JPH01306506A - Manufacture of preformed material for forming aluminum matrix composite material - Google Patents

Manufacture of preformed material for forming aluminum matrix composite material

Info

Publication number
JPH01306506A
JPH01306506A JP63136040A JP13604088A JPH01306506A JP H01306506 A JPH01306506 A JP H01306506A JP 63136040 A JP63136040 A JP 63136040A JP 13604088 A JP13604088 A JP 13604088A JP H01306506 A JPH01306506 A JP H01306506A
Authority
JP
Japan
Prior art keywords
binder
alloy powder
composite material
alloy
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63136040A
Other languages
Japanese (ja)
Other versions
JPH075928B2 (en
Inventor
Hiroyuki Morimoto
森本 啓之
Kenichiro Ouchi
大内 権一郎
Mitsuru Moritaka
森高 満
Jun Hirose
潤 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63136040A priority Critical patent/JPH075928B2/en
Publication of JPH01306506A publication Critical patent/JPH01306506A/en
Publication of JPH075928B2 publication Critical patent/JPH075928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a preformed material for forming an Al matrix composite having high strength and hardness by executing binder removal treatment after compacting mixed material of Al alloy powder containing Mg, Li, Zn, etc., reinforcing material and the binder at the specific packing ratio. CONSTITUTION:The Al alloy powder containing one or more kinds of Mg, Li, Zn and the reinforcing material of whisker, short fiber or granular state of SiC, etc., are mixed and further, the binder is added and they are kneaded and the kneaded material is granulated to obtain the mixed material. This mixed material is compacted at >=55% packing ratio. Then, it is desirable to prevent lowering of concn. of Mg, Li, Zn, etc., in the Al alloy by making <=400 deg.C of the compacting temp. After that, the binder removal treatment is executed to the green compact. In this treatment, shift of Mg, Li, Zn, etc., from inner part of system to out of the system in the al alloy powder under compacting condition is small and concns. of them are scarcely lowered. By this method, the binder removal treatment can be executed at high temp. and high efficiency, and the composite material having high strength and hardness can be formed by using the obtd. preformed material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アルミ基複合材料成形用プリフォーム成形体
の製造方法の、改善された手段の提供に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the provision of improved means for manufacturing a preform molded body for molding an aluminum matrix composite material.

(従来の技術) 軽量金属であるNまたはN合金と、軽量で高強度、高弾
性率で耐熱性にもすぐれたSiC,−3iJa+/Vz
(h (+5iOz)などのウィスカ、短繊維、粒子を
複合した複合材料は、高比強度、高比弾性率、高疲労強
度で耐熱性にもすぐれ、しかも繊維強化プラスチック 
CF’RP)に比しすぐれた耐熱性を示す。
(Prior art) N or N alloy, which is a lightweight metal, and SiC, -3iJa+/Vz, which is lightweight, has high strength, high elastic modulus, and excellent heat resistance.
Composite materials made of whiskers, short fibers, and particles such as (h (+5iOz)) have high specific strength, high specific modulus, high fatigue strength, and excellent heat resistance, and are also fiber-reinforced plastics.
CF'RP) shows superior heat resistance.

このため軽量化、高性能化が強く志向されている宇宙、
航空機、自動車などの輸送機器分野での構造部材や、エ
ンジン部品用素材、更にはOA、精密産業機械等の可動
、駆動部品、スポーツ用品用の素材として注目を集めて
いる。
For this reason, in space, there is a strong desire to reduce weight and improve performance.
It is attracting attention as a material for structural members and engine parts in the field of transportation equipment such as aircraft and automobiles, as well as for movable and drive parts such as office automation equipment and precision industrial machinery, and as a material for sporting goods.

ところで、前記繊維あるいは粒子強化金属複合材料(M
 M C)の製法は、粉末冶金法が代表的なものとして
各種提案されており、本出願人もその改善された手段を
特願昭62−173695号として提案したところであ
る。この方法゛は強化繊維とマトリックス金属粉末との
複合材料にバインダを添加して混練し、同混線材料を粉
体に造粒成形し、同造粒体をプレフォームした成形体を
焼結加熱するとともに、前記造粒後、遅くとも焼結加熱
処理を終る間に脱バインダ処理を行ない、前記脱バイン
ダ、焼結された成形体を目的成形品形状に成形加工する
ものである。
By the way, the fiber or particle reinforced metal composite material (M
Various methods for producing MC) have been proposed, with powder metallurgy being a typical method, and the present applicant has also proposed an improved method in Japanese Patent Application No. 173695/1983. This method involves adding a binder to a composite material of reinforcing fibers and matrix metal powder, kneading it, granulating the composite material into powder, and sintering and heating the preformed granule. Additionally, after the granulation, the binder is removed at the latest during the sintering heat treatment, and the binder removed and sintered molded body is molded into the desired molded product shape.

(発明が解決しようとする課題) Mg+ Ll+ Znのいずれか1種または2種以上を
含むN合金粉末と強化材とバインダでなる混合体(造粒
体)から脱バインダする方法としては、真空中あるいは
大気中でバインダの分解温度以上に加熱するのが一般的
である。
(Problems to be Solved by the Invention) As a method for removing the binder from a mixture (granules) consisting of an N alloy powder containing one or more of Mg + Ll + Zn, a reinforcing material, and a binder, the method is to Alternatively, it is common to heat the binder to a temperature higher than its decomposition temperature in the atmosphere.

しかしMg、 Li、 Znのいずれか1種または2種
以上を含むN合金粉末を真空中で加熱した場合、Mg。
However, when N alloy powder containing one or more of Mg, Li, and Zn is heated in a vacuum, Mg.

Li、 ZnはNよりも蒸気圧が高く優先的に気化する
ため、N合金粉末内部のMg、・Li、 Znの濃度が
低下する現象が現われる。この濃度低下現象は高温はど
著しい。ところでMg、 Li、 ZnはN合金粉末中
に析出物を形成させ、かつ強化に寄与する重要な合金元
素である。従ってMg、 Li、 Znの濃度の低下し
たA1合金粉末を用いて複合材料を製造すると、特性、
とくに強度、硬度が低いという問題が生じる。
Since Li and Zn have a higher vapor pressure than N and are preferentially vaporized, a phenomenon occurs in which the concentrations of Mg, .Li, and Zn inside the N alloy powder decrease. This concentration reduction phenomenon is especially noticeable at high temperatures. By the way, Mg, Li, and Zn are important alloying elements that form precipitates in the N alloy powder and contribute to strengthening. Therefore, when a composite material is manufactured using A1 alloy powder with reduced concentrations of Mg, Li, and Zn, the properties
In particular, problems arise in that strength and hardness are low.

また、前記混合体を大気中で加熱した場合は、前記真空
中で加熱した場合と同様、Mg、 1.i、 Znが優
先的に気化することに加え、酸化物を形成する傾向も強
いため、N合金粉末内部のMg+ t、i、 Znの濃
度が低下する現象が現われ、前記真空加熱の場合と同様
、複合材料の強度、硬度が低いという問題が生じる。
Furthermore, when the mixture is heated in the atmosphere, Mg, 1. In addition to preferential vaporization of Zn, there is also a strong tendency to form oxides, so a phenomenon occurs in which the concentration of Mg+t, i, and Zn inside the N alloy powder decreases, similar to the case of vacuum heating. , the problem arises that the strength and hardness of the composite material are low.

本発明は、Mg+ Li+ Znのいずれか1種または
2種以上を含むアルミ基複合材料成形用プリフォーム成
形体の製造方法として、脱バインダ処理前に特定の充填
率のもとで圧粉成形することにより、前記問題点を解決
したものである。
The present invention is a method for manufacturing a preform molded body for molding an aluminum matrix composite material containing one or more of Mg + Li + Zn, which comprises powder compacting under a specific filling rate before binder removal treatment. This solves the above problem.

(課題を解決するための手段) 本発明は”L L+、 Znのいずれか1種または2種
以北を含むA1合金粉末と、ウィスカ、短繊維又は粒子
状態の強化材とバインダからなる混合体(造粒体)を充
填率55%以上に圧粉成形し、その後脱バインダ処理を
行なう手段を採用した。また、前記圧粉成形の温度は室
温を含む400℃以下の温度とした。
(Means for Solving the Problems) The present invention provides a mixture comprising an A1 alloy powder containing one or more of L L+ and Zn, a reinforcing material in the form of whiskers, short fibers or particles, and a binder. A method was adopted in which the (granules) were compacted to a filling rate of 55% or more, and then subjected to a binder removal treatment.The temperature of the compacting was 400° C. or lower, including room temperature.

(実 施 例) 本発明の混合体は、Mg、 Li、 Znのいずれか1
種または2種以上を含むN合金粉末(以下N合金粉末と
いう)と、ウィスカ、短繊維又は粒子状態の強化材とバ
インダからなるものである。前記N合金粉末としては6
061N、 7075/V等を例示できる。
(Example) The mixture of the present invention contains any one of Mg, Li, and Zn.
It consists of N alloy powder containing one or more species (hereinafter referred to as N alloy powder), reinforcing material in the form of whiskers, short fibers or particles, and a binder. The N alloy powder is 6
Examples include 061N and 7075/V.

また強化材としては、SiC,5i3L、 #zOs(
+5iOz)などのウィスカ、短繊維、粒子を例示でき
る。N合金粉末と強化材の混合比としては、強化材が体
積含有率で5〜40%含有されていればよい。強化材が
5%未満になれば強化の効果が殆んどなく、一方40%
を越えるとMMC材料としての延性、靭性の低下が著し
く、更には塑性加工が困難になり実用的でない。
In addition, as reinforcing materials, SiC, 5i3L, #zOs(
Examples include whiskers, short fibers, and particles such as +5 iOz). As for the mixing ratio of the N alloy powder and the reinforcing material, it is sufficient that the reinforcing material is contained in a volume content of 5 to 40%. If the reinforcing material is less than 5%, there is almost no reinforcement effect;
If it exceeds this value, the ductility and toughness of the MMC material will drop significantly, and furthermore, plastic working will become difficult, making it impractical.

本発明で使用するバインダとしては、例えば650℃以
下で分解するのがよく、その1つとして主成分がアクリ
ル樹脂等の合成樹脂系のものを例示できる。この際、バ
インダの混合比はN合金粉末と強化材の合計100重量
部当り1〜10重量部用いられる。なお上記の各例示は
、単なる実施例に1トまり、これに限定されるものでな
いことは勿論である。
The binder used in the present invention is preferably decomposed at, for example, 650° C. or lower, and one example thereof is a binder whose main component is a synthetic resin such as acrylic resin. At this time, the mixing ratio of the binder is 1 to 10 parts by weight per 100 parts by weight of the N alloy powder and reinforcing material. It should be noted that each of the above-mentioned examples is merely an example, and it goes without saying that the present invention is not limited thereto.

本発明で使用する前記混合体(造粒体)は、N合金粉末
と強化材とを混合し、これにバインダを添加して混練し
、同混線材料を所定の大きさに造粒成形するという公知
の手段により成形されるが、本出願人が先に特願昭62
−173695号で提案した手段、即ちN合金粉末と強
化材とがエチルアルコール、イソプロピルアルコール、
メチルアルコール。
The mixture (granules) used in the present invention is produced by mixing N alloy powder and reinforcing material, adding a binder to the mixture, kneading it, and granulating the mixed wire material into a predetermined size. Although it is molded by known means, the present applicant previously filed a patent application in 1983.
- The method proposed in No. 173695, that is, the N alloy powder and the reinforcing material are ethyl alcohol, isopropyl alcohol,
Methyl alcohol.

等の溶媒中で均一に混合された混合体スラリーを連続的
に脱液して偏平状のケーキを得、該ケーキに成形用バイ
ンダを添加混練して造粒し、得られたペレットを乾燥し
てその表層に乾燥固化層を形成するという方法により得
た混合体(造粒体)を使用しても良い。
A mixture slurry uniformly mixed in a solvent such as the like is continuously deliquified to obtain a flat cake, a molding binder is added to the cake, kneaded and granulated, and the resulting pellets are dried. You may use the mixture (granule) obtained by the method of forming a dry solidified layer on the surface layer.

本発明は、前記の混合体を室温を含む400℃以下の温
度条件下で充填率55%以上に圧粉成形し、その後脱バ
インダ処理を行なうものであるが、上記充填率を限定し
たのは次の理由による。
In the present invention, the above-mentioned mixture is compacted to a filling rate of 55% or more under temperature conditions of 400° C. or lower including room temperature, and then subjected to a binder removal treatment, but the filling rate is limited as follows. Due to the following reasons.

第1図はSiCウィスカ (体積率20%) /606
1/V合金の混合粉末を、真空中で加熱した場合の、圧
粉していない状態と圧粉状態(充填率82%)における
N合金粒内部のMg濃度と加熱温度の関係(加熱時間1
 hr)を示したものである。この図から圧粉状態のも
とでは加熱温度が上昇してもN合金粒内部のMg濃度の
低下はみられないが、圧粉していない状態のそれは40
0℃以上の温度ではMgi度が急速に低下していること
が判る。
Figure 1 shows SiC whiskers (volume ratio 20%) /606
The relationship between the Mg concentration inside the N alloy grains and the heating temperature in the uncompacted state and compacted state (filling rate 82%) when a mixed powder of 1/V alloy is heated in vacuum (heating time 1
hr). This figure shows that in the compacted state, the Mg concentration inside the N alloy grains does not decrease even if the heating temperature increases, but in the non-compacted state, the Mg concentration inside the N alloy grains is 40%.
It can be seen that the Mgi degree decreases rapidly at temperatures above 0°C.

図示省略しているが第1図と同一の混合粉末を使用して
充填率を順次小さくした場合の試験結果によれば、充填
率が55%未満の状態の場合に、脱バインダのため真空
中で加熱すると400℃以上の温度ではN合金粒内部の
Mg(Li、 Zn)は気化し濃度が低下することが判
明した。。
Although not shown, according to test results using the same mixed powder as in Figure 1 and decreasing the filling rate sequentially, it was found that when the filling rate was less than 55%, the powder was placed in a vacuum for debinding. It was found that when heated at temperatures above 400°C, the Mg (Li, Zn) inside the N alloy grains vaporizes and the concentration decreases. .

従って、分解温度が400’C以下のバインダを用いて
、400″C以下の温度で脱バインダ処理すれば問題な
いが、分解温度が400℃以下のバインダは必ずしも多
くない。しかし脱バインダ処理前に充填率55%以上に
圧粉成形しておくと、その後の脱バインダのための真空
中加熱において400℃以上に加熱してもMg、 Li
、 ZnはN合金粒の系内から系外への移動は小さく濃
度はほとんど低下しない。
Therefore, there is no problem if a binder with a decomposition temperature of 400'C or less is used and the binder is removed at a temperature of 400'C or less, but there are not necessarily many binders with a decomposition temperature of 400°C or less.However, before debinding If the powder is compacted to a filling rate of 55% or more, Mg and Li will remain intact even if heated to 400°C or higher during subsequent vacuum heating for binder removal.
In the case of Zn, the movement of N alloy grains from the inside of the system to the outside of the system is small, and the concentration hardly decreases.

一方、第2図を参照すると、同図は脱バインダ処理前の
充填率%(室温圧粉時)とプリフォーム成形体の硬さの
関係を示したものであるが、同図から脱バインダ処理す
ると充填率が55%以上では硬さが飛躍的に向上するこ
とが判明した。
On the other hand, referring to Figure 2, the figure shows the relationship between the filling rate % (at room temperature compaction) before the binder removal process and the hardness of the preform molded body. It was found that when the filling rate was 55% or more, the hardness improved dramatically.

以上の二つの理由により、本発明では充填率を55%以
上と限定したのである。
For the above two reasons, the filling rate is limited to 55% or more in the present invention.

なお、混合体を圧粉成形する場合の温度は、室温でもよ
いが、強化材、とくにウィスカのような繊維の損傷を防
止し、低圧力で充填率を上げるために高温での成形も有
効である。しかし、すでに述べたように成形体を成形す
る前に400℃以上に加熱すると、N合金粉末中のMg
、 Li、 Znの濃度が低下するので成形温度を40
0’C以下にするのが好ましい。
Note that the temperature when compacting the mixture may be room temperature, but compacting at a high temperature is also effective in order to prevent damage to the reinforcing material, especially fibers such as whiskers, and to increase the filling rate at low pressure. be. However, as mentioned above, if the compact is heated to 400°C or higher before molding, Mg in the N alloy powder
, Li, and Zn concentrations decrease, so the molding temperature was increased to 40°C.
It is preferable to keep it below 0'C.

以下、本発明の具体的実施例を、比較例も含めて説明す
る。
Hereinafter, specific examples of the present invention will be described, including comparative examples.

〈実施例1〉 SiCウィスカ (体積率20%)と6061’V合金
粉末とバインダからなる混合体(造粒体)を作製した。
<Example 1> A mixture (granule) consisting of SiC whiskers (volume fraction 20%), 6061'V alloy powder, and a binder was produced.

バインダは分解温度が450″Cのアクリル樹脂系であ
る。この混合体を室温にて圧扮し、充填率25〜80%
の成形体を作製した。
The binder is an acrylic resin with a decomposition temperature of 450"C. This mixture is compressed at room temperature to give a filling rate of 25 to 80%.
A molded body was produced.

なお、圧粉しない状態での充填率は25%であ ・る。Note that the filling rate without powder compaction is 25%.

これら成形体を真空中で500”C11hrの脱バイン
ダ処理をした後、大気中で350℃06C06O00/
cJ、 10w1nの一次成形、更に550℃02C0
2O00/cI11. 5 lll1nの二次成形によ
り固化した。
After debinding these molded bodies in vacuum for 500"C11hr,
cJ, primary molding of 10w1n, further 550℃02C0
2O00/cI11. It was solidified by secondary molding of 5 lll1n.

複合材料の硬さと、室温圧粉時の充填率の関係を第2図
に示す。
Figure 2 shows the relationship between the hardness of the composite material and the filling rate when compacted at room temperature.

〈実施例2〉 SiC粒子(体積率25%)と6061/v合金粉末と
バインダから混合体(造粒体)を作製した。
<Example 2> A mixture (granule) was produced from SiC particles (volume ratio 25%), 6061/v alloy powder, and a binder.

バインダは実施例1と同一である。この混合体を大気中
にて各種温度に加熱し、圧粉し充填率65〜92%の成
形体を作製した。これら成形体を真空中で500℃11
hrの脱バインダ処理をした後、真空中で550℃、2
000に、;f/cnl。
The binder is the same as in Example 1. This mixture was heated to various temperatures in the atmosphere and pressed into powder to produce a molded body with a filling rate of 65 to 92%. These molded bodies were heated to 500℃11 in a vacuum.
After debinding for hr, heat treatment at 550℃ in vacuum for 2 hours.
000, ;f/cnl.

511Iinの条件で固化した。成形材の硬さと、混合
体圧粉時の加熱温度の関係を第3図に示す。圧粉時の加
熱温度が400℃をこえると複合材料の硬さは低いが、
400″C以下では向上することが判る。
It was solidified under the conditions of 511 Iin. FIG. 3 shows the relationship between the hardness of the molding material and the heating temperature during compaction of the mixture. If the heating temperature during powder compaction exceeds 400℃, the hardness of the composite material will be low.
It can be seen that there is an improvement at temperatures below 400''C.

〈実施例3〉 SiCウィスカ(体積率20%)と7075A1合金粉
末とバインダからなる混合体(造粒体)を作製した。バ
インダは分解温度420℃のアクリル樹脂系である。こ
の混合体を室温にて充填率70%に圧粉し、成形体を作
製した後、真空中で450℃,lhrの脱バインダ処理
を施した。
<Example 3> A mixture (granule) consisting of SiC whiskers (volume ratio 20%), 7075A1 alloy powder, and a binder was produced. The binder is an acrylic resin with a decomposition temperature of 420°C. This mixture was pressed to a filling rate of 70% at room temperature to produce a molded body, and then subjected to binder removal treatment at 450° C. for 1 hour in a vacuum.

これを真空中で350℃,2000kgf/cd、 1
0m1nの一次成形、さらに460”C、2000kg
f/cffl。
This is heated in vacuum at 350℃, 2000kgf/cd, 1
Primary molding of 0m1n, further 460”C, 2000kg
f/cffl.

5 winの二次成形により固化して得られた複合材料
の特性を表1に示す。比較のため同様にして作製した混
合体をまず真空中で450℃11hrの脱バインダ処理
を施し、その後、室温にて充填率70%に圧粉して成形
体を作製し、その後の固化条件は同一にして作製した材
料の特性を合わせて示した。成形材(複合材料)の強度
および硬度は脱バインダ処理前の圧粉成形により著しく
向上することが判る。
Table 1 shows the properties of the composite material obtained by solidifying the 5win secondary molding. For comparison, a mixture prepared in the same manner was first subjected to debinding treatment at 450°C for 11 hours in a vacuum, and then compacted at room temperature to a filling rate of 70% to produce a molded body.The subsequent solidification conditions were as follows. The properties of the same materials made are also shown. It can be seen that the strength and hardness of the molded material (composite material) are significantly improved by powder compaction before the binder removal treatment.

表1 プリフォーム成形条件と材料特性(T6処理状態
)の関係(発明の効果) 本発明は、アルミ基複合材料成形用プリフォーム成形体
を製造するに際し、Mg、 Li、 Znのいずれか1
種または2種以上を含むN合金粉末と、ウィスカ、短繊
維又は粒子状態の強化材とバインダからなる混合体を充
填率55%以ヒに圧粉成形し、その後脱バインダ処理を
行なうようにしたので、脱バインダ処理温度に制限なく
、ひいてはバインダの種類にも制限なく高温で高効率に
脱バインダ処理が可能となり、しかもこのプリフォーム
成形体を用いて成形した複合材料の強度、硬度は著しく
向上し、た。
Table 1 Relationship between preform molding conditions and material properties (T6 treatment state) (effects of the invention) When manufacturing a preform molded body for molding an aluminum-based composite material, the present invention provides the following advantages:
A mixture consisting of an N alloy powder containing one or more seeds, reinforcing material in the form of whiskers, short fibers, or particles and a binder is compacted to a filling rate of 55% or more, and then the binder is removed. Therefore, it is possible to perform binder removal processing with high efficiency at high temperatures without any restrictions on the binder removal processing temperature or even on the type of binder. Moreover, the strength and hardness of composite materials molded using this preform molded body are significantly improved. did.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は20%SiCウィスカ/60617v合金混合
粉末真空中で加熱した場合の混合粉末内部のMg11m
度と加熱温度の関係(加熱時間1 hr)を示すグラフ
、第2図は20%SiCウィスカ/6061A7合金造
粒材圧粉時(脱バインダ処理前)の充填率と、複合材の
硬さ(T6処理状態)との関係を示すグラフ、第3図は
20%SiC粒子/6061/V造粒材圧粉成形時の加
熱温度と、複合材料の硬さ(T6処理状態)との関係を
示すグラフである。 特 許 出 願 人  株式会社神戸製鋼所第1図 第2図 耳近1(イシ奸〃1!、伯の克j責1堅 (殉第3図 力a熱 温&  (’C)
Figure 1 shows 20% SiC whisker/60617v alloy mixed powder. Mg11m inside the mixed powder when heated in vacuum.
Figure 2 is a graph showing the relationship between heating temperature and heating temperature (heating time 1 hr). Figure 2 shows the filling rate of 20% SiC whisker/6061A7 alloy granulated material during compaction (before debinding) and the hardness of the composite material ( Figure 3 shows the relationship between the heating temperature during compaction of 20% SiC particles/6061/V granulated material and the hardness of the composite material (T6 treatment condition). It is a graph. Patent applicant: Kobe Steel, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)Mg,Li,Znのいずれか1種または2種以上
を含むAl合金粉末と、ウィスカ、短繊維又は粒子状態
の強化材とバインダからなる混合体を充填率55%以上
に圧粉成形し、その後脱バインダ処理を行なうことを特
徴とするアルミ基複合材料成形用プリフォーム成形体の
製造方法。
(1) A mixture of Al alloy powder containing one or more of Mg, Li, and Zn, reinforcing material in the form of whiskers, short fibers, or particles, and a binder is compacted to a filling rate of 55% or more. 1. A method for producing a preform molded body for molding an aluminum-based composite material, the method comprising:
(2)圧粉成形の温度が400℃以下であることを特徴
とする特許請求の範囲第1項記載のアルミ基複合材料成
形用プリフォーム成形体の製造方法。
(2) The method for producing a preform molded body for molding an aluminum matrix composite material according to claim 1, characterized in that the temperature of powder compacting is 400° C. or lower.
JP63136040A 1988-06-01 1988-06-01 Manufacturing method of preform molding for molding aluminum-based composite material Expired - Lifetime JPH075928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136040A JPH075928B2 (en) 1988-06-01 1988-06-01 Manufacturing method of preform molding for molding aluminum-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136040A JPH075928B2 (en) 1988-06-01 1988-06-01 Manufacturing method of preform molding for molding aluminum-based composite material

Publications (2)

Publication Number Publication Date
JPH01306506A true JPH01306506A (en) 1989-12-11
JPH075928B2 JPH075928B2 (en) 1995-01-25

Family

ID=15165773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136040A Expired - Lifetime JPH075928B2 (en) 1988-06-01 1988-06-01 Manufacturing method of preform molding for molding aluminum-based composite material

Country Status (1)

Country Link
JP (1) JPH075928B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435825A (en) * 1991-08-22 1995-07-25 Toyo Aluminum Kabushiki Kaisha Aluminum matrix composite powder
JP2005171381A (en) * 2003-11-20 2005-06-30 Rolls Royce Plc Method of manufacturing fiber reinforced metal matrix composite article
CN113042728A (en) * 2021-03-11 2021-06-29 北京大学 Mg-Li alloy nano powder and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272730A (en) * 1988-04-21 1989-10-31 Hitachi Metals Ltd Manufacture of whisker reinforced metallic sintered member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272730A (en) * 1988-04-21 1989-10-31 Hitachi Metals Ltd Manufacture of whisker reinforced metallic sintered member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435825A (en) * 1991-08-22 1995-07-25 Toyo Aluminum Kabushiki Kaisha Aluminum matrix composite powder
JP2005171381A (en) * 2003-11-20 2005-06-30 Rolls Royce Plc Method of manufacturing fiber reinforced metal matrix composite article
CN113042728A (en) * 2021-03-11 2021-06-29 北京大学 Mg-Li alloy nano powder and preparation method and application thereof

Also Published As

Publication number Publication date
JPH075928B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
JPH0530890B2 (en)
CA2958409C (en) Titanium-based compositions, methods of manufacture and uses thereof
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
JP3082152B2 (en) Material for piston and method of manufacturing the same
JPH02213431A (en) Sic whisker reinforced al alloy composite material
JPH05501429A (en) Dual processing of aluminum-based metal matrix composites
JPH01306506A (en) Manufacture of preformed material for forming aluminum matrix composite material
CA2817590C (en) Improved aluminum alloy power metal with transition elements
JPH075927B2 (en) Debindering method for aluminum matrix composite material
JPH02194132A (en) Manufacture of metal matrix composite
JPH01306505A (en) Method for removing binder in preformed material for forming aluminum matrix composite
US5015294A (en) Composition suitable for injection molding of metal alloy, or metal carbide powders
JPS63293102A (en) Production of fe-base sintered alloy member having high strength and high toughness
KR101115225B1 (en) Feedstock composition and method of using same for powder metallurgy forming of reactive metals
JPS6151618B2 (en)
JPH079005B2 (en) A (1) Method of molding base composite material
JP3921761B2 (en) Method for producing aluminum borate whisker
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JPH01272730A (en) Manufacture of whisker reinforced metallic sintered member
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPS63266031A (en) Pellet of mixture of reinforcing material and metallic powder and its production
JPH0499801A (en) Method for compacting powder
JPS63255333A (en) Aluminum alloy/potassium titanate whisker composite material by powder metallurgical method
JPH01219107A (en) Production of aluminum alloy member
JPH10280067A (en) Production of composite material