JPH01219107A - Production of aluminum alloy member - Google Patents

Production of aluminum alloy member

Info

Publication number
JPH01219107A
JPH01219107A JP63043527A JP4352788A JPH01219107A JP H01219107 A JPH01219107 A JP H01219107A JP 63043527 A JP63043527 A JP 63043527A JP 4352788 A JP4352788 A JP 4352788A JP H01219107 A JPH01219107 A JP H01219107A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mechanical properties
alloy member
solidified bodies
obtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043527A
Other languages
Japanese (ja)
Inventor
Mitsuru Adachi
充 安達
Yoshiharu Waku
芳春 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63043527A priority Critical patent/JPH01219107A/en
Publication of JPH01219107A publication Critical patent/JPH01219107A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce an Al alloy member having superior mechanical properties by modifying the surface layers of fine solidified bodies of an Al alloy obtd. under specified conditions and by successively subjecting the solidified bodies to preliminary compression molding, heating and press molding under specified conditions. CONSTITUTION:Fine solidified bodies of an Al alloy contg. 0.10wt.% B obtd. by rapid cooling at 10<2>-10<6> deg.C/sec cooling rate are mechanically stirred with a ball mill or the like to modify or break the surface layers and to facilitate vacuum degassing. The solidified bodies are then subjected to preliminary compression molding by cold pressing or other method so as to form a molded body having >=70% density. The resulting molded body is heated at 300-350 deg.C and press-molded under vacuum degassing at about 10<2>-10<-2>Torr degree of vacuum. The heating may be carried out during the press molding. An Al alloy member having superior mechanical properties is efficiently obtd. in a small number of stages at a low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルミニウム合金部材の製造方法に係り、特に
低真空脱ガス処理により優れた機械的性質を有するアル
ミニウム合金部材を製造することができる方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an aluminum alloy member, and in particular, a method for manufacturing an aluminum alloy member having excellent mechanical properties through low vacuum degassing treatment. Regarding.

[従来の技術] 近年、自動車、航空機等の分野における構成部材の軽量
化、高性能化、高負荷化に対する耐久性の改善等の要求
が高まるに伴い、これらの構成部材であるアルミニウム
合金について、鋳造用合金に比し、耐熱性、耐摩耗性に
優れしかも高強度な合金として、急冷凝固粉を用いた粉
末合金の研究が盛んに行なわれつつある。
[Prior Art] In recent years, with the increasing demand for lighter weight, higher performance, and improved durability of structural members in the fields of automobiles, aircraft, etc., aluminum alloys that are used as these structural members have increased. Powder alloys using rapidly solidified powder are being actively researched as alloys that have superior heat resistance, wear resistance, and high strength compared to casting alloys.

粉末合金では、急冷凝固粉粒子の表面に付着している酸
化物、水分、水酸化物等の付着物が、粉末粒子同志の圧
着を妨げると共に、成形後のアルミニウム合金部材の機
械的性質を劣化させる原因となるため、これらの付着物
を急冷凝固粉の成形、固化に際し、予め取り除く必要が
ある。
In powder alloys, deposits such as oxides, moisture, and hydroxides that adhere to the surface of rapidly solidified powder particles impede the adhesion of the powder particles to each other and deteriorate the mechanical properties of the aluminum alloy member after forming. Therefore, it is necessary to remove these deposits before forming and solidifying the rapidly solidified powder.

このため、従来においては、通常、急冷凝固粉の予備成
形後、予備成形体をアルミニウム等の金属缶に封入して
真空脱ガス処理し、その後この缶を除去する工程が必要
とされている。
For this reason, in the past, it has usually been necessary to perform a step of preforming the rapidly solidified powder, enclosing the preform in a metal can such as aluminum, performing vacuum degassing treatment, and then removing the can.

[発明が解決しようとする課題] このように、従来においては、封缶、真空脱ガス、脱缶
の工程が必要とされているため、アルミニウム合金部材
の製造工数が多く、このため、製品のコストアップを招
いていた。また、缶中心部の加熱に時間を要するため、
過剰焼鈍の問題が生起するなどの難点もあフた。
[Problems to be Solved by the Invention] As described above, in the past, the steps of can sealing, vacuum degassing, and decanning were required, which required a large number of man-hours to manufacture aluminum alloy members, and as a result, the product This led to an increase in costs. Also, since it takes time to heat the center of the can,
Difficulties such as the problem of over-annealing also arose.

本発明は上記従来の問題点を解決し、封缶、脱缶等の処
理を要することなく、低真空脱ガス処理により、優れた
機械的性能を有するアルミニウム合金部材を製造する方
法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides a method for manufacturing aluminum alloy members having excellent mechanical performance by low vacuum degassing treatment without requiring treatments such as can sealing and decanning. With the goal.

[課題を解決するための手段] 本発明のアルミニウム合金部材の製造方法は、102〜
b して得られた、0.10重量%以下のBeを含むアルミ
ニウム合金の微小凝固体を機械的攪拌することにより、
その表面層を改質ないし破壊した後、該微小凝固体を凝
固体密度70%以上に圧縮成形し、得られた成形体を3
00〜530℃の温度で加熱後あるいは加熱しながら真
空脱気を伴う押出成形を行うことを特徴とする。
[Means for Solving the Problems] The method for manufacturing an aluminum alloy member of the present invention includes steps 102 to 102.
b. By mechanically stirring the micro-solidified aluminum alloy containing 0.10% by weight or less of Be,
After modifying or destroying the surface layer, the microcoagulates are compression-molded to a coagulate density of 70% or more, and the resulting molded body is
It is characterized by performing extrusion molding with vacuum degassing after or while heating at a temperature of 00 to 530°C.

本発明においては、この微小凝固体の機械的攪拌工程に
おいて、微小凝固体に補強繊維を混合し、繊維補強アル
ミニウム合金複合材を製造することもできる。
In the present invention, a fiber-reinforced aluminum alloy composite material can also be produced by mixing reinforcing fibers with the microcoagulates in the mechanical stirring step of the microcoagulates.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、まず、アルミニウム合金溶湯を10
2〜b 冷凝固させることにより、Be含有率0.10ffi量
%以下のアルミニウム合金の微小凝固体を得る。ここで
、冷却速度が102℃/ s e c未満であると、ア
ルミニウム合金中に含まれるSt。
In the present invention, first, molten aluminum alloy is
2-b A fine solidified body of aluminum alloy having a Be content of 0.10ffi mass % or less is obtained by cold solidification. Here, when the cooling rate is less than 102°C/sec, St contained in the aluminum alloy.

Fe等の金属間化合物が粗大に晶出し、得られる部材の
機械的強度、延性等が低下する。一方、冷却速度が10
6℃/ s e cを超えても効果に差異はなく、急冷
技術が困難となり、コストアップを招くこととなる。こ
のため、冷却速度は102〜b このようにして得られる微小凝固体は、一般には球状、
フレーク状、糸状等の様々な形状が混在する微細粉末で
ある。
Intermetallic compounds such as Fe are coarsely crystallized, and the mechanical strength, ductility, etc. of the resulting member are reduced. On the other hand, the cooling rate is 10
Even if the temperature exceeds 6° C./sec, there is no difference in effectiveness, and rapid cooling technology becomes difficult, leading to an increase in cost. Therefore, the cooling rate is 102~b The microsolids obtained in this way are generally spherical,
It is a fine powder with various shapes such as flakes and strings.

また、Beはアルミニウム合金構成成分として、急冷凝
固体製造工程における溶湯の酸化を防ぎ、かつ、急冷凝
固時に生成されるMgO。
In addition, Be, as an aluminum alloy constituent, prevents oxidation of the molten metal in the process of producing a rapidly solidified product, and also serves as MgO produced during rapid solidification.

Al2203等の酸化被膜の生成を抑制する目的で添加
されるが、Beを0.10重量%を超えて添加しても上
記効果の向上は望めないことから、Beの含有量は0.
10重量%以下とする。
Although it is added for the purpose of suppressing the formation of oxide films such as Al2203, the above effects cannot be expected to be improved even if Be is added in an amount exceeding 0.10% by weight, so the Be content is set to 0.1% by weight.
The content shall be 10% by weight or less.

本発明で有効なアルミニウム合金としては、Al1−3
i系、An−3t−Mg系、AjZ−3t−Cu−Mg
系、An −Cu−Mg系、AjZ−s 1−Fe系、
A1−31−Mg−Fe系、Al1−3i−Cu−Mg
−Fe系、A1−Cu−Mg−Fe系等の合金が挙げら
れる。これらのアルミニウム合金に含有される他の金属
構成成分の含有量は一般には次のような範囲とされる。
Aluminum alloys effective in the present invention include Al1-3
i series, An-3t-Mg series, AjZ-3t-Cu-Mg
system, An-Cu-Mg system, AjZ-s 1-Fe system,
A1-31-Mg-Fe system, Al1-3i-Cu-Mg
-Fe-based alloys, A1-Cu-Mg-Fe-based alloys, and the like. The contents of other metal constituents contained in these aluminum alloys are generally within the following ranges.

Si : 10〜30瓜量% Mg:0.2〜3.0重量% Cu : 0.5〜8.0重量% Fe  :  0. 5〜1 0. 0重量%本発明に
おいては、このようなアルミニウム合金微小凝固体を機
械的攪拌することにより、その表面層を改質ないし破壊
する。即ち、本発明においては、微小凝固体の表面に付
着している酸化物、水分、水酸化物等の付着物を、機械
的作用により改質ないし破壊して、除去ないし除去し易
い状態にする。これにより゛、後続の押出成形工程にお
ける真空脱気処理を容易にすることができる。
Si: 10-30% by weight Mg: 0.2-3.0% by weight Cu: 0.5-8.0% by weight Fe: 0. 5-1 0. 0% by weight In the present invention, the surface layer is modified or destroyed by mechanically stirring such aluminum alloy microsolids. That is, in the present invention, deposits such as oxides, moisture, hydroxides, etc. attached to the surface of the microcoagulate are modified or destroyed by mechanical action, and are removed or made into a state where they can be easily removed. . Thereby, the vacuum degassing treatment in the subsequent extrusion molding process can be facilitated.

この機械的攪拌方法としては特に制限はないが、具体的
にはボールミル、アトライタ(アトリション・ミル)等
を用いる通常の機械的攪拌により十分な効果を得ること
ができる。攪拌条件等は、処理する微小凝固体の量、粒
径、組成、急冷条件、その他の諸特性等に応じても左右
されるが、本発明において、この攪拌は微小凝固体の表
面層、即ち、表面に付着した酸化物、水分、水酸化物の
改質、破壊を主目的としており、その後の凝着、凝集ま
では必要としない。従って、所望の表面層の改質ないし
破壊状態が得られるように、攪拌条件は適宜決定する。
The mechanical stirring method is not particularly limited, but specifically, sufficient effects can be obtained by ordinary mechanical stirring using a ball mill, an attritor, or the like. The stirring conditions etc. depend on the amount, particle size, composition, quenching conditions, and other characteristics of the microcoagulates to be treated, but in the present invention, the stirring conditions are applied to the surface layer of the microcoagulates, i.e. The main purpose is to modify and destroy oxides, moisture, and hydroxides attached to the surface, and subsequent adhesion and aggregation are not required. Therefore, stirring conditions are appropriately determined so as to obtain a desired state of modification or destruction of the surface layer.

機械的攪拌処理を行った微小凝固体は、冷間ブレス等に
より予備圧縮成形することにより、微小凝固体密度70
%以上の成形体とする。このように微小凝固体を予め成
形しておくことにより、次工程における取り扱い性や加
熱等の操作を容易にすることができる。なお、この予備
成形に際し、微小凝固体に付着する空気、あるいは圧粉
によりとじこめられる空気を減らすために、真空に引き
ながら圧粉することにより、後の押出成形後の素材の品
質を更に良好にすることができる。
The mechanically agitated microsolids are pre-compression molded using a cold press or the like, so that the microsolids have a density of 70.
% or more. By forming the microcoagulates in advance in this way, handling and heating operations in the next step can be facilitated. In addition, during this preforming, in order to reduce the air that adheres to the microcoagulates or the air that is trapped by the compacted powder, the quality of the material after extrusion molding is further improved by compressing the powder while drawing a vacuum. can do.

予備圧縮成形により得られた成形体は、次いで、300
〜530℃の温度にて予備加熱後あるいは加熱しながら
、真空脱気を行いつつ押出成形機にて押出成形する。こ
の場合、押出成形機としては、コンテナ、ディスク、ダ
イスで囲まれる部分にて真空脱気処理を行うものが好ま
しく、その真空度としては102〜1O−2torr程
度の低真空度で十分な効果を得ることができる。即ち、
本発明においては、Beの添加により微小凝固体表面の
酸化が防止され、しかも、機械的攪拌により微小凝固体
表面の酸化物等の付着物の一部は既に除去され、残部に
ついても極めて除去され易い状態とされているため、こ
れらの付着物の除去のために、従来のような高真空度は
必要とされない。
The molded body obtained by pre-compression molding was then heated to 300
After preheating at a temperature of ~530°C, or while heating, extrusion molding is performed using an extrusion molding machine while performing vacuum degassing. In this case, the extrusion molding machine is preferably one that performs vacuum degassing in the area surrounded by the container, disk, and die, and a low degree of vacuum of about 102 to 1 O-2 torr is sufficient for the effect. Obtainable. That is,
In the present invention, the addition of Be prevents oxidation of the surface of the microcoagulate, and furthermore, by mechanical stirring, a part of the deposits such as oxides on the surface of the microcoagulum has already been removed, and the remaining part is also completely removed. Since the condition is said to be easy, a high degree of vacuum as in the conventional case is not required to remove these deposits.

なお、この押出成形における加熱処理温度を300〜5
30℃とするのは次のような理由による、即ち、加熱処
理温度が300℃未満では、急冷凝固による組織を維持
することはできる反面、押出成形が困難である。一方、
530℃を超えると、押出成形性は良くなるものの、急
冷凝固により得られた過飽和固溶体の熱分解が進行する
と共に、微細金属間化合物が粗大化し、得られる部材の
強度、延性が低下する。
In addition, the heat treatment temperature in this extrusion molding is 300 to 5
The reason for setting the temperature to 30°C is as follows: If the heat treatment temperature is less than 300°C, the structure resulting from rapid solidification can be maintained, but extrusion molding is difficult. on the other hand,
When the temperature exceeds 530°C, although extrusion moldability improves, thermal decomposition of the supersaturated solid solution obtained by rapid solidification progresses, fine intermetallic compounds coarsen, and the strength and ductility of the resulting member decrease.

本発明においては、前述の微小凝固体の機械的攪拌工程
において、適当な補強繊維を添加して、共に攪拌混合し
ても良い。補強繊維を添加混合することにより、補強繊
維の補強効果により、より機械的特性の優れた繊維補強
アルミニウム合金複合部材が得られる。
In the present invention, appropriate reinforcing fibers may be added and mixed together in the above-mentioned mechanical stirring step of the microcoagulates. By adding and mixing reinforcing fibers, a fiber-reinforced aluminum alloy composite member with better mechanical properties can be obtained due to the reinforcing effect of the reinforcing fibers.

補強繊維としては、セラミックウィスカー、セラミック
短!a維等が好適である。また、その使用量は、少ない
と十分な補強効果が得られないが、多過ぎても成形性が
損なわれることから、通常、微小凝固体に対する体積%
で2〜40体積%程度とするのが好ましい。
Ceramic whiskers and ceramic whiskers are recommended as reinforcing fibers! A-fiber etc. are suitable. In addition, if the amount used is small, a sufficient reinforcing effect cannot be obtained, but if it is too large, the formability will be impaired, so it is usually
The content is preferably about 2 to 40% by volume.

[作用] 急冷凝固により得られたアルミニウム合金の微小凝固体
の表面の酸化被膜の生成をBeの添加により抑制し、し
かも、この微小凝固体を機械的攪拌することにより、そ
の表面層を改質ないし破壊し、その表面に付着している
酸化物、水分、水酸化物等の付着物を除去ないし容易に
除去できる状態とすることができる。
[Function] The addition of Be suppresses the formation of an oxide film on the surface of the aluminum alloy microsolids obtained by rapid solidification, and the surface layer is modified by mechanically stirring the microsolids. It is possible to remove or easily destroy deposits such as oxides, moisture, hydroxides, etc. adhering to the surface.

このため、このような処理を施した微小凝固体は、高真
空度でなくとも、押出成形機における比較的低真空度条
件にて容易に脱ガス処理することが可能となる。従って
、従来の・如く、成形工程前に封缶、真空脱ガス、脱缶
の操作を行う必要がなくなり、処理工程数が低減される
。また、封缶することによる過剰焼鈍の問題も解消する
。このため、低コストで容易に優れた機械的特性を有す
るアルミニウム合金部材が得られる。
Therefore, the microcoagulates subjected to such treatment can be easily degassed under relatively low vacuum conditions in an extrusion molding machine, even if not under high vacuum conditions. Therefore, there is no need to perform operations such as can sealing, vacuum degassing, and decanning before the molding process, as in the past, and the number of processing steps is reduced. Moreover, the problem of excessive annealing caused by sealing the can is also solved. Therefore, an aluminum alloy member having excellent mechanical properties can be easily obtained at low cost.

また、本発明においては、機械的攪拌工程において補強
繊維を混入させることにより、より機械的特性に優れた
アルミニウム合金部材を製造することができる。
Furthermore, in the present invention, by mixing reinforcing fibers in the mechanical stirring step, an aluminum alloy member with even better mechanical properties can be manufactured.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。
[Examples] The present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1 10’〜104℃/ s e cの冷却速度で急冷凝固
して得た、アルミニウム合金粉末(AJZ−16St−
4Cu−IMg−8Fe−0,0IBe)1000gを
、容15J2のアトライターの中に入れ、焼き付き防止
用に3%のメタノールを入れて、Ar雰囲気中で20分
攪拌した。
Example 1 Aluminum alloy powder (AJZ-16St-
4Cu-IMg-8Fe-0,0IBe) was placed in a 15J2 attritor, 3% methanol was added to prevent seizure, and the mixture was stirred for 20 minutes in an Ar atmosphere.

得られた粉末を80%の密度に冷間ブレスに1予備圧縮
成形した後、450℃に加熱し、コンテナ中に装入した
後、20torrで真空脱気しなから、押出比10で3
0mmの丸棒を押出成形した。
The obtained powder was pre-compression molded in a cold press to a density of 80%, heated to 450°C, charged into a container, vacuum degassed at 20 torr, and extruded at an extrusion ratio of 10.
A 0 mm round bar was extruded.

得られたアルミニウム合金部材について機械的性質を調
べ、結果を第1表に示した。
The mechanical properties of the obtained aluminum alloy members were investigated and the results are shown in Table 1.

比較例1 第1表に示す組成のアルミニウム合金の鋳造材であって
、実施例1で製造された部材と同一形状のアルミニウム
合金部材について機械的性質を調べ、結果を第1表に示
した。
Comparative Example 1 The mechanical properties of an aluminum alloy cast material having the composition shown in Table 1 and having the same shape as the member manufactured in Example 1 were investigated, and the results are shown in Table 1.

比較例2 合金中にBeを含まず、また、アトライターによる攪拌
を行わなかったこと以外は、実施例1と同様にして押出
比10で30mmの丸棒を製造した。得られた部材につ
いて機械的性質を調べ、結果を第1表に示した。
Comparative Example 2 A 30 mm round bar was produced in the same manner as in Example 1 at an extrusion ratio of 10, except that Be was not included in the alloy and stirring with an attritor was not performed. The mechanical properties of the obtained members were investigated and the results are shown in Table 1.

実施例2 アルミニウム合金組成が第1表に示す通りであり、アル
ミニウム合金粉末の攪拌工程において、粉末に対して1
0体積%のSiCウィスカーを混合したこと以外は、実
施例1と同様にして丸棒を押出成形し、得られた丸棒の
機械的性質を調べた。結果を第1表に示す。
Example 2 The aluminum alloy composition is as shown in Table 1, and in the stirring process of aluminum alloy powder, 1
A round bar was extruded in the same manner as in Example 1 except that 0% by volume of SiC whiskers was mixed, and the mechanical properties of the obtained round bar were examined. The results are shown in Table 1.

第1表 第1表より、本発明のアルミニウム合金部材(実施例1
)は従来の鋳造材(比較例1)に比し、著しく高い機械
的特性を有し、また粉末成形材であフても、粉末の機械
的攪拌を行っていないもの(比較例2)に比べても、そ
の機械的性質は著しく優れていることが明らかである。
From Table 1, the aluminum alloy member of the present invention (Example 1)
) has significantly higher mechanical properties than conventional cast materials (Comparative Example 1), and even though it is a powder molded material, it has better mechanical properties than those without mechanical stirring of the powder (Comparative Example 2). Even when compared, it is clear that its mechanical properties are significantly superior.

また、補強繊維を混合することにより(実施例2)、そ
の機械的性質はより向上されることが明らかである。
Furthermore, it is clear that the mechanical properties are further improved by mixing reinforcing fibers (Example 2).

[発明の効果] 以上詳述した通り、本発明のアルミニウム合金部材の製
造方法によれば、比較的低真空度の脱ガス処理にて十分
良好な粉末成形材料が得られることから、封缶、脱缶等
の処理が不要となる。このため、少ない処理工程数にて
、優れた機械的特性を有するアルミニウム合金部材を低
コストで効率的に製造することが可能とされる。
[Effects of the Invention] As detailed above, according to the method for manufacturing an aluminum alloy member of the present invention, a sufficiently good powder molding material can be obtained by degassing treatment at a relatively low degree of vacuum. Processing such as decanning becomes unnecessary. Therefore, it is possible to efficiently manufacture an aluminum alloy member having excellent mechanical properties at low cost with a small number of processing steps.

本発明においては材料の機械的攪拌工程において補強!
a雄を混合することにより、より機械的特性に優れた繊
維補強アルミニウム合金複合材を得ることかできる。
In the present invention, reinforcement is achieved during the mechanical stirring process of the material!
By mixing a male, a fiber-reinforced aluminum alloy composite material with better mechanical properties can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)10^2〜10^6℃/secの冷却速度で急冷
凝固して得られた、0.10重量%以下のBeを含むア
ルミニウム合金の微小凝固体を機械的攪拌することによ
り、その表面層を改質ないし破壊した後、該微小凝固体
を凝固体密度70%以上に圧縮成形し、得られた成形体
を300〜530℃の温度で加熱後あるいは加熱しなが
ら、真空脱気を行いつつ押出成形を行うことを特徴とす
るアルミニウム合金部材の製造方法。
(1) By mechanically stirring microsolidified aluminum alloy containing 0.10% by weight or less of Be, obtained by rapid solidification at a cooling rate of 10^2 to 10^6°C/sec. After modifying or destroying the surface layer, the microsolids are compression molded to a solidification density of 70% or more, and the resulting molded body is vacuum degassed after or while being heated at a temperature of 300 to 530°C. A method for manufacturing an aluminum alloy member, characterized in that extrusion molding is performed while the aluminum alloy member is being extruded.
(2)微小凝固体の機械的攪拌工程において、微小凝固
体に補強繊維を混合することを特徴とする特許請求の範
囲第1項に記載の方法。
(2) The method according to claim 1, wherein reinforcing fibers are mixed into the microcoagulates in the step of mechanically stirring the microcoagulates.
JP63043527A 1988-02-26 1988-02-26 Production of aluminum alloy member Pending JPH01219107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043527A JPH01219107A (en) 1988-02-26 1988-02-26 Production of aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043527A JPH01219107A (en) 1988-02-26 1988-02-26 Production of aluminum alloy member

Publications (1)

Publication Number Publication Date
JPH01219107A true JPH01219107A (en) 1989-09-01

Family

ID=12666217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043527A Pending JPH01219107A (en) 1988-02-26 1988-02-26 Production of aluminum alloy member

Country Status (1)

Country Link
JP (1) JPH01219107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499206A (en) * 1990-08-10 1992-03-31 Ube Ind Ltd Manufacture of metal powder compact material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499206A (en) * 1990-08-10 1992-03-31 Ube Ind Ltd Manufacture of metal powder compact material

Similar Documents

Publication Publication Date Title
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JPH03503784A (en) Aluminum-based metal matrix composite
TW200533763A (en) Aluminum alloy for plastic working, and its manufacturing method
JPS63169340A (en) Production of ceramic dispersion strengthened aluminum alloy
JPS596353A (en) Manufacture of high pressure thermal molding powder iron alloy with machinability
JPH01319644A (en) Heat-resistant aluminum alloy material and its manufacture
JPH01219107A (en) Production of aluminum alloy member
JPS63501884A (en) Alloys with improved resistance to fatigue crack growth
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
JPH0149765B2 (en)
JP2596205B2 (en) Manufacturing method of Al alloy powder compact
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JP3327576B2 (en) Manufacturing method of magnesium alloy member
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JP2584488B2 (en) Processing method of wear resistant aluminum alloy
KR20110067910A (en) The method for preparation of metal matrix powder using gas atomization and metal matrix powder thereby
JP2757928B2 (en) Manufacturing method of metal powder molding material
JPS59166661A (en) Preparation of aluminum alloy material excellent in abrasion resistance
JPH07278714A (en) Aluminum powder alloy and its production
JPH10265918A (en) Aluminum alloy
JP2569920B2 (en) Manufacturing method of metal powder molding material