JPH01304304A - Film thickness inspecting device - Google Patents

Film thickness inspecting device

Info

Publication number
JPH01304304A
JPH01304304A JP13633088A JP13633088A JPH01304304A JP H01304304 A JPH01304304 A JP H01304304A JP 13633088 A JP13633088 A JP 13633088A JP 13633088 A JP13633088 A JP 13633088A JP H01304304 A JPH01304304 A JP H01304304A
Authority
JP
Japan
Prior art keywords
thin film
film thickness
light beams
lens
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13633088A
Other languages
Japanese (ja)
Inventor
Masayuki Watanabe
正幸 渡辺
Masahito Koike
雅人 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13633088A priority Critical patent/JPH01304304A/en
Publication of JPH01304304A publication Critical patent/JPH01304304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the thickness distribution of a thin film over its wide area by separating reflected light beams from the wide area of the thin film sample into their spectral components and detecting the spectra by means of an array type detector. CONSTITUTION:The light beams of a white light source 3 are reflected by a beam splitter 5 after passing through a pinhole slit 4 and made perpendicularly incident on a thin film sample 1 after the reflected light beams are changed to parallel light beams. The reflected light beams from the sample 1 are condensed on a slit 8 by means of a lens 6 and toroidal lens 7 and separated into their spectral components by means of a plane grating 9. The spectra are detected by means of a two-dimensional detector 11 through a toroidal lens 10. Moreover, a spectroscope for monitoring composed of a pinhole slit 12, plane grating 13, lens 14, and one-dimensional detector 15 is provided in order to detect the white light distribution of the light source 3 and correct the measuring data. The detect signals of the detectors 11 and 15 are subjected to a Fourier transform processing by means of a Fourier transform means and the thickness distribution of the thin film sample 1 is found.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜の広範囲の膜厚分布を求める膜厚検査装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a film thickness inspection device for determining a wide range of film thickness distribution of a thin film.

(従来の技術) 基板上の薄膜又は独立した薄膜の微少面積の特定部位に
白色光を照射し、その干渉反射光を分光することによっ
て薄膜試料の特定部位の膜厚を算出することが行なわれ
ている。
(Prior art) The film thickness of a specific part of a thin film sample is calculated by irradiating a specific part of a small area of a thin film on a substrate or an independent thin film with white light and spectrally dispersing the interference reflected light. ing.

第2図に示されるように、屈折率がn5の基板」二に形
成された屈折率がnの薄膜1に対して屈折率がn。の媒
質中から光線2が垂直入射したとき、反射率rは入射光
2の波数にの関数として以下の式で表わされる。
As shown in FIG. 2, for a thin film 1 with a refractive index of n formed on a substrate with a refractive index of n5, the refractive index is n. When the light ray 2 is perpendicularly incident on the medium, the reflectance r is expressed as a function of the wave number of the incident light 2 by the following equation.

r (k)= (A−B +Ccos(4gndk )
)/ (A+ B +Ccos(4πnd k ))た
だし、A=(no”+n2)(n2+n32)B=4.
n  ’n”ns C=(n  2−n2)(n2−n8”)であり、dl
′j:薄膜1の厚みである。上記の式を変形すると、 r(k)= 1−2 B/(A+B +Ccos(4π
ndk))となり、第3図に示されるように、r (k
)は波数kに対する周期関数となり、その周期は1/2
ndである。したがって、薄膜1の屈折率nが知られて
いれば、反射率rを波数にの関数として測定することに
より膜厚dを求めることができることはよく知られてい
る。
r(k)=(A-B+Ccos(4gndk)
)/(A+B+Ccos(4πndk)) However, A=(no”+n2)(n2+n32)B=4.
n 'n"ns C=(n 2-n2) (n2-n8") and dl
'j: Thickness of thin film 1. Transforming the above formula, r(k) = 1-2 B/(A+B +Ccos(4π
ndk)), and as shown in Figure 3, r (k
) is a periodic function for the wave number k, and its period is 1/2
nd. Therefore, it is well known that if the refractive index n of the thin film 1 is known, the film thickness d can be determined by measuring the reflectance r as a function of the wave number.

(発明が解決しようとする課題) 従来の方法では、1回の測定では微小面積の特定部位の
膜厚しか測定することができない。そのため、広い面積
に渡って膜厚分布を測定しようとすれば試料上の多数の
点について測定することが必要になり、1つの試料の膜
厚分布を測定するのに時間がかかり、多くの薄膜の膜厚
検査を行なうことが難しくなる。
(Problems to be Solved by the Invention) In the conventional method, it is possible to measure only the film thickness of a specific part of a minute area in one measurement. Therefore, in order to measure the film thickness distribution over a wide area, it is necessary to measure many points on the sample, which means that it takes time to measure the film thickness distribution of one sample, and many thin films must be measured. It becomes difficult to inspect the film thickness.

本発明は数十nm〜数十μmの厚さの透過性薄膜の膜厚
分布を広い面積に渡って一度に測定することのできる装
置を提供することを1]的とするものである。
An object of the present invention is to provide an apparatus capable of measuring the thickness distribution of a transparent thin film having a thickness of several tens of nanometers to several tens of micrometers over a wide area at once.

(課題を解決するための手段) 本発明は、検出器として一次元又は二次元のアレイ型検
出器をもつ分光器と、白色光源と、薄膜試料の広範囲領
域に前記白色光源からの光を入射させ、前記薄膜試料の
広範囲領域からの反射光を前記分光器に導く光学系と、
前記分光器の検出信号をフーリエ変換するフーリエ変換
手段とを備えた膜厚検査装置である。
(Means for Solving the Problems) The present invention includes a spectroscope having a one-dimensional or two-dimensional array type detector as a detector, a white light source, and light from the white light source incident on a wide area of a thin film sample. an optical system that guides reflected light from a wide range of the thin film sample to the spectrometer;
The present invention is a film thickness inspection device including a Fourier transform means for Fourier transforming a detection signal of the spectrometer.

(作用) 一度に測定される広い面積内に膜厚の異なる部分が存在
しているものとする。それらの異なる膜厚部分からの干
渉反射光スペクトルはそれぞれ第4図にa −dで示さ
れるようになる。分光器の検出器で測定されるスペクト
ルは第4図にeで示されるように、膜厚の異なる部分か
らのそれぞれのスペクトルa −dを合成したスペクト
ルミなる。
(Operation) It is assumed that parts with different film thicknesses exist within a wide area that is measured at one time. The interference reflected light spectra from these different film thickness portions are shown as a to d in FIG. 4, respectively. The spectrum measured by the detector of the spectrometer is a spectrum obtained by combining the respective spectra a to d from portions with different film thicknesses, as shown by e in FIG.

この合成されたスペクトルeをフーリエ変換することに
よりそれぞれのスペクトルa−dの分布、すなわち膜厚
の分布が求められる。
By Fourier transforming this synthesized spectrum e, the distribution of the respective spectra a to d, that is, the distribution of the film thickness is determined.

第4図にa −dで示されるそれぞれの反射率スベク1
−ルr t (k )をフーリエ変換し、周波数表現に
直した関数R・(ω)は R・(ω)= f r・(k)cxp(−j (,1k
) d kL         −ω ξ となり、これは膜厚dLに対応した周波数に鋭いピーク
をもつスペク1〜ルとなる。
The respective reflectance svec 1 shown as a - d in Fig. 4
The function R・(ω) obtained by Fourier transforming and converting r t (k) into frequency expression is R・(ω)=f r・(k)cxp(−j (,1k
) d kL −ω ξ, which becomes a spectrum 1~ having a sharp peak at a frequency corresponding to the film thickness dL.

異なる膜厚の部分からの反射光か合成された反射率スペ
クトルミ〜 ル(k)=ΣrL(k) =年[(A、−B +Ccos(4gndHk))/ 
(A十B +Ccos(41nd4 k ))]となる
。これをフーリエ変換したスペク1〜ルはa−3= 〜dのそれぞれに分離でき、 R−(ω)= f″r” (k)exp(−j ωk)
 d k−閃 L となって、第5図に示されるように、それぞれの膜厚d
jの分布に対応するスペクトルミ得られる。
The reflectance spectrum that is synthesized from the reflected light from parts with different film thicknesses (k) = ΣrL (k) = year [(A, -B +Ccos (4gndHk)) /
(A+B+Ccos(41nd4k))]. Spectra 1 to 1 obtained by Fourier transforming this can be separated into each of a-3= to d, R-(ω)= f″r” (k)exp(-j ωk)
dk-flash L, and as shown in Figure 5, each film thickness d
A spectrum corresponding to the distribution of j is obtained.

このようにして得られる膜厚分布に対応するスペクトル
が目的の膜厚及びその公差に対応する周波数範囲に入っ
ているか否かを判断することにより、その薄膜製品の膜
厚分布が合格範囲に入っているか否かを判定することが
できる。この判定は自動的に行なってもよく、マニュア
ルで行なってもよい。
By determining whether the spectrum corresponding to the film thickness distribution obtained in this way falls within the frequency range corresponding to the target film thickness and its tolerance, the film thickness distribution of the thin film product falls within the acceptable range. It can be determined whether the This determination may be made automatically or manually.

(実施例) 第1図は一実施例の光源、分光器及び光学系を示す。(Example) FIG. 1 shows the light source, spectrometer, and optical system of one embodiment.

1は薄膜試料、3は白色光源であり、白色光源3からの
光はビンホールスリッ1へ4を経てビームスプリッタ5
で反射され、レンズ6によって平行光束に直されて試料
1に垂直入射する。試料」からの反射光はレンズ6、ト
ロイダルレンズ7によってスリット8上に集光される。
1 is a thin film sample, 3 is a white light source, and the light from the white light source 3 is sent to the binhole slit 1 via 4 and then to the beam splitter 5.
The light is reflected by the lens 6 and is converted into a parallel beam of light, which is perpendicularly incident on the sample 1. The reflected light from the sample is focused onto a slit 8 by a lens 6 and a toroidal lens 7.

トロイダルレンズ7は紙面内で集光し、紙面垂直方向で
は集光しないように配置されている。スリット8には図
で紙面垂直方向に延びる穴が開けられている。
The toroidal lens 7 is arranged so as to condense light within the plane of the paper and not in the direction perpendicular to the plane of the paper. The slit 8 has a hole extending in the direction perpendicular to the paper plane in the figure.

平面グレーティング9で分光された光はトロイダルレン
ズ1oを経て二次元アレイ型検出器11により検出され
る。トロイダルレンズ10も紙面内で集光し、紙面垂直
方向では集光しないように配置されている。
The light separated by the plane grating 9 passes through the toroidal lens 1o and is detected by the two-dimensional array type detector 11. The toroidal lens 10 is also arranged so as to condense light within the plane of the paper, but not in the direction perpendicular to the plane of the paper.

スリット8、グレーティング9、トロイダルレンズ10
及びアレイ型検出器11は分光器を構成している。
8 slits, 9 gratings, 10 toroidal lenses
and the array type detector 11 constitute a spectrometer.

一方、白色光源3の白色光分布を検出し、測定データを
補正するためにモニタ用分光器が設けられている。モニ
タ用分光器はピンホールスリット12、平面グレーティ
ング13、レンズ14及び−次元アレイ型検出器15を
備えている。
On the other hand, a monitoring spectrometer is provided to detect the white light distribution of the white light source 3 and correct the measured data. The monitoring spectrometer is equipped with a pinhole slit 12, a plane grating 13, a lens 14, and a -dimensional array type detector 15.

第1図において、薄膜試料1上のあるY位置におけるX
方向の細長い面積部分、例えば第6図に示されるA部分
、からの反射光スペクト1ルは、二次元アレイ型検出器
]1上の特定のy位置、例えば第7図に示されるA′部
分により得られる。第7図でX方「l′1目ま波長又は
波数を表わしており、第6図のA部分の各部からの反射
光スペクI−ルが合成されたスペクトルとして検出され
る。したかって、これをフーリエ変換すれば試料1のA
部分の膜厚分布が得られる。
In FIG. 1, X at a certain Y position on thin film sample 1
The reflected light spectrum 1 from a slender area section in the direction, e.g., section A shown in FIG. It is obtained by In Fig. 7, the X direction "l'1" represents the wavelength or wavenumber, and the reflected light spectra from each part of A part in Fig. 6 are detected as a combined spectrum. If you Fourier transform A of sample 1,
The film thickness distribution of the part can be obtained.

試料1の他の部分、例えばB部分についても同様にして
、それと対応するアレイ型検出器]−1上のB′部分の
スベク)−ルをフーリエ変換することによりそのB部分
の膜厚分布を得ることができる。
In the same manner for other parts of sample 1, for example, part B, the film thickness distribution of part B is obtained by Fourier-transforming the curve of part B' on the corresponding array type detector]-1. Obtainable.

第8図には一実施例の信号処理系を示す。FIG. 8 shows a signal processing system of one embodiment.

測定光を検出するアレイ型検出器11の検出信号は増幅
器20によって増幅され、ハ/D変換器21でデジタル
信号に変換された後、DMA (ダイレフI−・メモリ
・アクセス)転送モジュール22によってメモリ部23
に記憶されていく。一方、白色光源3の分布を検出する
参照用アレイ型検出器1−5の検出信号も同様にして、
増幅器24によって増幅され、A、 / D変換器25
てデジタル信号に変換された後、DMA転送モジュール
26によってメモリ部27に記憶される。
The detection signal of the array type detector 11 that detects the measurement light is amplified by the amplifier 20, converted to a digital signal by the H/D converter 21, and then transferred to the memory by the DMA (die reflex I-memory access) transfer module 22. Part 23
will be remembered. On the other hand, the detection signal of the reference array type detector 1-5 for detecting the distribution of the white light source 3 is also
Amplified by amplifier 24 and A/D converter 25
After being converted into a digital signal, it is stored in the memory section 27 by the DMA transfer module 26.

メモリ部23の測定データとメモリ部27の参照データ
はCPU28に取り込まれ、白色光分布の補正がなされ
た後、フーリエ変換処理が施されて膜厚分布が求められ
る。
The measurement data in the memory section 23 and the reference data in the memory section 27 are taken into the CPU 28, and after the white light distribution is corrected, a Fourier transform process is performed to determine the film thickness distribution.

さらに、その膜厚分布からその薄膜が合格品であるか否
かが判断される。
Furthermore, it is determined from the film thickness distribution whether the thin film is an acceptable product or not.

29は操作を行なったり、膜厚分布の判定基準となるデ
ータを入力したりするキーボード、3゜は測定結果や判
定結果を表示するCRTである。
Reference numeral 29 is a keyboard for performing operations and inputting data serving as a criterion for determining film thickness distribution, and 3° is a CRT for displaying measurement results and judgment results.

CPU28は、第9図に示されるような機能を果たす。The CPU 28 performs the functions shown in FIG.

3】はメモリ部23からの測定データとメモリ部27か
らの参照データを取り込むデータ取得手段、32は光源
3の白色光分布により測定データを補正する補正手段、
33はフーリエ変換を行なうフーリエ変換手段、34は
得られた膜厚分布がら合否を判定する判定手段である。
3] is a data acquisition means that takes in the measurement data from the memory section 23 and the reference data from the memory section 27; 32 is a correction means that corrects the measurement data based on the white light distribution of the light source 3;
33 is a Fourier transform means for performing Fourier transform, and 34 is a determining means for determining pass/fail based on the obtained film thickness distribution.

このCPU28の動作を第1−0図に示す。The operation of this CPU 28 is shown in FIG. 1-0.

測定データと参照データを取り込み(ステップSL、S
2)、補正を行ない(ステップS3)、フーリエ変換を
行ない(ステップS4)、判定を行ない(ステップS5
)、表示を行なう(ステップ86)。次に、データを取
り込む位置をアレイ型検出器]]のy方向に移動させ(
ステップS7゜S8)、同様に処理していく(第10図
経路Δ)。
Import measurement data and reference data (steps SL, S
2), performs correction (step S3), performs Fourier transformation (step S4), and performs judgment (step S5).
) and display (step 86). Next, move the data acquisition position in the y direction of the array type detector] (
Steps S7 to S8), and the same processing is carried out (route Δ in FIG. 10).

また、データの取込みを全点について行なった後に、補
正、フーリエ変換、判定及び表示を順次行なうように処
理してもよい(第10図経路B)、。
Alternatively, after data has been taken in for all points, correction, Fourier transformation, determination, and display may be performed in sequence (route B in FIG. 10).

実施例ではフーリエ変換処理をCP U 28で行なう
ようにしているか、フーリエ変換モジュールをCP U
 28に接続するようにしてもよい。
In the embodiment, the Fourier transform processing is performed by the CPU 28, or the Fourier transform module is
It may also be connected to 28.

また、アレイ型検出器]」として二次元アレイ型検7J
j器を使用しているか、−次元アレイ型検出器を使用す
ることもてきる。その場合は、薄膜試料コ−を図のY方
向に移動させることにより、薄11A試料1のY方向の
膜厚分布を順次測定することができる。そのような使い
方は、例えはフィルム−■―に形成された膜厚又は薄膜
フィルムそのものの膜厚分布を測定するのに好都合であ
る。
In addition, as a two-dimensional array type detector 7J
It is also possible to use a J detector or a -dimensional array type detector. In that case, the film thickness distribution of the thin 11A sample 1 in the Y direction can be sequentially measured by moving the thin film sample bar in the Y direction in the figure. Such usage is convenient for measuring, for example, the thickness of a film formed on a film or the thickness distribution of a thin film itself.

また、第1図の実施例では1へロイダルレンズ7゜10
を用いて薄膜試料]の一方向(図ではX方向)の領域内
の膜厚分布を同時にイ1す定するようにしているが、1
〜ロイダルレンズ7、]0を省略することによって薄膜
試料1の二次元方向の広い面積の膜厚分布を同時に測定
することができる。
In addition, in the embodiment shown in FIG.
The film thickness distribution in one direction (the X direction in the figure) of the thin film sample is determined simultaneously using
By omitting the ~roidal lens 7, ]0, the film thickness distribution over a wide two-dimensional area of the thin film sample 1 can be measured simultaneously.

(発明の効果) 本発明では薄膜試料の広範囲の領域からの反射光を分光
してアレイ型検出器で検出することにより、広範囲の膜
厚分布を同時に検出するようにしたので、広い面積の膜
厚分布を短時間に測定できる。
(Effects of the Invention) In the present invention, by spectrally reflecting light from a wide area of a thin film sample and detecting it with an array type detector, a wide range of film thickness distribution can be simultaneously detected. Thickness distribution can be measured in a short time.

従来のように微小面積の多数の部位を測定するのに比へ
ると可動部分か少なく、その点ても測定が容易で、短時
間に行なうことかできる。
There are fewer moving parts than in the conventional method, which measures a large number of small areas, making the measurement easy and can be carried out in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−図は一実施例の主として光学系を示す構成図、第
2図は干渉反射光を示す図、第3U;iJは単一膜厚の
干渉反射光スペタI−ルに示ず波形図、第4図は異なる
膜厚の干渉反射光スペク1−ルと合成された干渉反射光
スペク1−ルを示す波形図、第5図はフーリエ変換によ
り得られる膜厚分布を示す波形図、第6図は一実施例に
おける薄膜試料上の測定領域を示す平面図、第7図は二
次元アレイ型検出器上の対応する検出領域を示す平面図
、第8図は一実施例における信号処理系を示すブロック
図、第9図は一実施例におけるCPUの機能を示すブロ
ック図、第10図は一実施例におけるCPUの動作を示
すフローチャート図である。 1・・薄膜試料、2・・・入射光、3 ・・白色光源、
4・・・・・ビンホールスリッi〜、5・・・ビームス
プリッタ、6・・ レンズ、7,10・ 1−ロイダル
レンズ、8 ・・スリット、9・・・・平面グレーティ
ング、1o・・・・二次元アレイ型検出器。 特許出願人 株式会社島津製作所
Figure 1 is a configuration diagram mainly showing the optical system of one embodiment, Figure 2 is a diagram showing interference reflected light, and Figure 3U; iJ is a waveform diagram not shown in the interference reflected light spectrum of a single film thickness. , Fig. 4 is a waveform diagram showing the interference reflected light spectra 1- of different film thicknesses and the combined interference reflected light spectrum 1-. Fig. 5 is a waveform diagram showing the film thickness distribution obtained by Fourier transform. Fig. 6 is a plan view showing a measurement area on a thin film sample in one embodiment, Fig. 7 is a plan view showing a corresponding detection area on a two-dimensional array type detector, and Fig. 8 is a signal processing system in one embodiment. FIG. 9 is a block diagram showing the functions of the CPU in one embodiment, and FIG. 10 is a flowchart showing the operation of the CPU in one embodiment. 1... Thin film sample, 2... Incident light, 3... White light source,
4... Binhole slit i~, 5... Beam splitter, 6... Lens, 7, 10, 1-roidal lens, 8... Slit, 9... Plane grating, 1o... Two-dimensional array type detector. Patent applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)検出器として一次元又は二次元のアレイ型検出器
をもつ分光器と、白色光源と、薄膜試料の広範囲領域に
前記白色光源からの光を入射させ、前記薄膜試料の広範
囲領域からの反射光を前記分光器に導く光学系と、前記
分光器の検出信号をフーリエ変換するフーリエ変換手段
とを備えた膜厚検査装置。
(1) A spectrometer having a one-dimensional or two-dimensional array type detector as a detector, a white light source, and light from the white light source incident on a wide area of the thin film sample, A film thickness inspection device comprising: an optical system that guides reflected light to the spectrometer; and a Fourier transform means that performs Fourier transform on a detection signal from the spectrometer.
JP13633088A 1988-05-31 1988-05-31 Film thickness inspecting device Pending JPH01304304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13633088A JPH01304304A (en) 1988-05-31 1988-05-31 Film thickness inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13633088A JPH01304304A (en) 1988-05-31 1988-05-31 Film thickness inspecting device

Publications (1)

Publication Number Publication Date
JPH01304304A true JPH01304304A (en) 1989-12-07

Family

ID=15172701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13633088A Pending JPH01304304A (en) 1988-05-31 1988-05-31 Film thickness inspecting device

Country Status (1)

Country Link
JP (1) JPH01304304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110054A1 (en) * 1998-08-27 2001-06-27 Tevet Process Control Technologies Ltd. Methods and apparatus for measuring the thickness of a film, particularly of a photoresist film on a semiconductor substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1110054A1 (en) * 1998-08-27 2001-06-27 Tevet Process Control Technologies Ltd. Methods and apparatus for measuring the thickness of a film, particularly of a photoresist film on a semiconductor substrate
EP1110054A4 (en) * 1998-08-27 2001-10-31 Tevet Process Control Technolo Methods and apparatus for measuring the thickness of a film, particularly of a photoresist film on a semiconductor substrate
US6801321B1 (en) 1998-08-27 2004-10-05 Tevet Process Control Technologies Ltd. Method and apparatus for measuring lateral variations in thickness or refractive index of a transparent film on a substrate

Similar Documents

Publication Publication Date Title
US7495762B2 (en) High-density channels detecting device
US7277172B2 (en) Measuring overlay and profile asymmetry using symmetric and anti-symmetric scatterometry signals
JP3122892B2 (en) Equipment for performing spectroscopic measurements
JPS6049847B2 (en) Method and spectrometer for measuring light intensity
US20210010928A1 (en) Instantaneous ellipsometer or scatterometer and associated measuring method
US11906281B2 (en) Device and method for measuring thickness and refractive index of multilayer thin film by using angle-resolved spectral reflectometry
US11264256B2 (en) Wafer inspection apparatus
CN104677299A (en) Film detection device and method
WO2006134840A1 (en) Optical characteristic measuring device and optical characteristic measuring method
JP3426552B2 (en) Shape measuring device
US6801309B1 (en) Detector array with scattered light correction
CN105143814B (en) optical phase measurement method and system
CN111750799B (en) Interference illumination-based five-dimensional information measuring device and method for spectrum polarization morphology
JP2002005823A (en) Thin-film measuring apparatus
US9194798B2 (en) Imaging based refractometer for hyperspectral refractive index detection
US20230035404A1 (en) Combined ocd and photoreflectance method and system
JPH03225259A (en) Method for measuring refractive index distribution and transmitted wave front and measuring instrument used for the method
JPH01304304A (en) Film thickness inspecting device
CN113390507B (en) Spectrum information acquisition method and spectrum detection device
JP2003139512A (en) Thickness and moisture measuring method and thickness and moisture measuring device
JP2000002514A (en) Film thickness measuring apparatus, alignment sensor and alignment apparatus
CN107449740A (en) A kind of device and method for being used to measure the diffraction structure of sample
JPS6271804A (en) Film thickness measuring instrument
JP2728773B2 (en) Apparatus and method for evaluating thickness of semiconductor multilayer thin film
WO1996000887A1 (en) An improved optical sensor and method