JPH01306527A - Production of hard steel sheet having small anisotropy - Google Patents

Production of hard steel sheet having small anisotropy

Info

Publication number
JPH01306527A
JPH01306527A JP13646288A JP13646288A JPH01306527A JP H01306527 A JPH01306527 A JP H01306527A JP 13646288 A JP13646288 A JP 13646288A JP 13646288 A JP13646288 A JP 13646288A JP H01306527 A JPH01306527 A JP H01306527A
Authority
JP
Japan
Prior art keywords
cold rolling
steel sheet
cans
secondary cold
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13646288A
Other languages
Japanese (ja)
Other versions
JPH0711031B2 (en
Inventor
Susumu Tsunoda
進 角田
Katsuaki Tanaka
克明 田中
Daizo Sato
佐藤 台三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP63136462A priority Critical patent/JPH0711031B2/en
Publication of JPH01306527A publication Critical patent/JPH01306527A/en
Publication of JPH0711031B2 publication Critical patent/JPH0711031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce the hard steel sheet having small anisotropy by specifying the compsn. and primary and secondary cold rolling drafts of a steel ingot at the time of producing the hard steel sheet by specifying the hot finish rolling temp. and coiling temp. of the steel ingot. CONSTITUTION:The hard steel sheet is produced by hot rolling the steel ingot at the finish rolling temp. of the Ar3 point or above and coiling the sheet at <=620 deg.C, then subjecting the sheet to picking, primary cold rolling, continuous annealing, and secondary cold rolling successively. The compsn. of the ingot of this time is composed, by weight %, of 0.11-0.20% C, 0.5-0.9% Mn, <=0.03% P, <=0.03% S, 0.02-0.07% Al, 0.009-0.014% N, and the balance Fe and unavoidable impurities. The primary cold rolling draft R1 is specified to 75-85% and the secondary cold rolling draft R2 to 5-40%. The secondary cold rolling draft R2 is confined preferably in the range shown by the equation (M is an Mn component). Generation of earing is decreased in this way and the hard steel sheet from which 2-pieces can having high product strength are formed is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は異方性の小さい硬質薄鋼板の製造方法に関し、
より詳しくは絞り加工に適した所謂耳発生の小さい硬質
薄鋼板の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a hard thin steel plate with small anisotropy.
More specifically, the present invention relates to a method for manufacturing a hard thin steel sheet suitable for drawing and with little so-called selvage.

〔従来技術及び問題点〕[Prior art and problems]

従来JISにおいて、ぶりき、ティンフリースチール(
T F S )等の缶用鋼板の調質度は製造方法により
1回圧延製品(S R: Single Co1d−r
educedProduct )と、2回圧延製品(D
 R: Double Co1d−reduced P
roduct )とに分類され、さらにSRはHR30
Tの硬度で第1表の様に規定され、DRはHR30Tお
よび耐力で第2表の様に規定されている。
Previously, in JIS, tinplate, tin-free steel (
The degree of tempering of steel sheets for cans such as T F S ) depends on the manufacturing method.
educedProduct) and twice-rolled product (D
R: Double Co1d-reduced P
product), and SR is further classified into HR30
The hardness of T is defined as shown in Table 1, and DR is defined as HR30T and yield strength as shown in Table 2.

ぶりき、TFS等を素材とした缶には蓋部、胴部、底部
からなる3ピ一ス缶と、胴部と底部を絞り、シゴキ加工
等により一体成形したD I (drawnand 1
roned)缶やD RD (drawn and r
edrawn )缶およびD T R(draw / 
thin/ redraw)缶等の2ピ一ス缶がある。
Cans made of tin, TFS, etc. are made of 3-piece cans consisting of a lid, body, and bottom, and DI (drawn and 1
roned) cans and D RD (drawn and r
edrawn) can and DTR(draw/
There are two-piece cans such as thin/redraw cans.

2ピ一ス缶は接合部が少ないだけに耐リーク性などの点
で優れた缶機能を有するので、アルミ、鋼基材共に増加
傾向にある。
Two-piece cans have excellent can functions in terms of leak resistance because they have fewer joints, so they are on the rise for both aluminum and steel base materials.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

軽量化、省資源およびコストダウンの観点より2ピ一ス
缶の薄ゲージ化が要請されているが、薄ゲージ化すると
製缶時、搬送時の強度低下が生じ、内容物充填後の耐圧
低下による変形さえ生じる傾向がある。強度低下並びに
耐圧低下を解決するため調質度の高いDRによる製缶が
試みられている。しかしながらDRは一般に絞り加工時
基材の異方性に起因する耳の発生が大きく、歩留の低下
、品質低下を不可避的にもたらしている。この耳の発生
原因は製缶上の要因もあるが、主として鋼板の異方性に
起因するもので、現状ではこの硬質薄鋼板の異方性の問
題は十分に解決されているとは云い難い。
There is a demand for thinner gauge 2-piece cans from the viewpoints of weight reduction, resource saving, and cost reduction, but thinning the gauge causes a decrease in strength during can manufacturing and transportation, and a decrease in pressure resistance after filling. even deformation due to In order to solve the problem of decreased strength and pressure resistance, attempts have been made to manufacture cans using DR, which has a high degree of heat treatment. However, in DR, generally, selvage occurs largely due to the anisotropy of the base material during drawing, which inevitably leads to a decrease in yield and quality. The cause of this formation is due to factors related to can manufacturing, but it is mainly due to the anisotropy of the steel sheet, and at present it cannot be said that this problem of anisotropy of hard thin steel sheets has been sufficiently resolved. .

この問題解決のため、仕上温度830〜900℃、巻取
温度580〜730℃にて熱間圧延し、一次冷間圧延圧
下率R1を60〜79.9%とし、二次冷間圧延圧下率
R2を一〇、92R+ + 8.1≦R2≦−0,75
RIモ98とする異方性を改善した超硬質極薄冷延鋼板
製造方法が提案されている(特開昭59−113123
)が、追試の結果、酸洗でのスケール残留による表面不
良、鋼板の耐力不足が認められ、従来技術の問題は必ず
しも充分に解決されていなかった。
To solve this problem, hot rolling was carried out at a finishing temperature of 830 to 900°C and a coiling temperature of 580 to 730°C, with a primary cold rolling reduction R1 of 60 to 79.9%, and a secondary cold rolling reduction R1 of 60 to 79.9%. R2 is 10, 92R+ + 8.1≦R2≦-0,75
A method for manufacturing ultra-hard, ultra-thin cold-rolled steel sheets with improved anisotropy called RIMo98 has been proposed (Japanese Patent Application Laid-Open No. 59-113123).
), but as a result of follow-up tests, it was found that the surface was defective due to scale remaining during pickling, and the steel plate had insufficient yield strength, and the problems of the conventional technology were not necessarily resolved satisfactorily.

DI缶成形法は、シート又はコイル状冷延鋼板から平板
状の被成形材料(ブランク)を打抜き、カップ状の成形
体(1stカツプ)に絞り、続く2〜3回のシゴキ加工
により、1stカツプ側壁の厚みを減少加工することに
より造られる。
In the DI can forming method, a flat material to be formed (blank) is punched from a sheet or coiled cold-rolled steel plate, squeezed into a cup-shaped molded body (1st cup), and then squeezed 2 to 3 times to form the 1st cup. It is made by reducing the thickness of the side wall.

また、DRD缶成形成形法ランクを絞り加工によって製
缶される缶である点でDI缶成形法と共通する点を有す
るが、DI缶成形法のようにカップ側壁缶素材の積極的
な厚み減少加工であるシゴキ加工を行なわず、二次加工
も絞り加工のみである点で異なる。
In addition, the DRD can forming method has the same features as the DI can forming method in that cans are made by drawing, but unlike the DI can forming method, the thickness of the cup side wall can material is actively reduced. The difference is that there is no ironing process, and the secondary process is only drawing.

さらに、DTRTR形成形法ブランクを絞り加工により
成形する点においてDRD缶成形成形法通するが、深絞
り加工時ブランクに高いシワ押え力を付与し缶側壁の絞
り一張出し加工を行なう点において上記二つの製缶法と
異なる。
Furthermore, the DTRTR forming method passes the DRD can forming method in that the blank is formed by drawing, but the above-mentioned method is similar in that a high wrinkle suppressing force is applied to the blank during deep drawing and the can side wall is drawn and stretched. This is different from the other canning methods.

DI、DRD、DTR缶の製造において、素材の異方性
が高く、塑性加工による素材の流れが一様でないと、カ
ップの縁高さが不揃いとなり、所謂[耳jが発生する。
In the production of DI, DRD, and DTR cans, if the material has high anisotropy and the flow of the material during plastic working is not uniform, the height of the edge of the cup will be uneven, resulting in the so-called "edge".

この耳は、成形缶を成形ポンチから抜き取る時に抜は不
良の原因を生じさせるのみならず、成形後除去を要する
全くの不要部分である。
These lugs not only cause failure when the molded can is removed from the molding punch, but are also completely unnecessary parts that must be removed after molding.

本発明は、上記3種の2ピ一ス缶の中でも特にDRD、
DTR缶用素材として優れた鋼板を提供するものである
The present invention is particularly applicable to DRD,
This provides a steel plate that is excellent as a material for DTR cans.

すなわち、DRD缶やDTRTR形成形いては、その製
缶工程においてシゴキ加工による素材の板厚減少はない
ので、素材としてDI缶用素材よりも板厚の薄い鋼板を
用いる必要がある。またDRD缶やDTR缶は製品板厚
の薄ゲージ化を目的として開発されたものであるので、
その素材は高い耐力を保持した調質度が要求される。
That is, in the case of DRD cans and DTRTR cans, there is no reduction in the thickness of the material due to ironing during the can manufacturing process, so it is necessary to use a steel plate thinner than the material for DI cans. In addition, DRD cans and DTR cans were developed with the aim of reducing the thickness of the product board, so
The material requires a high degree of heat treatment that maintains high yield strength.

また、DRD缶やDTR缶はその加工工程においてシゴ
キ加工を行なわないので、シートやコイル状態で予め印
刷塗装された各種表面処理鋼板(プレコート鋼板)や、
あらかじめ印刷されたプラスチックフィルムを張り合わ
せた鋼板(ラミネート鋼板)を用いることが可能となる
。しかしながらこのようなプレコート鋼板乃至ラミネー
ト鋼板等を用いてDRD缶やDTR缶を成形した場合、
異方性が大きいと素材の塑性流れが均一でないため耳や
シワの発生や、缶表面の印刷歪みの発生という不都合を
招来する。このため異方性の小さい素材が強く望まれて
いた。
In addition, since DRD cans and DTR cans do not undergo ironing in the processing process, various surface-treated steel plates (pre-coated steel plates) that are pre-printed and painted in the form of sheets or coils,
It becomes possible to use a steel plate laminated with a pre-printed plastic film (laminated steel plate). However, when forming DRD cans or DTR cans using such pre-coated steel sheets or laminated steel sheets,
If the anisotropy is large, the plastic flow of the material is not uniform, leading to problems such as the formation of ears and wrinkles, and the occurrence of printing distortion on the can surface. For this reason, materials with low anisotropy have been strongly desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、DI、DRD、DTR等の絞り、しご
き加工によって2ピ一ス缶を製造する際、耳発生が少な
くかつ製品強度に優れた2ピ一ス缶製造の可能な面内異
方性の小さい硬質薄鋼板の製造方法を提供するにある。
An object of the present invention is to make it possible to produce two-piece cans by drawing and ironing processes such as DI, DRD, and DTR, which can produce two-piece cans with less selvage and excellent product strength. The object of the present invention is to provide a method for manufacturing a hard thin steel sheet with low orientation.

本発明の第2の目的は、上記2ピ一ス缶を可能な限り経
済的に量産するための薄ゲージの素材を提供するにある
A second object of the present invention is to provide a thin gauge material for mass-producing the above two-piece cans as economically as possible.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は鋭意研究の結果C,Mn、N成分
をやや富化し、さらに高めの一次冷間圧下率R1を組み
合せることにより、本課題の解決がなされることを見出
した。
Therefore, as a result of intensive research, the present inventors have found that this problem can be solved by slightly enriching the C, Mn, and N components and combining a higher primary cold reduction rate R1.

また、さらに二次冷間圧延圧下率R2をC,Mn、  
N各成分との関係で限定される一定の範囲にすることを
組み合せることによって著しく耐力および異方性の改善
がなされることを見出した。
Furthermore, the secondary cold rolling reduction ratio R2 is C, Mn,
It has been found that the yield strength and anisotropy can be significantly improved by combining N with a certain range limited in relation to each component.

すなわち本発明により、 連続鋳造鋼片をAr3点以上の仕上圧延温度で熱間圧延
し、次いで620℃以下の温度で巻取った後、酸洗、一
次冷間圧延、連続焼鈍、二次冷間圧延を順に行なう硬質
薄鋼板の製造方法において、連続鋳造鋼片が、C: 0
.11〜0.20%、Mn:0.5〜0.9%、P≦0
.03%、S≦0.03%、Al: 0.02〜0.0
7%、N: 0.009〜0.014%、残部Feおよ
び不可避的不純物より成る連続鋳造鋼片であり、一次冷
間圧延圧下率R1が75〜85%でありかつ二次冷間圧
延圧下率R2が5〜40%1であることを特徴とする異
方性の小さい硬質薄鋼板の製造方法、および 二次冷間圧延圧下率R2(%)が、次式の範囲である前
記硬質薄鋼板の製造方法、 すなわちC:C成分(%)、M:Mn成分(%)、N:
N成分(%)とするとき、 なる式で与えられる範囲である前記異方性の小さい硬質
薄鋼板の製造方法 が提供される。
That is, according to the present invention, a continuously cast steel billet is hot rolled at a finish rolling temperature of Ar3 points or higher, then coiled at a temperature of 620°C or lower, and then subjected to pickling, primary cold rolling, continuous annealing, and secondary cold rolling. In a method for manufacturing a hard thin steel sheet in which rolling is performed sequentially, a continuously cast steel billet has a C: 0
.. 11-0.20%, Mn: 0.5-0.9%, P≦0
.. 03%, S≦0.03%, Al: 0.02-0.0
7%, N: 0.009 to 0.014%, the balance is Fe and unavoidable impurities, the continuous cast steel billet has a primary cold rolling reduction R1 of 75 to 85%, and a secondary cold rolling reduction R1 of 75 to 85%. A method for producing a hard thin steel sheet with low anisotropy, characterized in that the ratio R2 is 5 to 40%1, and the hard thin steel sheet, wherein the secondary cold rolling reduction ratio R2 (%) is within the range of the following formula: Manufacturing method of steel plate, namely C: C component (%), M: Mn component (%), N:
There is provided a method for manufacturing a hard thin steel sheet having a small anisotropy within the range given by the following formula when the N content (%) is expressed as follows.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

肚裟溌 Cは製品冷延鋼板に高い調質度を与えるために重要な成
分である。少なくともCは0.11%に達しないと本発
明目的において必要な製品冷延鋼板の耐力を保証出来な
い。
肚溌C is an important component for imparting a high degree of heat treatment to cold-rolled steel sheets. Unless C reaches at least 0.11%, the yield strength of the product cold-rolled steel sheet required for the purpose of the present invention cannot be guaranteed.

従ってC成分下限値を0.11%とした。Therefore, the lower limit of the C component was set at 0.11%.

一方でC成分が0.20%を超えると炭化物析出量が増
大し製品冷延鋼板の耐食性の低下をもたらすため、本発
明ではC成分の上限値を0.20%としな。
On the other hand, if the C component exceeds 0.20%, the amount of carbide precipitation increases and the corrosion resistance of the product cold-rolled steel sheet decreases, so in the present invention, the upper limit of the C component is set to 0.20%.

Mnは不純物であるSによる熱延中の赤熱脆性を防止す
るために必要な成分である。
Mn is a necessary component to prevent red brittleness during hot rolling due to S, which is an impurity.

本発明では製品冷延鋼板の耐力保証の見地からMn下限
値を0.50%とし、一方0.90%を超えるとスラブ
圧延中に割れを生ずるので、上限値を0.90%とした
In the present invention, the lower limit of Mn is set to 0.50% from the viewpoint of guaranteeing the yield strength of the product cold-rolled steel sheet, and on the other hand, since cracks will occur during slab rolling if it exceeds 0.90%, the upper limit is set to 0.90%.

Pは結晶を微細化し強度を高める作用があり、高張力鋼
板にP富化法が用いられる場合もあるが、一方でPは耐
食性を阻害する成分である。
P has the effect of making crystals finer and increasing strength, and a P enrichment method is sometimes used for high-strength steel sheets, but on the other hand, P is a component that inhibits corrosion resistance.

本発明鋼板の主用途である飲料缶乃至食缶用材料として
は、Pが0.03%を超えると耐食性、特に耐孔明性が
著しく低下するため上限値を0.03%とした。
As a material for beverage cans and food cans, which are the main uses of the steel sheet of the present invention, the upper limit was set at 0.03% because if P exceeds 0.03%, corrosion resistance, particularly porosity resistance, will be significantly reduced.

Sは前述した様に熱延中において赤熱脆性を生じる不純
物成分であり、極力少ないことが望ましいが、鉄鉱石等
からの混入を完全に防止することが出来ず、工程中の脱
硫も困難なためある程度の残留もやむを得ない。少量の
残留Sによる赤熱脆性はMnにより軽減できるため、S
成分の上限値は、 0.03%とした。
As mentioned above, S is an impurity component that causes red heat brittleness during hot rolling, and it is desirable to reduce it as much as possible, but it is impossible to completely prevent contamination from iron ore, etc., and desulfurization during the process is difficult. It is unavoidable that there will be some residual activity. Red-hot brittleness caused by a small amount of residual S can be reduced by Mn, so S
The upper limit of the components was set at 0.03%.

A1は製鋼に際し脱酸剤として鋼浴に添加され、スラブ
として除かれるが、添加量が少ないと安定した脱酸効果
が得られないため、0.02%以上必要である。一方で
0.07%を超えるAlは、固溶Nと反応してAlNと
して析出する傾向を促すので、N成分による強化作用が
乏し゛くなる。従ってAl酸成分0.02〜0.07%
としな。
A1 is added to the steel bath as a deoxidizing agent during steel manufacturing and is removed as a slab, but if the amount added is small, a stable deoxidizing effect cannot be obtained, so 0.02% or more is required. On the other hand, if Al exceeds 0.07%, it tends to react with solid solution N and precipitate as AlN, so the reinforcing effect of the N component becomes poor. Therefore, Al acid component 0.02-0.07%
Toshina.

NはC,Mnと同様に製品冷延鋼板に高い調質度を与え
る、すなわち耐力強化のために有効な成分であるが、0
..009%に達しないと調質効果が認められず、また
一方0.014%を超える添加は製鋼時に添加するフェ
ロ窒化物の歩留の低下が著しく、安定性に欠けるため本
発明ではN成分範囲を0.009〜0.014%とした
Like C and Mn, N is an effective component for imparting a high degree of heat treatment to product cold-rolled steel sheets, that is, strengthening the yield strength.
.. .. If the N content does not reach 0.009%, no refining effect will be observed, and if the content exceeds 0.014%, the yield of ferronitride added during steelmaking will drop significantly, resulting in a lack of stability. was set at 0.009 to 0.014%.

SLは展伸性および耐食性を阻害する不純物成分として
鋼中に残留するが、通常Alキルト連鋳鋼に含有する程
度であれば缶用材料として用いるのには差し支えない。
SL remains in steel as an impurity component that impairs malleability and corrosion resistance, but if it is normally contained in Al quilted continuous cast steel, it can be used as a material for cans.

このためSi成分は、通常のA1ギルド連鋳鋼の範囲で
ある0、 03%以下とした。
Therefore, the Si content was set to 0.03% or less, which is the range of ordinary A1 guild continuous cast steel.

連ILr直IL片 連続鋳造は品質面、生産性、製造コストともに従来のイ
ンゴット鋳造鋼片よりも優れているため、現在は缶用材
料鋼板のほぼ全量に採用されている。
Continuous casting of straight IL pieces is superior to conventional ingot cast steel pieces in terms of quality, productivity, and manufacturing cost, so it is currently used for almost all steel sheets for cans.

すなわち連続鋳造鋼片は非金属介在物、表面疵等が少な
く、見栄えを要求される缶用材料としては極めて優位な
材料である。また、成分の幅方向及び長手方向での偏析
が少ないことから、機械的性質(強度、伸び、絞り性)
が安定していることも本発明において特定した理由であ
る9 更に、連続鋳造鋼片の製造に先立ち、DH法乃至RH法
等の脱ガス工程を採用すれば、非金属介在物の低減を図
ることができ、より良好な品質を得る上で望ましい。
In other words, continuously cast steel pieces have fewer nonmetallic inclusions and surface flaws, making them extremely advantageous materials for cans that require good appearance. In addition, because there is little segregation of ingredients in the width direction and longitudinal direction, mechanical properties (strength, elongation, drawability)
Another reason specified in the present invention is that the steel is stable.9 Furthermore, if a degassing process such as the DH method or the RH method is adopted prior to manufacturing continuous cast steel billets, nonmetallic inclusions can be reduced. possible and desirable in obtaining better quality.

へ冊且1 熱間圧延工程における鋼片加熱温度は本発明において特
定するものではないが、Nの′fR極的公的分解固溶熱
間仕上圧延温度の安定的確保の見地がら1100℃以上
とするのが望ましい。
Part 1: The heating temperature of the steel billet in the hot rolling process is not specified in the present invention, but from the viewpoint of ensuring a stable hot finish rolling temperature due to the polar public decomposition of N, it is set at 1100°C or higher. It is desirable to do so.

熱間仕上圧延温度をAr3点以下とすると、熱延鋼帯の
結晶組織が混粒化するとともに粗大化し、製品冷延鋼板
において肌荒れが生じかつ耐力が低下するので、熱間仕
上圧延温度はAr3点以上とした。
If the hot finish rolling temperature is set to Ar3 or lower, the crystal structure of the hot rolled steel strip will become mixed and coarsened, resulting in rough skin and reduced yield strength in the product cold rolled steel sheet. It was given as a score or more.

また巻取温度が620℃を超えると、酸洗性の低下、ス
ケール残留による欠陥の増大等をす召き望ましくない。
Moreover, if the winding temperature exceeds 620° C., it is undesirable because it deteriorates pickling properties and increases defects due to residual scale.

さらに、高調質度を確保するため添加したNがAlNと
して析出し、所期の調質効果がなくなる。このため巻取
温度は620℃以下とした。
Furthermore, N added to ensure a high degree of thermal refining precipitates as AlN, and the desired thermal refining effect is lost. For this reason, the winding temperature was set to 620° C. or lower.

■ 酸洗は、熱間圧延工程で生成した酸化スケールが一次冷
間圧延工程でスケール疵となり製品冷延鋼板の耐食性を
著しく低下させるため、一次冷間圧延に先立ち酸化スゲ
ールを除去する工程である。
■ Pickling is a process to remove oxide scale prior to the primary cold rolling, as the oxide scale generated during the hot rolling process becomes scale defects during the primary cold rolling process and significantly reduces the corrosion resistance of the product cold rolled steel sheet. .

酸洗は通常の冷延鋼板におけるそれと同様塩酸もしくは
硫酸等を用いて行なうが、本発明においては表面清浄性
のすぐれた鋼板が要求されるので、本工程は必須である
Pickling is carried out using hydrochloric acid or sulfuric acid as in the case of ordinary cold-rolled steel sheets, but this step is essential in the present invention because a steel sheet with excellent surface cleanliness is required.

二久推澗11 一次冷間圧延は、酸洗後の熱延鋼板の厚みを薄くし、表
面を美麗に仕上げるだけでなく、更に本発明ではやや高
めの圧下率範囲を特定することによって製品冷延鋼板の
耳発生を抑制し、耐力を保証するに重要な工程である。
11. Primary cold rolling not only reduces the thickness of the hot-rolled steel sheet after pickling and gives a beautiful surface finish, but also allows the product to cool down by specifying a slightly higher rolling reduction range. This is an important process for suppressing the occurrence of selvage in rolled steel sheets and guaranteeing their yield strength.

第1図は二次冷間圧延圧下率を一定とした場合の、一次
冷間圧延圧下率(R1)と1stカップ耳高さ(以下耳
高さという。)との関係を示したグラフである。
Figure 1 is a graph showing the relationship between the primary cold rolling reduction ratio (R1) and the 1st cup selvage height (hereinafter referred to as selvage height) when the secondary cold rolling reduction ratio is constant. .

第1図に示すように、耳高さは一次冷間圧延圧下率に影
響され、一次冷間圧延圧下率を低減させることが耳高さ
を減少させ、面内異方性の小さい絞り用硬質薄鋼板を製
造することができることが知見される。
As shown in Figure 1, the ear height is affected by the primary cold rolling reduction ratio, and reducing the primary cold rolling reduction ratio reduces the ear height. It has been found that thin steel sheets can be produced.

第1図においてR+が85%を超えると耳高さが5mm
を超え、歩留の低下が著しい。
In Figure 1, if R+ exceeds 85%, the ear height is 5 mm.
, the yield is significantly reduced.

一方、RI7’ll’75%未満では焼鈍工程で1■大
化もしくは混粒化した結晶粒を十分微細化することがで
きず、製品である缶の耐力を十分確保する事ができない
。従って、本発明では一次冷間圧延圧下率を75〜85
%とする。
On the other hand, if the RI is less than 75%, it is not possible to sufficiently refine crystal grains that have become large or mixed in size during the annealing process, and it is not possible to ensure sufficient yield strength of the product can. Therefore, in the present invention, the primary cold rolling reduction ratio is 75 to 85.
%.

なお、ここで耳高さとは1stカツプ成形後における耳
高さの大きさの程度をいい、具体的には次の様にして測
定する。
Note that the selvage height herein refers to the size of the selvage height after the first cup is formed, and specifically, it is measured as follows.

二次冷間圧延後の原板を表面処理してTFSに仕上げ、
絞り比2にて直径90I!Iraφのカップに深絞り加
工し、 1stカップとした。この1stカツプ側壁の
最大高さ(Hmax)と最小高さ(Hmin)を測定し
、耳高さ=Hmax−Hminとする。
After the secondary cold rolling, the original sheet is surface treated and finished into TFS.
Diameter 90I at aperture ratio 2! A 1st cup was made by deep drawing into an Iraφ cup. The maximum height (Hmax) and minimum height (Hmin) of this 1st cup side wall are measured, and the ear height is set as Hmax-Hmin.

異方性の評価方法としては、圧延方向と平行、直角、4
5度方向にそれぞれのヤング率を測定し、その結果から
面内異方性を統計解析によって推定するモジュールr法
を採用することもあるが、本発明においてはその用途が
主として缶であり、実際の倍加工法に対応した評価法と
して、圧延方向に関係なく耳発生の程度を評価できるカ
ップ耳高さ法を採用した。
The evaluation methods for anisotropy include parallel to the rolling direction, perpendicular to the rolling direction,
Although the module r method is sometimes adopted, in which the Young's modulus is measured in each 5 degree direction and the in-plane anisotropy is estimated by statistical analysis from the results, in the present invention, the application is mainly for cans, and in actual use. As an evaluation method compatible with the double processing method, we adopted the cup selvage height method, which can evaluate the degree of selvage regardless of the rolling direction.

1且立1 焼鈍は、一次冷間圧延後の素材を再結晶温度以上A1変
解点以下の温度に加熱し、素材の軟質化を図り、加工性
を付与する工程である。
1 and 1 Annealing is a process in which the material after primary cold rolling is heated to a temperature above the recrystallization temperature and below the A1 deformation point to soften the material and impart workability.

焼鈍方法の中で箱焼鈍(バッチ焼鈍)法は、加熱、均熱
、冷却に80時間〜100時間を要するため、結晶粒を
粗大化させる。また、C,Nを炭窒化物として析出させ
、材質の軟質化を来し強度の低下を来す傾向がある。こ
の強度低下を補償し、缶強度を確保するには、二次冷間
圧延率を高くする必要があり、これは必然的にコスト高
を招く、また素材の結晶粒の粗大化は、製品である缶の
表面m度を悪化させ、缶の外観が悪くなるため、本発明
において箱焼鈍法は採用し難い。
Among the annealing methods, the box annealing (batch annealing) method requires 80 to 100 hours for heating, soaking, and cooling, thereby coarsening the crystal grains. Furthermore, C and N precipitate as carbonitrides, which tends to soften the material and reduce its strength. In order to compensate for this decrease in strength and ensure can strength, it is necessary to increase the secondary cold rolling rate, which inevitably leads to higher costs. It is difficult to employ the box annealing method in the present invention because it deteriorates the surface roughness of certain cans, resulting in poor appearance of the can.

一方、連続焼鈍法では、鋼板の加熱及び冷却速度を大き
くすることができ、鋼板が高温度にさらされている時間
が1〜2分と短い。このため、結晶粒の粗大化を防止で
き、固溶C,N量も多く保持することができるから、焼
鈍後の強度の低下防止を図ることが可能となる。従って
、その後の二次冷間圧延率を低くすることができ、結果
的に面内異方性を小さくすることが出来る。
On the other hand, in the continuous annealing method, the heating and cooling rates of the steel plate can be increased, and the time during which the steel plate is exposed to high temperature is as short as 1 to 2 minutes. For this reason, it is possible to prevent coarsening of crystal grains and to maintain a large amount of solid solution C and N, making it possible to prevent a decrease in strength after annealing. Therefore, the subsequent secondary cold rolling rate can be lowered, and as a result, the in-plane anisotropy can be lowered.

二次金ユ且に 二次冷間圧延は焼鈍で軟化した鋼板の機械的特性の向上
、最終板厚調整、板形状制御、表面粗度改良等を目的と
した工程であるとともに、本発明においては鋼成分との
関係においてその冷間圧延圧下率が決定イ戯れる重要な
工程である。
Secondary gold rolling and secondary cold rolling are processes aimed at improving the mechanical properties of the steel plate softened by annealing, adjusting the final plate thickness, controlling the plate shape, improving the surface roughness, etc. This is an important process that determines the cold rolling reduction in relation to the steel composition.

第2図は二次冷間圧延圧下率と耳高さとの関係を示すグ
ラフである。すなわち、第3表に示す鋼板を圧下率75
%にて一次冷間圧延後、連続焼鈍、種種の圧下率で二次
冷間圧延を施し、90mmφの1stカツプに絞り成形
加工し、耳高さを測定した結果である。
FIG. 2 is a graph showing the relationship between the secondary cold rolling reduction ratio and the edge height. In other words, the steel plates shown in Table 3 were rolled at a rolling reduction rate of 75.
%, followed by continuous annealing, secondary cold rolling at various rolling reductions, drawing processing into a 90 mmφ first cup, and measuring the ear height.

第  3  表(重量%) 第2図から、二次冷間圧延圧下率の増加は耳高さの増大
をもたらすことが知見される。
Table 3 (% by weight) From FIG. 2, it is found that an increase in the secondary cold rolling reduction ratio results in an increase in the ear height.

すなわち、第2図において、二次冷間圧延圧下率R2が
40%以下であれば、耳高さを5mm以内とすることが
出来ることが判る。
That is, in FIG. 2, it can be seen that if the secondary cold rolling reduction ratio R2 is 40% or less, the edge height can be made within 5 mm.

またR2は5%未満では二次冷間圧延の効果が表れない
Further, if R2 is less than 5%, the effect of secondary cold rolling will not be exhibited.

従って、本発明では二次冷間圧延圧下率を5〜40%拗
年とした。
Therefore, in the present invention, the secondary cold rolling reduction ratio is set to 5 to 40%.

第3図は、第4表に示す鋼成分の鋼板を用いて、二次冷
間圧延 圧下率と耐力との関係を調査したグラフである
FIG. 3 is a graph obtained by investigating the relationship between secondary cold rolling reduction and yield strength using steel plates having the steel components shown in Table 4.

第   4   表  (重量%) 第3図において、各試料の実測値より、二次冷間圧延圧
下率(横軸)と耐力(縦軸)との関係式%式% なる関係が見られ、第3図中の曲線で表わすことが出来
る。上記式中Aの増加に伴い曲線は矢印方向に移動する
Table 4 (Weight %) In Figure 3, the relationship between the secondary cold rolling reduction (horizontal axis) and proof stress (vertical axis) can be seen from the measured values of each sample. It can be expressed by the curve in Figure 3. In the above formula, as A increases, the curve moves in the direction of the arrow.

さらに式中Aは鋼成分の変化によって変動する数値であ
り、耐力に及ぼず影響が特に大であったC,Mn、  
Nについてその回帰式を求めた。その結果、 A−C十0.05M+6N+a(a=10〜137M:
 Mn成分、単位は重量%) なる関係が得られた。
Furthermore, A in the formula is a value that fluctuates depending on changes in steel components, and C, Mn, which has a particularly large effect without affecting the proof stress,
A regression equation was obtained for N. As a result, A-C 0.05M+6N+a (a=10~137M:
The following relationship was obtained: Mn component (unit: weight %).

この関係をC,Mn、  Nを本発明の成分範囲内で変
化させ上記(1)式に代入しR2の変動する範囲を求め
ると次(2)式のようになる。
When this relationship is substituted into the above equation (1) by varying C, Mn, and N within the component range of the present invention, and the range of variation of R2 is determined, the following equation (2) is obtained.

・・・・・・(2) さらに缶用鋼板として必要とされる耐力は通常153〜
73Kgf/mm2であるから、二次冷間圧延圧下率の
許容範囲は、上記(2)式、耐力および最低二次冷間圧
延圧下率5%を勘案すると、第3図において交点! 、
 II 、II[、IV、Vを結ぶ変形多角形内の斜線
で示した範囲であり、これが請求項(2)で特定される
発明条件に他ならない。
・・・・・・(2) Furthermore, the yield strength required for steel plates for cans is usually 153~
Since it is 73Kgf/mm2, the permissible range of the secondary cold rolling reduction is the intersection point in Figure 3, taking into account the above formula (2), proof stress, and minimum secondary cold rolling reduction of 5%! ,
This is the range indicated by diagonal lines within the modified polygon connecting II, II[, IV, and V, and this is nothing but the invention condition specified in claim (2).

耐力を53〜73Kgf/mm2とした理由は、耐力が
73Kgf/mm2を超えると1stカツプ成形の際、
フランジまたはカップ底部分に割れを生じさせたりしわ
が発生しやすくなるからであり、  一方、耐力が53
Kgf/n+m2未満では製缶後、内容物を充填した場
合に変形化が生ずるおそれが大である。
The reason for setting the proof stress to 53 to 73 Kgf/mm2 is that if the proof stress exceeds 73 Kgf/mm2, during the 1st cup forming,
This is because cracks or wrinkles are likely to occur in the flange or the bottom of the cup.On the other hand, if the yield strength is 53
If it is less than Kgf/n+m2, there is a high possibility that deformation will occur when the can is filled with contents after can manufacturing.

以上の結果より、C,N、Mnの含有量から、耐力およ
び異方性のより優れた缶用鋼板をFA造するための二次
冷間圧延圧下率を決定することが出来る。
From the above results, it is possible to determine the secondary cold rolling reduction rate for producing a steel sheet for cans with better yield strength and anisotropy from the contents of C, N, and Mn.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により、DI、DRD、DTR等のごとく
、絞りまたはしごき加工によって2ピ一ス缶を製造する
際、耳発生が少なくかつ製品強度に優れた2ピ一ス缶を
製造することが出来る。
By implementing the present invention, when manufacturing two-piece cans such as DI, DRD, DTR, etc. by drawing or ironing, it is possible to manufacture two-piece cans that have less selvage and excellent product strength. I can do it.

また、上記2ピ一ス缶を可能な限り経済的に量産するた
めの薄ゲージの素材を提供することができる。
Further, it is possible to provide a thin gauge material for mass-producing the above two-piece cans as economically as possible.

さらに、プレコート鋼板やラミネート鋼板を用いて、D
I缶、DRD缶、DTR缶を成形することができる。
Furthermore, using pre-painted steel plates and laminated steel plates, D
It is possible to mold I cans, DRD cans, and DTR cans.

〔実施例〕〔Example〕

第5表に本発明の実施例と比較例の一覧を示す。 Table 5 shows a list of Examples and Comparative Examples of the present invention.

本発明の欄に示した実施例は、いずれも本発明において
特定した範囲内で実施した結果を示したものであり、耳
高さはいずれも小さな値に納まっており、また加工時の
割れ等も生じておらず缶用鋼板としての優れた特性を備
えている(総合評価の欄に○印で表示〉。
The examples shown in the column of the present invention all show the results of implementation within the range specified in the present invention, and the selvage heights are all within small values, and there are no cracks during processing. It has excellent properties as a steel sheet for cans (indicated by a circle in the overall evaluation column).

また、実施例7および8については、それぞれプレコー
ト鋼板、ポリエチレンテレフタレートフィルムをラミネ
ートしたラミネート鋼板を用いてカップ成形した例を示
す。この結果、塗料の剥離、フィルム膜の破断はなく、
鋼板単独の場合と同様に耳高さの小さい良好な結果かえ
られた。
Further, Examples 7 and 8 show examples in which a precoated steel plate and a laminated steel plate laminated with a polyethylene terephthalate film were used to form a cup, respectively. As a result, there was no peeling of the paint or breakage of the film.
Similar to the case of steel plate alone, good results were obtained with a small ear height.

これに対し比較例では、本発明とは一部異なる条件で製
造した結果を示した。比較例においてはいずれも耳高さ
が大きく、また加工時に割れ等が発生し缶用鋼板として
用いるのは不適当であった一次冷間圧延、二次冷間圧延
のことをいう。
On the other hand, the comparative example shows the results of manufacturing under conditions partially different from those of the present invention. In the comparative examples, the first cold rolling and the second cold rolling are unsuitable for use as steel sheets for cans due to large selvedge heights and cracks occurring during processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一次冷間圧延圧下率と耳高さとの関係を示すグ
ラフ、第2図は二次冷間圧延圧下率と耳高さとの関係を
示すグラフ、第3図は二次冷間圧延圧下率と耐力との関
係を示すグラフである。 第1図 76   □88Q   82  84   86  
 B+1−・次冷間圧延R:↑千Ra (%) 第 2 口 二次冷間圧延圧下皐Rλ (?≦) 第 3 口 1X(f/++m2) 0   り+0    20    30    40
    50二L″に冷間圧延圧下率R:(5’;)手
続補正書 (自発) 昭和63年7り十日 3、補正をする者 事件との関係  特許出願人 住  所  東京都千代田区霞が関−丁目4番3号名 
称 東洋鋼鈑株式会社 4、代理人 郵便番号  744 住  所  山口県下松市東豊井1302番地5、補正
の対象 明細書の「特許請求の範囲」及び「発明の詳細な説明」
の6、補正の内容 〔1〕  特許請求の範囲の瀾 別紙の通り。 〔2〕  発明の詳細な説明の欄 (1〕  明細書第2頁下から9行目に「〔従来技術及
び問題点〕」とあるを、「〔従来の技術〕」と訂正する
。 (2)同第9頁6行乃至7行に とあるな と訂正する。 [3) 同第19頁3行に [A = C+0.05 M +6 N 十a−−−−
−−Jとあルヲ、r A −100CC十o、o 5M
+6N+a−Jと訂正f6゜〔4〕  同第19頁9行
乃至10行にとあるな、 と訂正する。 (別紙) 〔訂正後の特許請求の範囲〕 l)連続鋳造鋼片をAr3点以上の仕上圧延温度で熱間
圧延し、次いで620℃以下の温度で巻取った後、酸洗
、一次冷間圧延、連続焼鈍、二次冷間圧延を順に行なう
硬質薄鋼板の製造方法において、連続鋳造鋼片が、C:
 0.11〜0.20%(重量%、成分系以下同様)、
Mn : 0.5〜0.9%、P≦0.03%、S≦0
.03%、Al:0.02〜0.07%、N:0.00
9〜0.014%、残gA5F eおよび不可避的不純
物より成る連続鋳造鋼片であり、一次冷間圧鉦圧下率R
1が75〜85%であってかつ二次冷間圧延圧下率R2
が5〜40%であることを特徴とする異方性の小さい硬
質薄鋼板の製造方法。 2)二次冷間圧延圧下率R2(%)が、次式の範囲であ
る特許請求の範囲第1項記載の硬質薄循板の製造方法。 すなわちC:C成分(%)、M:Mnf!i、分(%)
、N:N成分(%)とするとき。
Figure 1 is a graph showing the relationship between the primary cold rolling reduction rate and the edge height, Figure 2 is a graph showing the relationship between the secondary cold rolling reduction rate and the edge height, and Figure 3 is the graph showing the relationship between the secondary cold rolling reduction rate and the edge height. It is a graph showing the relationship between rolling reduction and yield strength. Figure 1 76 □88Q 82 84 86
B+1-・Next cold rolling R: ↑1,000 Ra (%) 2nd opening secondary cold rolling reduction Rλ (?≦) 3rd opening 1X (f/++m2) 0 Ri+0 20 30 40
Cold rolling reduction ratio R: (5';) Procedural amendment to 502L'' (voluntary) July 3, 1988 Relationship to the case of the person making the amendment Patent applicant's address Kasumigaseki, Chiyoda-ku, Tokyo -Chome 4-3 name
Name: Toyo Kohan Co., Ltd. 4, Agent postal code: 744 Address: 1302-5 Higashitoyoi, Kudamatsu City, Yamaguchi Prefecture, “Claims” and “Detailed Description of the Invention” of the specification to be amended
6. Contents of amendment [1] As per the appendix to the scope of claims. [2] Column for detailed description of the invention (1) In the ninth line from the bottom of the second page of the specification, the phrase "[Prior art and problems]" is corrected to "[Prior art]". (2 ) It is corrected as follows on page 9, lines 6 and 7. [3) On page 19, line 3 of the same, [A = C + 0.05 M + 6 N 10a----
--J and Aruwo, r A -100CC 10o, o 5M
+6N+a-J and correction f6゜[4] It is corrected as follows on page 19, lines 9 and 10. (Attachment) [Amended Claims] l) A continuously cast steel billet is hot rolled at a finish rolling temperature of 3 Ar points or higher, then coiled at a temperature of 620°C or lower, pickled, and subjected to primary cold rolling. In a method for manufacturing a hard thin steel sheet in which rolling, continuous annealing, and secondary cold rolling are performed in order, a continuously cast steel billet is C:
0.11 to 0.20% (wt%, same as below for component system),
Mn: 0.5-0.9%, P≦0.03%, S≦0
.. 03%, Al: 0.02-0.07%, N: 0.00
It is a continuously cast steel billet consisting of 9 to 0.014%, balance gA5Fe and unavoidable impurities, and the primary cold pressure reduction rate R
1 is 75 to 85% and the secondary cold rolling reduction ratio R2
A method for producing a hard thin steel sheet with low anisotropy, characterized in that the anisotropy is 5 to 40%. 2) The method for manufacturing a rigid thin circulation plate according to claim 1, wherein the secondary cold rolling reduction ratio R2 (%) is within the range of the following formula. That is, C: C component (%), M: Mnf! i, minutes (%)
, N: When N component (%).

Claims (1)

【特許請求の範囲】 1)連続鋳造鋼片をAr3点以上の仕上圧延温度で熱間
圧延し、次いで620℃以下の温度で巻取った後、酸洗
、一次冷間圧延、連続焼鈍、二次冷間圧延を順に行なう
硬質薄鋼板の製造方法において、連続鋳造鋼片が、C:
0.11〜0.20%(重量%、成分系以下同様)、M
n:0.5〜0.9%、P≦0.03%、S≦0.03
%、Al:0.02〜0.07%、N:0.009〜0
.014%、残部Feおよび不可避的不純物より成る連
続鋳造鋼片であり、一次冷間圧延圧下率R_1が75〜
85%であってかつ二次冷間圧延圧下率R_2が5〜4
0%であることを特徴とする異方性の小さい硬質薄鋼板
の製造方法。 2)二次冷間圧延圧下率R_2(%)が、次式の範囲で
ある特許請求の範囲第1項記載の硬質薄銅板の製造方法
。 すなわちC:C成分(%)、M:Mn成分(%)、N:
N成分(%)とするとき、 {[40−(C+0.05M+6N)]/10}^2^
.^5≦R_2≦{[63−(C+0.05M+6N)
]/10}^2^.^5
[Claims] 1) A continuously cast steel billet is hot rolled at a finish rolling temperature of Ar 3 points or higher, then coiled at a temperature of 620°C or lower, followed by pickling, primary cold rolling, continuous annealing, and second rolling. In a method for manufacturing a hard thin steel sheet in which cold rolling is sequentially performed, a continuously cast steel billet is C:
0.11 to 0.20% (wt%, same as below), M
n: 0.5-0.9%, P≦0.03%, S≦0.03
%, Al: 0.02-0.07%, N: 0.009-0
.. 014%, the balance being Fe and unavoidable impurities, and the primary cold rolling reduction ratio R_1 is 75~
85% and the secondary cold rolling reduction ratio R_2 is 5 to 4
A method for manufacturing a hard thin steel sheet with low anisotropy, characterized in that the anisotropy is 0%. 2) The method for manufacturing a hard thin copper plate according to claim 1, wherein the secondary cold rolling reduction ratio R_2 (%) is within the range of the following formula. That is, C: C component (%), M: Mn component (%), N:
When N component (%), {[40-(C+0.05M+6N)]/10}^2^
.. ^5≦R_2≦{[63-(C+0.05M+6N)
] /10}^2^. ^5
JP63136462A 1988-06-01 1988-06-01 Method for manufacturing hard thin steel sheet with small anisotropy Expired - Fee Related JPH0711031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136462A JPH0711031B2 (en) 1988-06-01 1988-06-01 Method for manufacturing hard thin steel sheet with small anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136462A JPH0711031B2 (en) 1988-06-01 1988-06-01 Method for manufacturing hard thin steel sheet with small anisotropy

Publications (2)

Publication Number Publication Date
JPH01306527A true JPH01306527A (en) 1989-12-11
JPH0711031B2 JPH0711031B2 (en) 1995-02-08

Family

ID=15175678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136462A Expired - Fee Related JPH0711031B2 (en) 1988-06-01 1988-06-01 Method for manufacturing hard thin steel sheet with small anisotropy

Country Status (1)

Country Link
JP (1) JPH0711031B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004166A1 (en) * 1993-07-28 1995-02-09 Nippon Steel Corporation Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same
JPH0892642A (en) * 1994-09-29 1996-04-09 Nippon Steel Corp Production of steel sheet for vessel excellent in yearing resistance
JP2008157778A (en) * 2006-12-25 2008-07-10 Mitsubishi Alum Co Ltd Apparatus for analyzing deckle edge profile of circular blank drawing molding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113123A (en) * 1982-12-17 1984-06-29 Kawasaki Steel Corp Production of ultra-hard extra-thin cold rolled steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113123A (en) * 1982-12-17 1984-06-29 Kawasaki Steel Corp Production of ultra-hard extra-thin cold rolled steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004166A1 (en) * 1993-07-28 1995-02-09 Nippon Steel Corporation Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same
CN1043904C (en) * 1993-07-28 1999-06-30 新日本制铁株式会社 Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same
JPH0892642A (en) * 1994-09-29 1996-04-09 Nippon Steel Corp Production of steel sheet for vessel excellent in yearing resistance
JP2008157778A (en) * 2006-12-25 2008-07-10 Mitsubishi Alum Co Ltd Apparatus for analyzing deckle edge profile of circular blank drawing molding

Also Published As

Publication number Publication date
JPH0711031B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
JP5958038B2 (en) Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same
WO2011052763A1 (en) Steel sheet for cans having excellent surface roughening resistance, and method for producing same
JP2001107186A (en) High strength steel sheet for can and its producing method
JP2761594B2 (en) Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP2005320633A (en) Steel sheet for two-piece contoured can, and manufacturing method therefor
JPH01306527A (en) Production of hard steel sheet having small anisotropy
JP3932658B2 (en) Method for producing steel plate for cans with excellent uniform deformation and surface beauty
JP3728911B2 (en) Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
TWI729852B (en) Steel plate for tank and manufacturing method thereof
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP3675190B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3407531B2 (en) Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy
JP2023507805A (en) High-strength tin-plated base plate and manufacturing method thereof
JP3917749B2 (en) Manufacturing method of steel sheets for ultra-thin soft containers
JP2003342682A (en) Thin steel sheet for can excellent in workability after heat treatment, its production method, and production method for its hot rolled material
JP3456731B2 (en) Steel plate for multistage drawn cans with excellent crack resistance during spinning neck processing
JP2001131696A (en) Steel sheet for two piece can excellent in flanging workability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees