JPH01299607A - Inorganic porous membrane - Google Patents

Inorganic porous membrane

Info

Publication number
JPH01299607A
JPH01299607A JP13082788A JP13082788A JPH01299607A JP H01299607 A JPH01299607 A JP H01299607A JP 13082788 A JP13082788 A JP 13082788A JP 13082788 A JP13082788 A JP 13082788A JP H01299607 A JPH01299607 A JP H01299607A
Authority
JP
Japan
Prior art keywords
thin film
porous
support
pore diameter
average pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13082788A
Other languages
Japanese (ja)
Other versions
JPH0457373B2 (en
Inventor
Fumio Abe
文夫 安部
Hiroshi Mori
博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP13082788A priority Critical patent/JPH01299607A/en
Priority to US07/357,268 priority patent/US4929406A/en
Priority to DE68928924T priority patent/DE68928924T2/en
Priority to EP89305361A priority patent/EP0344011A1/en
Priority to EP95115691A priority patent/EP0692303B1/en
Publication of JPH01299607A publication Critical patent/JPH01299607A/en
Priority to US07/452,241 priority patent/US4971696A/en
Publication of JPH0457373B2 publication Critical patent/JPH0457373B2/ja
Priority to JP5272111A priority patent/JPH06198148A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an inorganic porous membrane having a laminated structure from generation of pin holes and cracks and to improve the filtration efficiency of the membrane by regulating the maximum pore size of the porous base body of th inorganic porous membrane basing on the average pore size of porous thin film formed on the surface of the porous base body. CONSTITUTION:A porous thin film consisting of the same material as a base body and having a smaller average pore size than the average pore size of the base body is formed on one side surface of one or plural layer of the porous base body (consisting of alumina, zirconia, etc.) in an inorganic porous membrane to be used for filtration, gas separation, etc. In this case, the maximum pore size of the layer to which the porous thin film thicks is regulated to 1-250 times of the average pore size. Thus, particles of sol penetrate easily into the base body and generation of pin holes and cracks are inhibited, so the filtration efficiency and separation precision are improved extremely.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は濾過、ガス分離等に使用される無機多孔質膜に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an inorganic porous membrane used for filtration, gas separation, etc.

(従来技術) 無機多孔質膜の一種類として、1または複数層の多孔質
支持体の一側面に、同支持体の平均細孔径より小さい平
均細孔径を有する多孔質薄膜を一体的に備えてなる複層
構造の無機多孔質膜がある。
(Prior art) As a type of inorganic porous membrane, a porous thin film having an average pore diameter smaller than the average pore diameter of the support is integrally provided on one side of one or more layers of porous support. There is an inorganic porous membrane with a multilayer structure.

この種の多孔質膜は用途によって耐熱性、耐食性に優れ
ていることが要求されるが、特に高い濾過精度、分離精
度を要求される場合がある。この場合、濾過膜、分離膜
として機能する多孔質薄膜を所定の平均細孔径に形成し
ても同薄膜にピンホール、クラック等が存在すると濾過
精度、分離精度を著しく低下させることになるため、同
薄膜にピンホール、クラック等が存在しないように注意
することが必要である。
This type of porous membrane is required to have excellent heat resistance and corrosion resistance depending on its use, and particularly high filtration accuracy and separation accuracy may be required in some cases. In this case, even if a porous thin film that functions as a filtration membrane or separation membrane is formed to have a predetermined average pore diameter, the presence of pinholes, cracks, etc. in the thin film will significantly reduce the filtration accuracy and separation accuracy. Care must be taken to ensure that there are no pinholes, cracks, etc. in the thin film.

ところで、上記した複層構造の無機多孔質膜に関する発
明等は多数開示されており、かかる発明が開示された刊
行物の一例として特開昭60−156510号公報、特
開昭52−94512号公報を挙げることができる。
By the way, many inventions related to the above-mentioned multilayer structure inorganic porous membrane have been disclosed, and examples of publications disclosing such inventions include JP-A-60-156510 and JP-A-52-94512. can be mentioned.

特開昭60−156510号公報にはクラックの生じな
い無機半透過膜の製法、具体的には焼結した無機酸化物
からなる多孔質支持体に無機膜形成コーティング材料の
懸濁液をコーティングして加熱することからなる製法が
開示されている。また、かかる製法において、多孔質支
持体の適確性は同支持体が有する孔寸法(平均細孔径)
により定まり、孔寸法が大きいと懸濁液中のゾル粒子が
同支持体内に侵入して膜を形成し得ないこと、好ましい
孔寸法として代表径0.1〜0.5μmを挙げている。
JP-A-60-156510 discloses a method for producing an inorganic semi-permeable membrane that does not cause cracks, specifically, a porous support made of a sintered inorganic oxide is coated with a suspension of an inorganic membrane-forming coating material. A manufacturing method is disclosed which consists of heating at In addition, in this manufacturing method, the suitability of the porous support is determined by the pore size (average pore diameter) of the support.
If the pore size is large, the sol particles in the suspension will not be able to penetrate into the support and form a film, and a typical diameter of 0.1 to 0.5 μm is cited as a preferable pore size.

さらにまた、かかる製法においてはクラックの発生を抑
制するなめ、コーテイング膜の乾燥に長時間乾燥、複雑
な超臨界乾燥等を採用し、かつ焼成時微速な昇温手段を
採用している。かかる製法により、多孔質支持体上にγ
−アルミナからなる多孔質薄膜が被覆された限外濾過膜
を得ている。
Furthermore, in this manufacturing method, in order to suppress the occurrence of cracks, long-time drying, complicated supercritical drying, etc. are used for drying the coating film, and a means for raising the temperature at a slow rate during firing is used. By this production method, γ is deposited on a porous support.
- An ultrafiltration membrane coated with a porous thin film of alumina is obtained.

一方、特開昭52−94572号公報には複層構造の無
機多孔質膜において、多孔質支持体の平均細孔径は多孔
質薄膜の平均細孔径のlθ〜200.000倍、好まし
くは200〜20,000倍である旨開示されている。
On the other hand, JP-A-52-94572 discloses that in an inorganic porous membrane having a multilayer structure, the average pore diameter of the porous support is lθ to 200.000 times, preferably 200 to 200.000 times, the average pore diameter of the porous thin film. It is disclosed that it is 20,000 times larger.

(発明が解決しようとする課題) ところで、複層構造の無機多孔質膜における多孔質薄膜
のピンホール、クラックは同薄膜の形成時に発生する。
(Problems to be Solved by the Invention) By the way, pinholes and cracks in a porous thin film in an inorganic porous film having a multilayer structure occur during the formation of the thin film.

一般に、多孔質薄膜は微小粒子のゾル液を多孔質支持体
の一側に担持させ乾燥、焼成することにより形成される
。この場合、担持されたゾル液は多孔質支持体の細孔径
内に侵入するとともに、その表面にて濃縮現象が生じて
薄膜となるが、ゾル液中の粒子が局部的に支持体内に吸
込まれるとピンホールが発生し、また薄膜が局部的に厚
くなるとその後の乾燥、焼成時の熱収縮によりクラック
が発生する。本発明者は、特に多孔質支持体における最
大気孔径の細孔部分ではゾル液中の粒子が侵入し易いた
め、ピンホール、クラックが発生し易いとの知見を得て
いる。
Generally, a porous thin film is formed by supporting a sol solution of microparticles on one side of a porous support, drying, and baking. In this case, the supported sol liquid enters the pore size of the porous support, and a concentration phenomenon occurs on the surface to form a thin film, but the particles in the sol liquid are locally sucked into the support. If the thin film is thickened locally, cracks will occur due to thermal shrinkage during drying and firing. The present inventor has obtained the knowledge that particles in the sol liquid tend to penetrate particularly into the pore portions of the porous support having the maximum pore diameter, so that pinholes and cracks are likely to occur.

従って、多孔質薄膜の形成時にピンホール、クラックの
発生を防止するには、多孔質支持体の最大気孔径を薄膜
との関係で規定することが必要である。しかしながら、
従来技術においては、上記したごとく支持体単独、また
は支持体および薄膜の平均細孔径に着目された例はある
が、支持体の最大気孔径について着目された例はなく、
薄膜にはピンホール、クラックが不可避的に存在してい
る。薄膜にピンホール、クラックが存在している場合に
は濾過精度、分離精度が低いことは勿論であるが、多孔
質膜の酸、アルカリ洗浄、スチーム殺菌時等に薄膜が支
持体から剥離するおそれがある。
Therefore, in order to prevent pinholes and cracks from occurring during the formation of a porous thin film, it is necessary to define the maximum pore diameter of the porous support in relation to the thin film. however,
In the prior art, as mentioned above, there are examples in which attention has been focused on the average pore diameter of the support alone or the support and a thin film, but there is no example that has focused on the maximum pore diameter of the support.
Pinholes and cracks inevitably exist in thin films. If there are pinholes or cracks in the thin film, it goes without saying that the filtration accuracy and separation accuracy will be low, but there is also a risk that the thin film will peel off from the support during acid or alkali cleaning or steam sterilization of the porous membrane. There is.

従って、本発明の目的は、多孔質支持体の最大気孔径を
規定することにより多孔質薄膜でのピンホール、クラッ
クの発生を防止し、多孔質膜の濾過精度、分離精度を著
しく向上させることにある。
Therefore, an object of the present invention is to prevent the occurrence of pinholes and cracks in a porous thin membrane by regulating the maximum pore diameter of the porous support, and to significantly improve the filtration accuracy and separation accuracy of the porous membrane. It is in.

(課題を解決するための手段) 本発明は、lまたは複数層の多孔質支持体の一側面に、
同支持体の平均細孔径より小さい平均細孔径を有する多
孔質薄膜を備えてなる無機多孔質膜において、前記多孔
質薄膜が付着する層の最大気孔径が同薄膜の平均細孔径
の1〜250倍であることを特徴とするものである。
(Means for Solving the Problems) The present invention provides that on one side of one or more layers of porous support,
In an inorganic porous membrane comprising a porous thin film having an average pore diameter smaller than the average pore diameter of the support, the maximum pore diameter of the layer to which the porous thin film is attached is 1 to 250% of the average pore diameter of the thin film. It is characterized by being twice as large.

本発明において、多孔質支持体は無機質粒子例えばアル
ミナ、ジルコニア、チタニア等のセラミック、ホウケイ
酸ガラス等のガラス、ニッケル等の金属、炭素の焼結体
からなるパイプ状、平板状、ハニカム状等のもので、単
層、2層以上の複層構造のいずれであってもよい、支持
体が複層構造の場合には、多孔質薄膜の付着側に平均細
孔径が漸次小さくなるよう配列する。薄膜は支持体と同
様の材料からなるもので、例えば親水性であるアルミナ
、チタニア等からなる。
In the present invention, the porous support is made of inorganic particles such as ceramics such as alumina, zirconia, and titania, glasses such as borosilicate glass, metals such as nickel, and sintered bodies of carbon in the shape of a pipe, plate, honeycomb, etc. The support may have either a single layer structure or a multilayer structure of two or more layers. When the support has a multilayer structure, the pores are arranged so that the average pore diameter becomes gradually smaller on the adhesion side of the porous thin film. The thin film is made of the same material as the support, such as hydrophilic alumina or titania.

(発明の作用・効果) 本発明者の知見によれば、複層構造の無機多孔質膜にお
いては多孔質支持体の最大気孔径が多孔質薄膜の平均細
孔径の1〜250倍の場合、薄膜にピンホール、クラッ
クが発生しないことを確認している。かかる多孔質膜に
おいて、薄膜の平均細孔径は用途に基づいて設定される
とともに使用する原料の粒径、膜成形法により調節する
ことができる。このため、予じめ設定された薄膜の平均
細孔径の1〜250倍の最大気孔径を有する多孔質支持
体を選定し、同支持体の一側面に上記薄膜を形成すれば
同薄膜は実質的にピンホール、クラックが存在しないも
のとなる。従って、かがる多孔質膜は設定された極めて
高い濾過精度、分離精度を備え、ピンホール、クラック
等の影響を受けることがない。
(Operations and Effects of the Invention) According to the findings of the present inventors, in an inorganic porous membrane with a multilayer structure, when the maximum pore diameter of the porous support is 1 to 250 times the average pore diameter of the porous thin film, We have confirmed that there are no pinholes or cracks in the thin film. In such a porous membrane, the average pore diameter of the thin membrane is set based on the intended use and can be adjusted by the particle size of the raw materials used and the membrane forming method. For this reason, if a porous support having a maximum pore diameter of 1 to 250 times the preset average pore diameter of the thin film is selected and the thin film is formed on one side of the support, the thin film will be substantially There will be no pinholes or cracks. Therefore, the porous membrane has extremely high filtration accuracy and separation accuracy, and is not affected by pinholes, cracks, etc.

しかして、多孔質支持体に関しては平均細孔径Davの
多孔質体の単層構造のもの、同多孔質体の一側面にこれ
より小さい平均細孔径D’avの多孔質体を付着した複
N構造のものであり、複層構造の場合各層は互いに同じ
組成で熱膨張が同一または近似“することが好ましい、
多孔質支持体の平均細孔径Dav、D’avは多孔質薄
膜の平均細孔径dayより大きいものであるが、薄膜の
平均細孔径davにより好ましい範囲が異なる。例えば
、限外濾過やガス分離等に用いる多孔質膜における薄膜
のdayは0.1μm以下であることが必要であり、こ
の場合の単層構造の支持体のDayは0.05μm〜3
μmであることが好ましく、複層構造の支持体のDav
は0.1 μm 〜30μm、D’avは1.un以下
であることが好ましい、また、精密濾過に用いる多孔質
膜における薄膜のdavは0.1μm〜10μmである
が、この場合の単層構造の支持体のDavは0.5μm
〜30μmであることが好ましく、複層構造の支持体の
Davは3 Aim 〜30μm 、 D’avは0.
5 μm 〜10.czmであることが好ましい。支持
体のDay、D’avにおける下限値は流体の拡散抵抗
を無視できる限界から、またそれらの上限値は支持体の
強度、薄膜の製膜性等から決定される。なお、複層構造
の支持体は単層構造の支持体に比較して薄膜の厚みを薄
くでき、流体の拡散抵抗を小さくできる利点がある。
As for the porous support, there are single-layer structures made of a porous material with an average pore diameter Dav, and double-layer structures with a porous material having a smaller average pore diameter D'av attached to one side of the same porous material. In the case of a multilayer structure, it is preferable that each layer has the same composition and thermal expansion that is the same or similar.
The average pore diameters Dav and D'av of the porous support are larger than the average pore diameter day of the porous thin film, but the preferred range differs depending on the average pore diameter dav of the thin film. For example, the day of a thin film in a porous membrane used for ultrafiltration, gas separation, etc. must be 0.1 μm or less, and in this case, the day of a support with a single layer structure is 0.05 μm to 3
Dav of the multilayer structure support is preferably μm.
is 0.1 μm to 30 μm, and D'av is 1. In addition, the DAV of the thin film in the porous membrane used for precision filtration is preferably 0.1 μm to 10 μm, but in this case, the DAV of the single-layer structure support is 0.5 μm.
It is preferable that it is ~30 μm, and the Dav of the multilayer structure support is 3 Aim ~30 μm, and the D'av is 0.
5 μm ~10. Preferably, it is czm. The lower limit values for Day and D'av of the support are determined from the limit where the diffusion resistance of the fluid can be ignored, and their upper limits are determined from the strength of the support, the film formability of the thin film, etc. Note that, compared to a support having a single layer structure, a support having a multilayer structure has the advantage that the thickness of the thin film can be made thinner, and the diffusion resistance of the fluid can be reduced.

多孔質支持体の細孔率(気孔率)は25VO1%〜45
 vo1%であることが好ましく 、25 vo1%未
満の場合には多孔質薄膜の密着性が問題となり、かつ4
5vo1%を超えると支持体としての強度が問題となる
。また、支持体の膜厚は強度上9.5mm〜2mm程度
が好ましく、かつ複層構造における中間層の膜厚は拡散
抵抗上10μm〜150μm程度が好ましい。かかる支
持体は圧縮成形、鋳込成形、押出成形等公知の方法で成
形されたパイプ状、平板状、ハニカム状成形体を焼成し
て形成される。
The porosity (porosity) of the porous support is 25VO1% to 45
It is preferable that the amount of vol.
If it exceeds 5vol%, the strength as a support becomes a problem. Further, the thickness of the support is preferably about 9.5 mm to 2 mm in terms of strength, and the thickness of the intermediate layer in a multilayer structure is preferably about 10 μm to 150 μm in terms of diffusion resistance. Such a support body is formed by firing a pipe-shaped, flat plate-shaped, or honeycomb-shaped molded body formed by a known method such as compression molding, casting molding, or extrusion molding.

多孔質支持体の最大気孔径に関しては、同支持体の最大
気孔径Dmax、D’max(Dmax−−・単層構造
、D’1lllLX ・・・複層構造の中間M)が多孔
質薄膜の平均細孔径の1〜250倍であり、この範囲は
薄膜にピンホール、クラックを発生させない条件である
。但し、複層構造の支持体においてはDmax≧D’m
axの関係にある。なお、本発明において最大気孔径は
後述する公知のバブルポイント法により測定している。
Regarding the maximum pore diameter of the porous support, the maximum pore diameter Dmax, D'max (Dmax - single layer structure, D'1llllLX...middle M of multilayer structure) of the support is the same as that of the porous thin film. It is 1 to 250 times the average pore diameter, and this range is a condition under which pinholes and cracks do not occur in the thin film. However, in the case of a support with a multilayer structure, Dmax≧D'm
It is in the relationship of ax. In the present invention, the maximum pore diameter is measured by the well-known bubble point method described below.

支持体のDmax、 D’maxと薄膜のdaVとの関
係の好ましい範囲は薄膜のdavの値によって異なる。
The preferred range of the relationship between Dmax and D'max of the support and daV of the thin film varies depending on the value of dav of the thin film.

これらの比Dmax/day、D’max/davは薄
膜のdayが0.1μm未満の場合1〜100.day
が0゜1μm〜10μmの場合1〜25である。これら
の範囲においては、薄膜にピンホール、クラックを生じ
させることなく極めて薄くできて濾過、分離の精度およ
び効率を著しく向上させることができる薄膜davの値
によりDmax/day、 D’max/dayの範囲
が異なるのは、主として同薄膜の調整法の違いによるも
のである。
These ratios Dmax/day and D'max/dav are 1 to 100. day
is 1 to 25 when is 0°1 μm to 10 μm. In these ranges, Dmax/day and D'max/day are determined by the value of the thin film dav, which can be made extremely thin without producing pinholes or cracks, and can significantly improve the accuracy and efficiency of filtration and separation. The difference in range is mainly due to differences in the preparation method for the same thin film.

davの値が0.1μm未満の多孔質薄膜を調製する一
般的な方法としては、粒径0.4μm以下の微小粒子を
含むコロイド水溶液を湿式法にてコーティングするか、
気相法や圧縮成形法等による乾式法にてコーティングす
る方法が採られる。例えば湿式法にてコーティングする
場合、多孔質支持体をコロイド水溶液に浸漬すると同水
溶液は支持体の細孔の毛管吸引力にて支持体表面に引付
けられて濃縮現象が起る。コロイド水溶液中のゾル粒子
は水分濃度のわずかな変化でゲル化して支持体上に均一
に付着される。微小粒径のゾル粒子では侵入可能な細孔
が存在していても均一に製膜が可能である。乾式法で製
膜する場合においても、微小粒子は表面エネルギーが大
きいため支持体上に容易に付着凝集し、同様の効果を示
すものである。
A general method for preparing a porous thin film with a dav value of less than 0.1 μm is to coat a colloidal aqueous solution containing microparticles with a particle size of 0.4 μm or less by a wet method, or
A dry coating method such as a vapor phase method or a compression molding method is used. For example, when coating by a wet method, when a porous support is immersed in an aqueous colloid solution, the aqueous solution is attracted to the surface of the support by the capillary suction force of the pores of the support, causing a concentration phenomenon. Sol particles in a colloidal aqueous solution gel with a slight change in water concentration and are uniformly deposited on a support. With sol particles having a minute particle size, even if there are pores that can be penetrated, uniform film formation is possible. Even in the case of forming a film by a dry method, fine particles easily adhere and aggregate on the support because of their large surface energy, and exhibit the same effect.

これに対して、dayの値が0.1μm〜10μmの場
合には粒径0.4μm以上の比較的粒径が大きくて表面
エネルギーの小さい粒子を使用することから、粒子の支
持体の侵入を出来るかぎり阻止するには、粒子径と支持
体の最大気孔径とを比較的近似した値にする必要がある
On the other hand, when the day value is 0.1 μm to 10 μm, particles with a relatively large particle size of 0.4 μm or more and low surface energy are used, which prevents the particles from penetrating the support. In order to prevent this as much as possible, it is necessary to make the particle size and the maximum pore size of the support relatively similar.

なお、本発明にかかる多孔質膜においては、多孔質支持
体の最大気孔径Dmax、 D’maxと多孔質薄膜と
の膜厚t、支持体の平均細孔径Dav 、 D’avと
薄膜の平均細孔径dayとの関係を規定することが好ま
しい、支持体の最大気孔径と薄膜の膜厚との比Dmax
/l、D’max/lの下限はピンホールの発生を防止
するため、かつその上限はクラックの発生を防止するた
めに有効であって、上記比Dmax/l、D’max/
lは1〜5の範囲にあることが好ましい。薄膜を数回に
分けて担持させる場合には、すでに担持されている薄膜
を中間層としてその最大気孔径を考慮することが好まし
い。また、支持体の平均細孔径と薄膜の平均細孔径との
比Day/day、D’av/davは支持体に対する
薄膜の密着性に関係し、量比は1〜200倍であること
が好ましい、かかる比のさらに好ましい範囲は薄膜のd
avにより異なり、davが0.1 、tzm未溝の場
合1〜50.dayが0.1 μva 〜IQμmの場
合l〜lOであることが好ましい。
In the porous membrane according to the present invention, the maximum pore diameter Dmax of the porous support, D'max and the film thickness t of the porous thin film, the average pore diameter Dav of the support, D'av and the average of the thin film. The ratio Dmax between the maximum pore diameter of the support and the thickness of the thin film, which preferably defines the relationship with the pore diameter day.
The lower limit of /l, D'max/l is effective for preventing the occurrence of pinholes, and the upper limit is effective for preventing the occurrence of cracks, and the above ratios Dmax/l, D'max/
It is preferable that l is in the range of 1 to 5. When supporting the thin film in several parts, it is preferable to consider the maximum pore diameter of the thin film that has already been supported as an intermediate layer. Furthermore, the ratio Day/day and D'av/dav between the average pore diameter of the support and the average pore diameter of the thin film are related to the adhesion of the thin film to the support, and the quantitative ratio is preferably 1 to 200 times. , a more preferable range of such ratio is d of the thin film.
Varies depending on av, dav is 0.1, 1 to 50 if tzm is not grooved. When day is 0.1 μva to IQ μm, it is preferably l to lO.

なお、多孔質薄膜の原料は耐熱性、耐食性に優れた無機
質粒子であって、その比表面積が数m2/g〜数100
m2/gであることが好ましい、また、耐食性の不要な
ガス分離用の膜においてはγ−アルミナも好ましいが、
耐食性が要求されるその他の用途の膜においてはα−ア
ルミナ、チタニア、ジルコニア等が特に好ましい。薄膜
は支持体上に形成された後、焼成等の熱処理に付されて
安定化される。
The raw material for the porous thin film is an inorganic particle with excellent heat resistance and corrosion resistance, and its specific surface area ranges from several m2/g to several 100 m2/g.
m2/g is preferable, and γ-alumina is also preferable for gas separation membranes that do not require corrosion resistance.
For films for other uses where corrosion resistance is required, α-alumina, titania, zirconia, etc. are particularly preferred. After the thin film is formed on the support, it is stabilized by being subjected to heat treatment such as baking.

(実施例) (1)多孔質支持体の調整 各種粒径の電融アルミナに無機バインダー、有機バイン
ダーを添加して混練坏土を調製し、押出成形法にて外径
10mm、内径7mm 、長さ150mn+のバイブを
形成し、これを乾燥後1500℃で3時間焼成した。こ
れにより、粒径の相違に起因する各種の平均細孔径を有
する単層構造の多孔質支持体を得た。これら支持体のい
くつかの内側面にα−アルミナの微粉からなる解膠した
スラリーを塗布し、乾燥後1000〜1300℃で3時
間焼成して複層構造の多孔質体を得た。新たに形成され
た層を中間層といいその膜厚は30μmであり、かつ同
中間層の平均細孔径D’avは微粉の粒度、焼成温度に
て調整した。得られた支持体の特性を第1表に示す。同
表の特性中履大気孔径Dmax、 D’maxの値はバ
ブルポイント法により測定したもの、平均細孔径Dav
、D’av値は水銀圧入法により測定したものである。
(Example) (1) Adjustment of porous support A kneaded clay was prepared by adding an inorganic binder and an organic binder to fused alumina of various particle sizes. A vibrator with a length of 150 m+ was formed, and after drying, it was fired at 1500° C. for 3 hours. As a result, porous supports having a single layer structure having various average pore diameters due to differences in particle diameter were obtained. A peptized slurry of α-alumina fine powder was applied to the inner surfaces of some of these supports, dried, and then fired at 1000 to 1300° C. for 3 hours to obtain a porous body with a multilayer structure. The newly formed layer is called an intermediate layer, and its thickness is 30 μm, and the average pore diameter D'av of the intermediate layer is adjusted by the particle size of the fine powder and the firing temperature. The properties of the obtained support are shown in Table 1. The values of the characteristic medium pore diameter Dmax and D'max in the same table are those measured by the bubble point method, and the average pore diameter Dav
, D'av values were measured by mercury porosimetry.

第1表 (2最大気孔径の測定(バブルポイント法)パイプ状の
各多孔質支持体を予め測定用液体内に1時間以上浸漬し
、その後50torr以下の減圧下で支持体内の気泡を
脱気する。脱気処理された支持体はその筒部両端を密閉
状態にして測定装置の液体槽内に設置し、その後支持体
の内孔内へ空気を徐々に加圧して付与し、気泡が最初に
発生した時点の空気圧P(発泡圧)を読み取る。この発
泡圧Pから最大気孔径を下記の式にて算出する。
Table 1 (2 Measurement of maximum pore diameter (bubble point method)) Each pipe-shaped porous support is immersed in a measurement liquid for at least 1 hour, and then air bubbles in the support are degassed under reduced pressure of 50 torr or less. The degassed support is placed in the liquid tank of the measuring device with both ends of its cylindrical part sealed, and then air is gradually pressurized and applied into the inner hole of the support to remove air bubbles. The air pressure P (foaming pressure) generated at the moment is read.The maximum pore diameter is calculated from this foaming pressure P using the following formula.

なお、一般にθ・0.P>>hSであるため上記式は簡
略化される。測定に使用する液体は最大気孔径が0.4
2μm以上の支持体については水、0.42μm未満の
支持体についてはトリクロロフルオロエタンである。
In general, θ・0. Since P>>hS, the above equation is simplified. The liquid used for measurement has a maximum pore diameter of 0.4
Water is used for supports of 2 μm or more, and trichlorofluoroethane is used for supports of less than 0.42 μm.

(3)多孔質薄膜の調製 薄膜No、1:市販のアルミナゾル(日産化学株式会社
製、商品名アルミナゾル−200)をAl2O,分が5
wt%含むように水で希釈して担持液とし、これを多孔
質支持体の内側面に塗布する。その後室温で1時間次い
で60℃で1時間乾燥した後、100℃/hrの速度で
380°Cまで昇温してこれを3時間保持した。得られ
た薄膜の平均細孔径davは40Aである。
(3) Preparation of porous thin film Thin film No. 1: Commercially available alumina sol (manufactured by Nissan Chemical Co., Ltd., trade name Alumina sol-200) was mixed with Al2O, min.
A supporting solution is prepared by diluting the solution with water to contain % by weight, and this is applied to the inner surface of the porous support. Thereafter, it was dried at room temperature for 1 hour and then at 60°C for 1 hour, and then heated to 380°C at a rate of 100°C/hr and maintained at this temperature for 3 hours. The average pore diameter dav of the obtained thin film is 40A.

薄膜No、2:チタニウムイソプロポキシドをTiO2
分で5wt%含むエタノール水溶液中に水をTiO2モ
ル比の5倍添加し、これを2時間攪拌して担持液として
多孔質支持体の内側面に塗布する。その後の乾燥、熱処
理は薄膜N011と同様であり、day・50Aの薄膜
を得た。
Thin film No. 2: Titanium isopropoxide with TiO2
Water is added to an aqueous solution of ethanol containing 5 wt % of TiO2 by 5 times the molar ratio of TiO2, and the mixture is stirred for 2 hours and coated on the inner surface of the porous support as a carrier solution. The subsequent drying and heat treatment were the same as for thin film No. 011, and a thin film of 50 A day was obtained.

薄膜Noj:平均粒径0.1μmのチタニア微粉を3w
t%含む水溶液に界面活性剤、有機解膠剤を添加し16
時間攪拌して担持液とし、これを支持体の内側面に塗布
する。その後の乾燥、熱処理については、熱処理である
焼成温度を1000℃とした以外は薄膜No、1と同様
であり、day・500Aの薄膜を得た。
Thin film Noj: 3w of titania fine powder with an average particle size of 0.1μm
Adding a surfactant and an organic peptizer to an aqueous solution containing 16%
The mixture is stirred for a period of time to form a carrier solution, which is applied to the inner surface of the support. The subsequent drying and heat treatment were the same as those for thin film No. 1, except that the firing temperature for heat treatment was 1000° C., and a thin film of 500 A day was obtained.

薄膜No’、4:平均粒径065μmのα−アルミナを
用いた以外は薄膜N003と同様の調製法を採用して、
dav=200OAの薄膜を得た。
Thin film No', 4: The same preparation method as thin film No. 003 was adopted, except that α-alumina with an average particle size of 065 μm was used.
A thin film with dav=200OA was obtained.

薄膜No、5:平均粒径3μmのα−アルミナを用いる
とともに焼成温度を1300℃とした以外は薄膜Noj
と同様の調製法を採用して、dav=1μmの薄膜を得
た。
Thin film No. 5: Thin film No. 5 except that α-alumina with an average particle size of 3 μm was used and the firing temperature was 1300°C.
A thin film with dav=1 μm was obtained using the same preparation method.

なお、得られた薄膜の平均細孔径davは水銀圧入法ま
たはガス吸着法により測定した。
The average pore diameter dav of the obtained thin film was measured by mercury intrusion method or gas adsorption method.

(4)多孔質膜の膜性能試験 各種の多孔質支持体の内側面に各種の多孔質薄膜を形成
してなる複層構造の多孔質膜につき、下記の純水透水量
、クロスフロー濾過、耐食性の各試験を行い第2表に示
す結果を得た。
(4) Membrane performance test of porous membranes For porous membranes with a multilayer structure formed by forming various porous thin films on the inner surface of various porous supports, the following pure water permeability, cross flow filtration, Corrosion resistance tests were conducted and the results shown in Table 2 were obtained.

純水透水量試験:蒸留水を0.5〜5kg/cm2の圧
力にて多孔質膜の一方側面から他方側面へ透過させ、単
位膜面積、単位時間、単位圧力光たりの透水量を算出す
る。
Pure water permeability test: Distilled water is permeated from one side of the porous membrane to the other side at a pressure of 0.5 to 5 kg/cm2, and the permeation amount per unit membrane area, unit time, and unit pressure light is calculated. .

クロスフロー濾過試験+ 1100ppのマーカーを含
む水溶液(マーカーが蛋白質である場合は緩衝液)を2
.5m/secの速度、入口圧3 kg/cm2にて多
孔質膜の内孔を循環させるクロスフロー濾過を行い透過
液の分析を行ってマーカーの阻止率を算出する。なお、
マーカーとしては薄膜のdayの値に対応して牛血清ア
ルブミン(平均分子量65.000)、γ−グロブリン
(平均分子量156.000>、ブルーデキストラン(
平均分子量200万)、ユニホームラテックス(粒径1
.1μm)を用いた。
Cross-flow filtration test
.. Cross-flow filtration is performed by circulating the inner pores of the porous membrane at a speed of 5 m/sec and an inlet pressure of 3 kg/cm2, and the permeate is analyzed to calculate the rejection rate of the marker. In addition,
As markers, bovine serum albumin (average molecular weight 65.000), γ-globulin (average molecular weight 156.000>), blue dextran (
average molecular weight 2 million), uniform latex (particle size 1
.. 1 μm) was used.

耐食性試験:多孔質膜を90℃のHCI水溶液(PH・
0)、NaOH水溶液(P)I=14)に168時間浸
漬し、薄膜におけるピンホール、クラックの有無を走査
型電子顕微鏡にて観察する。
Corrosion resistance test: The porous membrane was exposed to a 90°C HCI aqueous solution (PH
0), NaOH aqueous solution (P)I=14) for 168 hours, and the presence or absence of pinholes and cracks in the thin film was observed using a scanning electron microscope.

第2表において、 *l、*2.$3:支持体が中間層を有する複層構造で
ある場合(支持体No、3〜No、6)はD’n+ax
In Table 2, *l, *2. $3: When the support has a multilayer structure with an intermediate layer (support No. 3 to No. 6), D'n+ax
.

D’avの値 *4:耐食性試験前後のピンホール、クラックの有無 *5:マーカーとしてアルブミンを使用*6:マーカー
としてγ−グロブリンを使用*7:マーカーとしてブル
ーデキストランを使用*8:マーカーとしてユニホーム
ラテックスを使用 (以下余白) / / / / / / / / / 平均細孔径davが40人の薄膜を備えた多孔質膜No
、I〜No、4において、N091およびN092とN
013およびno、4とを比較した場合最大気孔径Dm
axの相違により前者のアルブミン阻止率が高く、99
%以上にも達している。また、多孔質膜No、 1とN
o、2とを比較した場合、膜厚の薄い薄膜を備えたN0
11は透水量、透過液量ともに大きくて効果的な濾過、
分離が可能である。なお、多孔質膜No、1.No、2
の薄膜成分はγ−アルミナであるため耐アルカリ性に劣
るが、同腹No、1.No、2は耐アルカリ性が要求さ
れない例えばガス分離等の用途に有効である。
D'av value *4: Presence or absence of pinholes and cracks before and after corrosion resistance test *5: Albumin is used as a marker *6: γ-globulin is used as a marker *7: Blue dextran is used as a marker *8: As a marker Using uniform latex (blank below) / / / / / / / / / Porous membrane No. with a thin film with an average pore diameter dav of 40 people
, I~No, 4, N091 and N092 and N
Maximum pore diameter Dm when comparing 013 and no. 4
Due to the difference in ax, the former has a higher albumin inhibition rate, 99
It has reached more than %. In addition, porous membrane No. 1 and N
o, 2, N0 with a thin film has a thin film thickness.
11 is effective filtration with large permeation amount and permeation liquid amount;
Separation is possible. Note that porous membrane No. 1. No, 2
Since the thin film component is γ-alumina, it has poor alkali resistance, but No. 1. No. 2 is effective for applications where alkali resistance is not required, such as gas separation.

平均細孔径davが50人の薄膜を備えた多孔質膜No
、5〜No、9から明らかなようにDmax/day、
D’max/davを適正な範囲に規定することにより
、ピンホールおよびクラックが無くてアルブミンをほぼ
完全に阻止できる多孔質膜N015〜N018を得るこ
とができる。これらの多孔質膜においては、支持体が中
間層を有する複層構造であって薄膜の厚みを薄くでき、
特に中間層の平均細孔径D’avが0.1μm以下でか
つ薄膜の厚みが1μm以下のものNo、?、No、8は
、透過液量が多くて極めて効率よく濾過、分離を行うこ
とができる。耐食性試験においては多孔質膜No、5〜
NO38にピンホール、クラックの発生が認められない
のに対し、NO19ではクラックが増大して薄膜に局部
的は剥離現象が認められかつアルブミンの阻止率が2%
までに低下した。
Porous membrane No. with a thin film with an average pore diameter dav of 50
, 5 to No. 9, Dmax/day,
By defining D'max/dav within an appropriate range, porous membranes N015 to N018 that are free from pinholes and cracks and can almost completely block albumin can be obtained. In these porous membranes, the support has a multilayer structure with an intermediate layer, and the thickness of the thin membrane can be reduced.
Particularly, the intermediate layer has an average pore diameter D'av of 0.1 μm or less and a thin film thickness of 1 μm or less. , No. 8 has a large amount of permeate and can perform extremely efficient filtration and separation. In the corrosion resistance test, porous membrane No. 5~
While no pinholes or cracks were observed in NO38, cracks increased in NO19, and local peeling was observed in the thin film, and the albumin rejection rate was 2%.
It has declined to.

平均細孔径500 A以上の薄膜No、 10〜No、
I4においてはいずれもDmax/dav、D’max
/davが適正な範囲に規定されているため、ピンホー
ル、クラックが認められず、各マーカーに対する阻止率
がほぼ完全である。また、これらの多孔質膜は耐食性試
験によっても膜性能に何等の変化も認められなかった。
Thin film with an average pore diameter of 500 A or more No. 10 to No.
In I4, both Dmax/dav and D'max
Since /dav is defined within an appropriate range, no pinholes or cracks are observed, and the rejection rate for each marker is almost perfect. Moreover, no change in membrane performance was observed in these porous membranes even in corrosion resistance tests.

Claims (1)

【特許請求の範囲】[Claims] 1または複数層の多孔質支持体の一側面に、同支持体の
平均細孔径より小さい平均細孔径を有する多孔質薄膜を
備えてなる無機多孔質膜において、前記多孔質薄膜が付
着する層の最大気孔径が同薄膜の平均細孔径の1〜25
0倍であることを特徴とする無機多孔質膜。
In an inorganic porous membrane comprising a porous thin film having an average pore diameter smaller than the average pore diameter of the support on one side of one or more layers of porous support, the layer to which the porous thin film is attached is The maximum pore diameter is 1 to 25 of the average pore diameter of the same thin film.
An inorganic porous membrane characterized by being 0 times larger.
JP13082788A 1988-05-27 1988-05-27 Inorganic porous membrane Granted JPH01299607A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP13082788A JPH01299607A (en) 1988-05-27 1988-05-27 Inorganic porous membrane
US07/357,268 US4929406A (en) 1988-05-27 1989-05-26 Process for producing an inorganic porous membrane
DE68928924T DE68928924T2 (en) 1988-05-27 1989-05-26 Process for the production of a porous inorganic composite membrane
EP89305361A EP0344011A1 (en) 1988-05-27 1989-05-26 Inorganic porous membrane
EP95115691A EP0692303B1 (en) 1988-05-27 1989-05-26 Process for the production of an inorganic porous composite membrane
US07/452,241 US4971696A (en) 1988-05-27 1989-12-18 Inorganic porous membrane
JP5272111A JPH06198148A (en) 1988-05-27 1993-10-29 Production of inorganic porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13082788A JPH01299607A (en) 1988-05-27 1988-05-27 Inorganic porous membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5272111A Division JPH06198148A (en) 1988-05-27 1993-10-29 Production of inorganic porous membrane

Publications (2)

Publication Number Publication Date
JPH01299607A true JPH01299607A (en) 1989-12-04
JPH0457373B2 JPH0457373B2 (en) 1992-09-11

Family

ID=15043633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13082788A Granted JPH01299607A (en) 1988-05-27 1988-05-27 Inorganic porous membrane

Country Status (1)

Country Link
JP (1) JPH01299607A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267129A (en) * 1990-03-16 1991-11-28 Ngk Insulators Ltd Ceramic membrane filter
JPH03284329A (en) * 1990-03-30 1991-12-16 Ngk Insulators Ltd Ceramic membraneous filter and production thereof
WO1995006514A1 (en) * 1993-09-02 1995-03-09 The Dow Chemical Company Separation membrane module
JP2006503701A (en) * 2002-10-25 2006-02-02 テクノロジ・アヴァンセ・エ・マンブラン・アンデュストゥリィエル Tangential filtration membrane and method for producing the same
JP2007503995A (en) * 2003-09-04 2007-03-01 コリア リサーチ インスティテュートオフ゛ ケミカル テクノロシ゛ー Titania composite membrane for water / alcohol separation and method for producing the same
JP2008178810A (en) * 2007-01-25 2008-08-07 Miyazaki Prefecture Bubble-free gas dissolving method
JP2013056318A (en) * 2011-09-09 2013-03-28 Toshiba Corp Microbubble forming device
EP4052774A4 (en) * 2019-12-30 2022-11-16 Shenzhen Senior Technology Material Co., Ltd. Wet non-woven fabric, preparation method therefor and water treatment membrane containing wet non-woven fabric

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923654A (en) * 1974-05-30 1975-12-02 Owens Illinois Inc Ultrafiltration membrane
JPS5294572A (en) * 1975-12-29 1977-08-09 Commissariat Energie Atomique Filter made from inorganic matter
JPS553809A (en) * 1978-06-23 1980-01-11 Tdk Corp Dynamic membrane formation supporter and its manufacture
JPS5834006A (en) * 1981-03-30 1983-02-28 グル−プマン・デテユ−ド・プ−ル・レ・セラミ−ク・アルミニユ−ズ Filter structure, production thereof and ultrafiltration apparatus using same
JPS58196818A (en) * 1982-04-28 1983-11-16 セラヴエ−ル Filter membrane and production thereof
JPS5948646A (en) * 1982-09-14 1984-03-19 Nec Corp Semiconductor charge sensor
JPS6051518A (en) * 1983-07-29 1985-03-23 セラヴエ−ル Filter membrane
JPS6127091A (en) * 1984-07-17 1986-02-06 松下電器産業株式会社 High frequency heater
JPS61238304A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Ceramic filter and its preparation
JPS623782A (en) * 1985-06-27 1987-01-09 エ−ピ−ブイ インタ−ナシヨナル リミテツド Method and apparatus for filtering beer
JPS6219175A (en) * 1985-07-18 1987-01-27 酒井 清孝 Blood ultrafiltration apparatus
JPS62129104A (en) * 1985-11-28 1987-06-11 Ngk Insulators Ltd Ceramic tubular filter and its manufacturing process

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923654A (en) * 1974-05-30 1975-12-02 Owens Illinois Inc Ultrafiltration membrane
JPS5294572A (en) * 1975-12-29 1977-08-09 Commissariat Energie Atomique Filter made from inorganic matter
JPS553809A (en) * 1978-06-23 1980-01-11 Tdk Corp Dynamic membrane formation supporter and its manufacture
JPS5834006A (en) * 1981-03-30 1983-02-28 グル−プマン・デテユ−ド・プ−ル・レ・セラミ−ク・アルミニユ−ズ Filter structure, production thereof and ultrafiltration apparatus using same
JPS58196818A (en) * 1982-04-28 1983-11-16 セラヴエ−ル Filter membrane and production thereof
JPS5948646A (en) * 1982-09-14 1984-03-19 Nec Corp Semiconductor charge sensor
JPS6051518A (en) * 1983-07-29 1985-03-23 セラヴエ−ル Filter membrane
JPS6127091A (en) * 1984-07-17 1986-02-06 松下電器産業株式会社 High frequency heater
JPS61238304A (en) * 1985-04-17 1986-10-23 Ngk Insulators Ltd Ceramic filter and its preparation
JPS623782A (en) * 1985-06-27 1987-01-09 エ−ピ−ブイ インタ−ナシヨナル リミテツド Method and apparatus for filtering beer
JPS6219175A (en) * 1985-07-18 1987-01-27 酒井 清孝 Blood ultrafiltration apparatus
JPS62129104A (en) * 1985-11-28 1987-06-11 Ngk Insulators Ltd Ceramic tubular filter and its manufacturing process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267129A (en) * 1990-03-16 1991-11-28 Ngk Insulators Ltd Ceramic membrane filter
JPH03284329A (en) * 1990-03-30 1991-12-16 Ngk Insulators Ltd Ceramic membraneous filter and production thereof
WO1995006514A1 (en) * 1993-09-02 1995-03-09 The Dow Chemical Company Separation membrane module
JP2006503701A (en) * 2002-10-25 2006-02-02 テクノロジ・アヴァンセ・エ・マンブラン・アンデュストゥリィエル Tangential filtration membrane and method for producing the same
JP2007503995A (en) * 2003-09-04 2007-03-01 コリア リサーチ インスティテュートオフ゛ ケミカル テクノロシ゛ー Titania composite membrane for water / alcohol separation and method for producing the same
JP2008178810A (en) * 2007-01-25 2008-08-07 Miyazaki Prefecture Bubble-free gas dissolving method
JP2013056318A (en) * 2011-09-09 2013-03-28 Toshiba Corp Microbubble forming device
EP4052774A4 (en) * 2019-12-30 2022-11-16 Shenzhen Senior Technology Material Co., Ltd. Wet non-woven fabric, preparation method therefor and water treatment membrane containing wet non-woven fabric
JP2022552913A (en) * 2019-12-30 2022-12-20 シェンチェン シニア テクノロジー マテリアル カンパニー リミテッド Wet-laid nonwoven fabric, method of making same, and water treatment membrane comprising wet-laid nonwoven fabric

Also Published As

Publication number Publication date
JPH0457373B2 (en) 1992-09-11

Similar Documents

Publication Publication Date Title
EP0692303B1 (en) Process for the production of an inorganic porous composite membrane
US5186833A (en) Composite metal-ceramic membranes and their fabrication
US5376442A (en) Composite membranes
US20070138083A1 (en) Separation membrane
JPH05192545A (en) Supported porous ceramic membrane
US10183242B2 (en) Porous inorganic membranes and method of manufacture
JP2004123533A (en) Method of manufacturing silica composite membrane having excellent thermal stability by soaking-rolling method
Terpstra et al. Preparation, characterization and some properties of tubular alpha alumina ceramic membranes for microfiltration and as a support for ultrafiltration and gas separation membranes
JPH01299607A (en) Inorganic porous membrane
Okubo et al. Preparation of a sol-gel derived thin membrane on a porous ceramic hollow fiber by the filtration technique
JPS63287504A (en) Separation membrane
JP2005503261A (en) Novel inorganic nanofiltration membrane
KR100534013B1 (en) Titania composite membrane for water/alcohol separation, and Preparation thereof
JPH06198148A (en) Production of inorganic porous membrane
JPH0321330A (en) Preparation of upper layer of two dimensional membrane
JPH03267129A (en) Ceramic membrane filter
CA1336151C (en) Fine alpha alumina ultrafiltration membranes
JPH0243928A (en) Inorganic porous membrane
KR0139817B1 (en) Composite membranes
CN109569313A (en) A kind of flat ceramic seperation film and its spraying preparation method
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
JPH02102723A (en) Inorganic porous membrane
JPH07163848A (en) Production of inorganic porous membrane
Benito et al. Preparation of multilayer ceramic systems for deposition of mesoporous membranes
JPH0571548B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070911

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 16