JPH01314698A - Space flying body - Google Patents

Space flying body

Info

Publication number
JPH01314698A
JPH01314698A JP63146450A JP14645088A JPH01314698A JP H01314698 A JPH01314698 A JP H01314698A JP 63146450 A JP63146450 A JP 63146450A JP 14645088 A JP14645088 A JP 14645088A JP H01314698 A JPH01314698 A JP H01314698A
Authority
JP
Japan
Prior art keywords
axis
around
mounting position
divided bodies
split bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63146450A
Other languages
Japanese (ja)
Inventor
Yoshitake Yamaguchi
山口 慶剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63146450A priority Critical patent/JPH01314698A/en
Publication of JPH01314698A publication Critical patent/JPH01314698A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the structure and to enable adjustment of mounting position of machinery by combining a plurality of split bodies for arranging the machinery rotatably and respectively around a roll shaft, pitch shaft and a yaw shaft then rotary driving the plurality of split bodies at a time and adjusting the position around each shaft. CONSTITUTION:In a space flying body, split bodies 11 arranged with machines 13 are combined such that a plurality of juxtaposed split bodies 11 can rotates respectively around X, Y and Z axes, thus adjusting the mounting position of the machine 13 around X, Y and Z axes. By such arrangement, mounting position of the machine 13 can be adjusted without requiring attitude control of the structure 10 itself. Consequently, attitude control system is simplified and the weight is reduced because a plurality of same machines 13 are not required to be arranged.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、例えば人工衛星等の宇宙空間を飛翔する宇
宙航行体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a spacecraft flying in outer space, such as an artificial satellite.

(従来の技術) 一般に、宇宙航行体においては、姿勢制御用等のセンサ
を含む被搭載機器が構体の所定の位置に搭載され、これ
らの被搭載機器を用いて運用の確実化が確保されている
(Prior art) In general, in a spacecraft, onboard equipment including sensors for attitude control, etc. are mounted at predetermined positions on the body, and reliable operation is ensured using these onboard equipment. There is.

ところが、上記宇宙航行体では、指向性をもつ被搭載機
器の指向方向を可変するような場合、構体自体の姿勢を
被搭載機器の指向に対応して制御しなければならないた
めに、その姿勢制御系の大形化を招くという問題を有し
ていた。
However, in the above-mentioned spacecraft, when changing the pointing direction of onboard equipment that has directivity, the attitude of the structure itself must be controlled in accordance with the orientation of the onboard equipment. This has the problem of increasing the size of the system.

また、構体と太陽電池パドルとの位置関係により構体自
体の指向方向を可変することが困難なものにあっては、
同一の被搭載機器を複数個、予め、設定した複数箇所に
配設して、この複数の被搭載−器を選択的に使用するこ
とにより、確実な運用を実現する手段も講じられていた
In addition, if it is difficult to change the orientation direction of the structure itself due to the positional relationship between the structure and the solar array paddle,
Measures have also been taken to realize reliable operation by arranging a plurality of identical on-board devices at a plurality of preset locations and selectively using the plurality of on-board devices.

しかしながら、上記手段では、被搭載機器の増加を招く
ために、宇宙開発において特に厳しい要求のある重量が
嵩むという問題を有する。
However, the above-mentioned means has the problem that the number of on-board equipment increases, which increases the weight, which is a particularly strict requirement in space development.

(発明が解決しようとする課題) 以上述べたように、従来の宇宙航行体では、大形の姿勢
制御系が必要であったり、あるいは同一の被搭載機器を
複数個必要とするものであったりるするため、その重量
が嵩むという問題を有していた。
(Problems to be Solved by the Invention) As mentioned above, conventional spacecraft require large attitude control systems, or require multiple pieces of the same onboard equipment. The problem is that the weight is increased because of the weight.

この発明は上記の事情に鑑みてなさたちので、構成簡易
にして、被搭載機器の搭載位置の可変調整を実現し得、
かつ、可及的に軽量化を図り得るようにした宇宙航行体
を提供することを目的とする。
This invention was developed in view of the above circumstances, and it is possible to simplify the configuration and realize variable adjustment of the mounting position of the mounted equipment.
Another object of the present invention is to provide a spacecraft that is as lightweight as possible.

[発明の構成] (課題を解決するための手段) この発明は被搭載機器が配設される複数の分割体をロー
ル軸、ピッチ軸、ヨー軸の各軸回りに複数個づつ回転自
在に組合わせた構体と、前記分割体をロール軸、ピッチ
軸、ヨー軸に対応する複数個づつを各軸回りに回転駆動
して各軸回りにおける位置を可変調整する回転駆動手段
とを備えて宇宙航行体を構成したものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a plurality of divided bodies on which mounted equipment is arranged, which are rotatably assembled around each of a roll axis, a pitch axis, and a yaw axis. Space navigation is provided with a combined body structure and rotational driving means for variably adjusting the position around each axis by rotationally driving a plurality of the divided bodies corresponding to a roll axis, a pitch axis, and a yaw axis around each axis. It is what makes up the body.

(作用) 上記構成によれば、分割体に搭載された被搭載機器は、
その分割体か回転駆動手段により並設される複数個づつ
ロール軸、ピッチ軸、ヨー軸の各軸回りに回転駆動され
、各軸回りにおける位置か可変されて指向方向か調整さ
れる。従って、構体自体の姿勢方向を制御することなく
、被搭載機器の搭載位置の可変調整か行われる。
(Function) According to the above configuration, the mounted equipment mounted on the divided body is
A plurality of the divided bodies arranged in parallel are rotationally driven around each of the roll axis, pitch axis, and yaw axis by a rotational drive means, and the position around each axis is varied to adjust the pointing direction. Therefore, the mounting position of the mounted equipment can be variably adjusted without controlling the attitude direction of the structure itself.

(実施例) 以下、この発明の実施例について、図面を参照して詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の一実施例に係る宇宙航行体を示すも
ので、構体10は、例えば略同様に立方体状に形成され
た27個の分割体11か組合わされている。この分割体
11は、第2図に示すように、その略中央の分割体11
に対して隣接する分割体相互間かロール軸、ピッチ軸、
ヨー軸に対応するY軸、Y軸、Z軸回りに図示しない駆
動機構を介してそれぞれ回転自在に連結され、かつ、隣
接する相互間がそれぞれ同様に電磁石連結機構12を介
して結合自在に配設されている。この電磁石連結機構1
2は、図示しない制御部を介して駆動制御され、構体1
0の分割体11をY軸、Y軸、Z軸の各軸回りに対応す
る複数個づつを連結、あるいは連結解除せしめる。
FIG. 1 shows a spacecraft according to an embodiment of the present invention, in which a body structure 10 is made up of, for example, 27 divided bodies 11 formed in substantially the same cubic shape. As shown in FIG.
between adjacent divided bodies, roll axis, pitch axis,
The Y-axis corresponding to the yaw axis, the Y-axis, and the Z-axis are rotatably connected to each other via a drive mechanism (not shown), and adjacent ones are similarly arranged so as to be freely connectable via an electromagnetic coupling mechanism 12. It is set up. This electromagnetic coupling mechanism 1
2 is driven and controlled via a control unit (not shown), and the structure 1
A plurality of divided bodies 11 corresponding to each of the Y-axis, Y-axis, and Z-axis are connected or uncoupled.

また、構体且には、そのY軸、Y軸、Z軸の各軸回りに
おける軸上以外の分割体11に、例えば第3図に示すよ
うに、姿勢制御用センサ等の被搭載機器13が配設され
る。この被搭載機器]3は、接続機構14及び接続機器
15を介して電源を含む内部機器16に電気的に接続さ
れる。他方、Y軸、Y軸、Z軸上における分割体には、
」1記接続機器15や、構体上」における搭載位置を可
変することのない太陽電池パドル17が配設される(第
1図参照)。
In addition, as shown in FIG. 3, for example, as shown in FIG. 3, mounted equipment 13 such as an attitude control sensor is attached to the body structure and the divided bodies 11 other than those on the axes around each of the Y-axis, Y-axis, and Z-axis. will be placed. This mounted device] 3 is electrically connected to an internal device 16 including a power source via a connecting mechanism 14 and a connecting device 15. On the other hand, for the divided bodies on the Y axis, Y axis, and Z axis,
A solar battery paddle 17 is provided whose mounting position on the connecting device 15 and the structure cannot be changed (see FIG. 1).

」1記構成において、構体−L」−の分割体11に搭載
された被搭載機器13の搭載位置を可変調整する場合は
、上記制御部(図示せず)により電磁連結機構12が選
択的に切換え制御されて、その分割体11のうちY軸(
Y軸あるいはZ軸)の軸回りに対応する複数個か回転可
能状態に設定されると共に、そのY軸(Y軸あるいはZ
軸)に対応する所定の駆動機構(図示せず)のみが駆動
される。
In the configuration described in ``1'', when the mounting position of the mounted equipment 13 mounted on the divided body 11 of the structure L'' is to be variably adjusted, the electromagnetic coupling mechanism 12 is selectively controlled by the control section (not shown). The Y-axis (
A plurality of units corresponding to the Y-axis or Z-axis are set to be rotatable, and the Y-axis (Y-axis or Z-axis)
Only a predetermined drive mechanism (not shown) corresponding to the shaft is driven.

これにより、分割体11は上記駆動部(図示せず)によ
りY軸(Y軸あるいはZ軸)の軸回りに回転駆動され、
その被搭載機器13の搭載位置を構体11のX輔(Y軸
あるいはZ軸)に対して90度づつ回転式に可変させて
搭載位置を可変設定する。
As a result, the divided body 11 is rotationally driven around the Y axis (Y axis or Z axis) by the drive unit (not shown),
The mounting position of the mounted equipment 13 is rotatably varied by 90 degrees with respect to the X axis (Y axis or Z axis) of the structure 11 to variably set the mounting position.

この際、Y軸(Y軸)上に配設された接続機器15(太
陽電池パドル17)は元のX輔(Y軸)上で回転された
状態となり、各軸」−の位置が確保される。
At this time, the connected device 15 (solar array paddle 17) arranged on the Y-axis (Y-axis) is rotated on the original X-axis (Y-axis), and the position of each axis is secured. Ru.

このように、」1記宇宙航行体は被搭載機器13を配設
した分割体11を組合わせ、その分割体11のうち並設
する複数個づつをY軸、Y軸、Z軸の各軸回りに回転可
能に組合わせ配設して、その被搭載機器13をY軸、Y
軸、Z軸回りに搭載位置を可変調整可能に構成したこと
により、従来のように構体自体の姿勢方向を制御するこ
となく、被搭載機器13の搭載位置の可変調整が実現さ
れる。このため、従来のように被搭載機器の搭載位置を
可変させるために構体の姿勢制御を行なうことがなくな
ることにより、可及的に姿勢制御系の簡略化が図れ、か
つ、従来のように同一の被搭載機器を複数個配設するこ
ともなくなることにより、その軽量化の促進も図ること
か可能となる。
In this way, the spacecraft described in item 1 combines the divided bodies 11 on which the onboard equipment 13 is arranged, and a plurality of the divided bodies 11 arranged in parallel are arranged on each of the Y-axis, the Y-axis, and the Z-axis. The mounted devices 13 are arranged so as to be rotatable around the Y axis,
By configuring the mounting position to be variably adjustable around the axis and the Z-axis, the mounting position of the mounted device 13 can be variably adjusted without controlling the posture direction of the structure itself as in the conventional case. Therefore, by eliminating the need to control the attitude of the structure to change the mounting position of the mounted equipment as in the past, the attitude control system can be simplified as much as possible, and it is possible to By eliminating the need for multiple mounted devices, it is also possible to promote weight reduction.

また、これによれは、X軸、Y軸、Z軸上の分割体11
は、常に同一軸上に位置することとなるため、構体−L
」−と太陽電池パドル17等の搭載面を可変できない被
搭載機器の搭載も凸■能となることにより、その設計の
自由度の向上も図れる。
Moreover, this also means that the divided bodies 11 on the X-axis, Y-axis, and Z-axis
are always located on the same axis, so the structure -L
It is also possible to mount mounted equipment whose mounting surface cannot be changed, such as the solar battery paddle 17, thereby increasing the degree of freedom in its design.

なお、上記実施例では、立方体状の分割体11を用いて
立方体状に組合わせ構成した場合で説明したか、これに
限ることなく、第4図に示すように、各種形状をした2
7個の分割体20を選択的に組合わせた球形状の構体2
1を構成することも口■能である。
In the above embodiments, the explanation is given for the case where the cube-shaped divided bodies 11 are combined in a cubic configuration, but the present invention is not limited to this, and as shown in FIG.
A spherical structure 2 in which seven divided bodies 20 are selectively combined.
1 is also an oral skill.

また、上記分割体11.20の数としては、−に5d実
施例で述べた27個に限ることなく構成可能である。
Furthermore, the number of the divided bodies 11.20 is not limited to 27 as described in the -5d embodiment, and can be configured.

さらに、」1記実施例では、分割体11を選択的に連結
あるいは連結解除を行なう連結手段として、電磁石連結
機構12を用いて構成した場合で説明したが、この連結
手段に限ることなく適用可能である。
Furthermore, in the first embodiment, an explanation has been given of a case in which the electromagnetic coupling mechanism 12 is used as a coupling means for selectively coupling or uncoupling the divided bodies 11, but the application is not limited to this coupling means. It is.

また、さらにト記要施例では、被搭載機器1′3を′嘔
気的に接続するように構成した場合で説明したか、これ
に限ることな(、例えば、光通信を利用した被搭載機器
を配設するように構成することも可能てあ。よって、こ
の発明は、上記実施例に限ることなく、その他、この発
明の要旨を逸脱しない範囲で種々の変形を実施し得るこ
とは勿論のことである。
In addition, in the above-mentioned embodiment, the explanation is given on the case where the on-board equipment 1'3 is configured to be connected in a disgusting way, but is not limited to this (for example, on-board equipment using optical communication). Therefore, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention. That's true.

[発明の効果] 以上詳述したように、この発明によれば、構成簡易にし
て、被搭載機器の搭載位置の可変調整を実現し得、かつ
、可及的に軽量化を図り得るようにした宇宙航行体を提
供することができる。
[Effects of the Invention] As detailed above, according to the present invention, the configuration can be simplified, the mounting position of the mounted equipment can be variably adjusted, and the weight can be reduced as much as possible. It is possible to provide a spacecraft with a

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る宇宙航行体を示す構
成説明図、第2図は第1図の詳細を説明するために示し
た図、第3図は第1図の分割体に配設される被搭載機器
の配置例を示す図、第4図はこの発明の他の実施例を示
す構成図である。 10.21・・・構体、11.20・・・分割体、12
・・電磁石連結機構、13・・・被搭載機器、14・・
・接続機構、15・・・接続機器、16・・・内部機器
、17・・・太陽電池バドル。 出願人代理人 弁理士 鈴江武彦
Fig. 1 is a configuration explanatory diagram showing a spacecraft according to an embodiment of the present invention, Fig. 2 is a diagram shown to explain the details of Fig. 1, and Fig. 3 is a diagram showing the divided body of Fig. 1. FIG. 4 is a diagram showing an example of the arrangement of mounted equipment, and is a configuration diagram showing another embodiment of the present invention. 10.21... Structure, 11.20... Divided body, 12
... Electromagnetic coupling mechanism, 13... Mounted equipment, 14...
- Connection mechanism, 15... Connection device, 16... Internal device, 17... Solar battery paddle. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 被搭載機器が配設される複数の分割体をロール軸、ピッ
チ軸、ヨー軸の各軸回りに複数個づつ回転自在に組合わ
せた構体と、前記分割体をロール軸、ピッチ軸、ヨー軸
に対応する複数個づつを各軸回りに回転駆動して各軸回
りにおける位置を可変調整する回転駆動手段とを具備し
たことを特徴とする宇宙航行体。
A structure in which a plurality of divided bodies on which mounted equipment is arranged are combined so as to be rotatable around each axis of a roll axis, a pitch axis, and a yaw axis, and a structure in which a plurality of divided bodies are rotatably assembled around each axis of a roll axis, a pitch axis, and a yaw axis; What is claimed is: 1. A spacecraft characterized by comprising: rotational drive means for rotating a plurality of units corresponding to each axis around each axis to variably adjust the position around each axis.
JP63146450A 1988-06-14 1988-06-14 Space flying body Pending JPH01314698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63146450A JPH01314698A (en) 1988-06-14 1988-06-14 Space flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63146450A JPH01314698A (en) 1988-06-14 1988-06-14 Space flying body

Publications (1)

Publication Number Publication Date
JPH01314698A true JPH01314698A (en) 1989-12-19

Family

ID=15407913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63146450A Pending JPH01314698A (en) 1988-06-14 1988-06-14 Space flying body

Country Status (1)

Country Link
JP (1) JPH01314698A (en)

Similar Documents

Publication Publication Date Title
US5769748A (en) Gimbal employing differential combination of offset drives
US6305647B1 (en) Method and apparatus for steering the attitude of a satellite
US4189122A (en) Wide angle gimbal system
US6414457B1 (en) Autonomous rolling robot
US5014936A (en) Satellite system having variable configuration
CN109426298B (en) Control rod assembly and remote controller
US5681012A (en) Spacecraft control with skewed control moment gyros
TW201622923A (en) A rotary drive mechanism of a robot
KR20030040059A (en) Inner mirror with built-in antenna
JPH0246357B2 (en)
JP2004538439A (en) Momentum position control device
JP2020078839A (en) Parallel link robot
JPH01314698A (en) Space flying body
CN108394242A (en) A kind of air-ground amphibious modularization robot
CN207352507U (en) Control bar assembly and remote controler
RU2537369C2 (en) Fastening for sensor made with ability of motion
KR102427766B1 (en) Flight module and Flight vehicle having the same
JP2585382B2 (en) Modularization of space-based spacecraft robot
JP2022106852A (en) Spherical gear
JP2002043820A (en) Antenna- or radar-mounted driving unit
JP3737700B2 (en) Multi-beam antenna device
US6100856A (en) Device for antenna systems
JP4518364B2 (en) Multi-beam antenna device
KR102018192B1 (en) Satellite and method for controlling the same
JP3183908B2 (en) Antenna drive