては欠けや剥離
が発生し易くなることから、B/N原子比を
1.0〜1.2とし、これによつてCBNの割合を2
〜30容量%としたのである。 (b) 平均層厚 この発明にかかるBN被覆層は、上記のよ
うに高硬度を有し、実用に際して優れた耐摩
耗性を発揮するが、その平均層厚が0.2μm未
満では所望の耐摩耗性を確保することができ
ず、一方その平均層厚が10μmを越えると、
被覆層にチツピングが発生し易くなることか
ら、その平均層厚を0.2〜10μmと定めた。 なお、被覆層に不可避不純物として酸素
(O)を含有する場合があるが、その含有量
が多すぎると被覆層の特性に悪影響を及ぼす
ようになることから、O/N原子比で0.15以
下であることが望ましい。 つぎに、この発明の表面被覆CBN基セラミツ
ク部材を実施例により具体的に説明する。 原料粉末として、いずれも0.8〜4μmの範囲内
の所定の平均粒径を有するCBN粉末および各種
の結合相化合物粉末を用意し、これら原料粉末を
それぞれ第1表に示される配合組成に配合し、ボ
ールミルで50時間湿式混合し、乾燥した後、1to
n/cm2の圧力で圧粉体にプレス成形し、ついでこ
の圧粉体を、圧力:50キロバール、温度:1300
℃、保持時間:15分の条件で超高圧焼結し、研削
を施して内接円:9.53mm、厚み:3.22mmの3角形
のスローアウエイチツプ形状とすることにより実
質的に配合組成と同一の成分組成並びに第1表に
示されるビツカース硬さを有するCBN基セラミ
ツク基体を製造し、ついでこの基体の表面に、六
方晶BNターゲツトを用い、高周波スパツタリン
グ法により、基体加熱温度:450℃、雰囲気:
N2/Ar比が1/20〜1/2のN2含有Ar、雰囲
気圧力:2×10-3mmHg、バイアス電圧:50〜
300V、反応時間:1〜30時間の条件で、それぞ
れ第1表に示される被覆層を形成することにより
本発明表面被覆CBN基セラミツクスローアウエ
イチツプ(以下本発明被覆チツプという)1〜8
および比較表面被覆CBN基セ
The present invention relates to a ceramic member used as a tool for cutting highly hard workpieces, and the member has a cubic boron nitride (hereinafter referred to as CBN)-based ceramic base with a surface coated with boron nitride, which has higher wear resistance. (hereinafter referred to as BN). Conventionally, cutting tool materials containing CBN in the range of 30 to 93% by volume, which is a dispersed phase forming component, have been used as cutting tool materials.
Mix CBN particles and powder of binder phase forming component,
Ceramics with extremely high hardness are known to have been sintered under high pressures of over 50 kilobars and high temperatures of over 1300°C. Its properties vary widely with changes in composition. For example, ceramics with a high CBN content, such as a CBN content of 80% by volume or more,
It can have a high hardness with a Bitkers hardness of 3000Kg/ mm2 or more, and therefore has high hardness such as high-speed steel, die steel,
Suitable for cutting chilled cast iron, Co alloy, etc. On the other hand, when the CBN content is 30~80% by volume, CBN
When the amount is reduced, the resulting ceramic has a Vickers hardness of 2000 to 3300 Kg/mm 2 and is suitable for cutting carburized and hardened steel and certain sintered alloys. In addition, as a binder phase forming component in the CBN-based ceramic, Ti carbide contained in an amount of 7 to 70% by volume,
Nitride, oxide, or boride, Al nitride,
Borides, oxides, boron nitride, etc. are known, and it is also known that small amounts of iron group metals, such as impurities, are included in the binder phase. And CBN
The performance of the ceramic varies greatly depending on the composition and structure of the binder phase in the base ceramic. In general, CBN-based ceramics can withstand harsh cutting conditions that cannot be used with conventional tungsten carbide-based cemented carbides and ceramics, but there is a strong desire to further extend the lifespan when used as cutting tools. . Therefore, as a result of intensive research in order to extend the life of cutting tools, the inventors of the present invention have developed CBN as described above.
At least the cut surface of the base ceramic member is made of BN having a B/N atomic ratio of 1.0 to 1.2 using a sputtering method or an ion beam method,
When a coating layer having a structure in which cubic boron nitride (hereinafter referred to as CBN) is dispersed at a ratio of 2 to 30% by volume is formed on a substrate made of amorphous BN with an average layer thickness of 0.2 to 10 μm, the coating Since the layer has a significantly high hardness of 3700 to 5000 Kg/mm 2 on the Bitkers hardness, it was found that wear resistance is improved and the life of cutting tools can be further extended. It is. This invention was made based on the above knowledge, and in volume % (hereinafter % indicates volume %), CBN: 30 to 93% as a dispersed phase forming component, Ti as a binder phase forming component. carbide, nitride,
Oxides and borides, Al nitrides, borides,
and oxide, silicon nitride, and one or more solid solutions of two or more of these (hereinafter collectively referred to as binder phase compounds) and unavoidable impurities: 7 to 70%. At least the cut surface of the base ceramic base is made of BN having a B/N atomic ratio of 1.0 to 1.2,
and a coating layer having a structure in which CBN is dispersed at a ratio of 2 to 30% by volume on a substrate made of amorphous BN,
The present invention is characterized by a surface-coated CBN-based ceramic member for cutting tools formed with an average layer thickness of 0.2 to 10 μm. In the surface-coated CBN-based ceramic member of the present invention, the coating layer is formed by using a high-purity hot-pressed hexagonal BN plate material as a target, and
A sputtering method in which high-frequency sputtering is performed in an Ar-containing gas atmosphere, an ion beam method in which B and N ion beams are simultaneously deposited, and B alone is deposited using an ordinary chemical vapor deposition method, and then in this B film, It can be formed by a method such as implanting a N ion beam into
For example, with the sputtering method, the substrate temperature
By controlling the N2 partial pressure in the N2 - containing Ar gas atmosphere and the bias voltage, the B/N atomic ratio can be adjusted, and as a result, the CBN ratio can be adjusted. Furthermore, the B/N atomic ratio in the coating layer can be identified by semi-quantitative analysis using Augier, and the CBN ratio can be identified by electron beam diffraction using an electron microscope. Next, in the surface-coated CBN-based ceramic member of the present invention, the reason why the component composition of the base, the B/N atomic ratio of the coating layer, the CBN ratio, and the average layer thickness are limited as described above will be explained. A Component composition of the substrate (a) CBN If the content is less than 30%, the wear resistance of the surface-coated CBN-based ceramic member obtained will be insufficient, and if it exceeds 93%, the sintering of the ceramic substrate will occur. Since the toughness of the surface-coated ceramic member obtained would be insufficient, the content should be reduced from 30 to 93%.
It was determined that (b) Binding phase compound If the content is less than 7%, the sinterability of the ceramic substrate is insufficient and sufficient toughness cannot be obtained, while if the content exceeds 70%, the relative If the CBN content becomes too low, the hardness and wear resistance will decrease, so the content was set at 7 to 70%. B Coating layer (a) B/N atomic ratio and CBN ratio The B/N atomic ratio affects the ratio of CBN dispersed and generated in the amorphous BN substrate, and therefore the B/N atomic ratio If is less than 1, the CBN ratio will be less than 2% by volume, and the hardness of the coating layer will decrease, making it impossible to ensure a high hardness of 3700 Kg/mm 2 or more in terms of Vickers hardness. On the other hand, the B/N atomic ratio
When it exceeds 1.2, the CBN ratio increases to more than 30% by volume, and the Bitkers hardness reaches 5000Kg/ mm2.
Although it has a high hardness exceeding Since it becomes easier, the B/N atomic ratio is
1.0 to 1.2, thereby increasing the CBN ratio to 2.
It was set at ~30% by volume. (b) Average layer thickness The BN coating layer according to the present invention has high hardness as described above and exhibits excellent wear resistance in practical use, but if the average layer thickness is less than 0.2 μm, the desired wear resistance will not be achieved. However, if the average layer thickness exceeds 10 μm,
Since chipping is likely to occur in the coating layer, the average layer thickness was set at 0.2 to 10 μm. Note that the coating layer may contain oxygen (O) as an unavoidable impurity, but if the content is too large, it will have a negative effect on the properties of the coating layer. It is desirable that there be. Next, the surface-coated CBN-based ceramic member of the present invention will be specifically explained using examples. CBN powder and various binder phase compound powders, both of which have a predetermined average particle size within the range of 0.8 to 4 μm, are prepared as raw material powders, and these raw material powders are blended into the compositions shown in Table 1, respectively. After wet mixing in a ball mill for 50 hours and drying, 1to
The compact was press-formed at a pressure of n/cm 2 and then the compact was heated at a pressure of 50 kilobar and a temperature of 1300.
℃, holding time: 15 minutes, and grinding to create a triangular throw-away chip shape with an inscribed circle of 9.53 mm and a thickness of 3.22 mm, making it virtually the same as the compound composition. A CBN-based ceramic substrate having the component composition and Vickers hardness shown in Table 1 is manufactured, and then a hexagonal BN target is applied to the surface of this substrate by high-frequency sputtering at a substrate heating temperature of 450°C in an atmosphere. :
N2 -containing Ar with a N2 /Ar ratio of 1/20 to 1/2, atmospheric pressure: 2×10 -3 mmHg, bias voltage: 50 to
The surface-coated CBN-based ceramic throwaway chips of the present invention (hereinafter referred to as the coated chips of the present invention) 1 to 8 were prepared by forming the coating layers shown in Table 1 under the conditions of 300 V and reaction time: 1 to 30 hours.
and comparative surface-coated CBN-based

【表】 ラミツクスローアウエイチツプ(以下比較被覆チ
ツプという)1〜4をそれぞれ製造した。 なお、比較被覆チツプ1〜4は、いずれも被覆
層の条件(第1表に※印を付す)がこの発明の範
囲から外れたものである。 また、被覆層のB/N原子比及びCBN割合は、
オージエ分析と透過電子線回折により測定した。 つぎに、この結果得られた各種の被覆チツプお
よび被覆層の形成を行なう前の上記CBN基セラ
ミツク基体のうちの4種(以下従来チツプ1〜4
という)について、 被削材:JIS・SCM415の浸炭焼入鋼(硬
さ:HRC55)の丸棒、 切削速度:120m/min、 送り:0.2mm/rev.、 切込み:0.3mm、 切削油:なし、 切削時間:10分、 の条件での浸炭焼入鋼の乾式連続切削試験、 被削材:JIS・SKD―11のダイス鋼(硬さ:
HRC60)の丸棒、 切削速度:110m/min、 送り:0.2mm/rev.、 切込み:0.25mm、 切削油:なし、 切削時間:10分、 の条件でのダイス鋼の乾式連続切削試験を行な
い、いずれの試験でも切刃の逃げ面摩耗幅を測定
した。これらの結果を第1表に示した。 第1表に示される結果から、本発明被覆チツプ
1〜8は、いずれも被覆層の形成がない従来チツ
プ1〜4に比して一段とすぐれた耐摩耗性を示
し、使用寿命の一層の延命化を可能とするのに対
して、比較被覆チツプ1〜4に見られるように、
被覆層のうちのいずれの条件でもこの発明の範囲
から外れると満足な切削性能を示さないことが明
白である。 上述のように、この発明の表面被覆CBN基セ
ラミツク部材は、これを構成する被覆層がきわめ
て高い硬さを有するので、これを切削工具として
用いた場合、被削材が浸炭焼入鋼やダイス鋼など
の高硬度鋼であつてもすぐれた切削性能を長期に
亘つて発揮するなどの工業上有用な特性を有する
のである。
[Table] Lamic throwaway chips (hereinafter referred to as comparative coated chips) 1 to 4 were manufactured, respectively. It should be noted that the conditions of the coating layer (marked with * in Table 1) of Comparative Coated Chips 1 to 4 are outside the scope of the present invention. In addition, the B/N atomic ratio and CBN ratio of the coating layer are:
It was measured by Auger analysis and transmission electron diffraction. Next, the various coated chips obtained as a result and four of the above CBN-based ceramic substrates before forming the coating layer (hereinafter conventional chips 1 to 4) were prepared.
Work material: JIS/SCM415 carburized steel (hardness: H R C55) round bar, Cutting speed: 120m/min, Feed: 0.2mm/rev., Depth of cut: 0.3mm, Cutting oil : None, cutting time: 10 minutes, dry continuous cutting test of carburized and hardened steel under the conditions of , Work material: JIS/SKD-11 die steel (hardness:
Dry continuous cutting test of die steel under the following conditions: H R C60) round bar, cutting speed: 110 m/min, feed: 0.2 mm/rev., depth of cut: 0.25 mm, cutting oil: none, cutting time: 10 minutes. The flank wear width of the cutting edge was measured in each test. These results are shown in Table 1. From the results shown in Table 1, coated chips 1 to 8 of the present invention all exhibit superior wear resistance compared to conventional chips 1 to 4, which do not have a coating layer, and have a much longer service life. As seen in comparative coated chips 1 to 4,
It is clear that if any conditions of the coating layer are outside the scope of the present invention, satisfactory cutting performance will not be exhibited. As mentioned above, the surface-coated CBN-based ceramic member of the present invention has an extremely high hardness in the coating layer that constitutes it. It has industrially useful properties such as excellent cutting performance over a long period of time even when cutting high-hardness steel such as steel.

Claims (1)

【特許請求の範囲】 1 分散相形成成分として、立方晶窒化硼素:30
〜93%、 結合相形成成分として、Tiの炭化物、窒化物、
酸化物、および硼化物、Alの窒化物、硼化物、
および酸化物、並びに窒化珪素、さらにこれらの
2種以上の固溶体からなる群のうちの1種以上と
不可避不純物:7〜70%、 からなる組成(以下、容量%)を有する立方晶窒
化硼素基セラミツク基体の少なくとも切削面に、 B/N原子比:1.0〜1.2を有する窒化硼素から
なり、かつ非晶質窒化硼素からなる素地に、2〜
30容量%の割合で立方晶窒化硼素が分散した組織
を有する被覆層を、0.2〜10μmの平均層厚で形成
してなる切削工具用表面被覆立方晶窒化硼素基セ
ラミツク部材。
[Claims] 1. Cubic boron nitride as a dispersed phase forming component: 30
~93%, Ti carbides, nitrides, and Ti carbides as binder phase forming components
Oxides and borides, Al nitrides, borides,
A cubic boron nitride group having a composition (hereinafter referred to as volume %) consisting of 7 to 70% of unavoidable impurities and oxides, silicon nitride, and one or more of the group consisting of solid solutions of two or more of these types. At least on the cut surface of the ceramic substrate, the base material is made of boron nitride having a B/N atomic ratio of 1.0 to 1.2, and is made of amorphous boron nitride.
A surface-coated cubic boron nitride-based ceramic member for a cutting tool, comprising a coating layer having a structure in which cubic boron nitride is dispersed at a ratio of 30% by volume, with an average layer thickness of 0.2 to 10 μm.
JP5914684A 1984-03-27 1984-03-27 Surface-coated cubic boron nitride base ceramic member for cutting tool Granted JPS60204686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5914684A JPS60204686A (en) 1984-03-27 1984-03-27 Surface-coated cubic boron nitride base ceramic member for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5914684A JPS60204686A (en) 1984-03-27 1984-03-27 Surface-coated cubic boron nitride base ceramic member for cutting tool

Publications (2)

Publication Number Publication Date
JPS60204686A JPS60204686A (en) 1985-10-16
JPH0132192B2 true JPH0132192B2 (en) 1989-06-29

Family

ID=13104898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5914684A Granted JPS60204686A (en) 1984-03-27 1984-03-27 Surface-coated cubic boron nitride base ceramic member for cutting tool

Country Status (1)

Country Link
JP (1) JPS60204686A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5407487B2 (en) * 2009-03-30 2014-02-05 三菱マテリアル株式会社 Surface coated cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795881A (en) * 1980-12-03 1982-06-14 Sumitomo Electric Industries Coated ceramic tool
JPS598679A (en) * 1982-07-07 1984-01-17 住友電気工業株式会社 Coated hard sintered body
JPS5950076A (en) * 1982-09-13 1984-03-22 三菱マテリアル株式会社 Cubic boron nitride base super high pressure sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795881A (en) * 1980-12-03 1982-06-14 Sumitomo Electric Industries Coated ceramic tool
JPS598679A (en) * 1982-07-07 1984-01-17 住友電気工業株式会社 Coated hard sintered body
JPS5950076A (en) * 1982-09-13 1984-03-22 三菱マテリアル株式会社 Cubic boron nitride base super high pressure sintered body

Also Published As

Publication number Publication date
JPS60204686A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
JP3866305B2 (en) Composite high hardness material for tools
JPS6227033B2 (en)
JPS6348836B2 (en)
EP2788302B1 (en) Sintered compact comprising cubic boron nitride for use as cutting tool
JP2001310203A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JPS61101482A (en) Silicon nitride cutting tool
JP4191663B2 (en) Composite high hardness material for tools
JP3170993B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance
JPS644988B2 (en)
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JPH10245287A (en) Hard layer-coated high pressure phase boron nitride sinter compact for cutting tool
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JPH0132192B2 (en)
JPS644989B2 (en)
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JP2004223666A (en) Cutting tool for rough machining
JPH02275763A (en) Silicon nitride-base sintered material
JP2005212048A (en) Ceramics and cutting tool using the same
JP2001114562A (en) Sintered ceramic part and coated sintered ceramic part
JP7336063B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JPH0132193B2 (en)