JPH01296596A - Plasma x-ray generating device - Google Patents

Plasma x-ray generating device

Info

Publication number
JPH01296596A
JPH01296596A JP63125720A JP12572088A JPH01296596A JP H01296596 A JPH01296596 A JP H01296596A JP 63125720 A JP63125720 A JP 63125720A JP 12572088 A JP12572088 A JP 12572088A JP H01296596 A JPH01296596 A JP H01296596A
Authority
JP
Japan
Prior art keywords
conductor
plasma
creeping discharge
insulator
insulating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63125720A
Other languages
Japanese (ja)
Inventor
Toshihiko Sato
俊彦 佐藤
Isao Ochiai
落合 勲
Yasuo Kato
加藤 靖夫
Yukio Okamoto
幸雄 岡本
Seiichi Murayama
村山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63125720A priority Critical patent/JPH01296596A/en
Publication of JPH01296596A publication Critical patent/JPH01296596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To eliminate dispersion of X-ray intensity values and generated even creeping discharge with good reproducibility by attaching or embedding a conductor insulated in DC from inner and external conductors and coupled therewith in AC to the surface of or in an insulating body of a plasma X-ray generator device. CONSTITUTION:When a switch 6 is closed, positive polarity pulse voltage is applied to an inner conductor 1. This generates creeping discharge at the surface of an insulating body between a trigger electrode 11 and an outer conductor 2, which exerts the effect of preliminary disconnection, and an even creeping discharge is generated in such as way as wrapping the whole insulting body 3 to cause flow of a large current between the inner and outer conductors 1, 2. With this evenness held, the plasma is separated from the surface of the insulating body 3 by the magnetic pressure generated by this large current so as to form a disc-shaped plasma sheet, and when the tip of the inner conductor 1 is attained, self-compression heating is conducted to generate soft X-rays. To raise this self-compression heating properly, it is important to generate even creeping discharge, and therefore the trigger electrode 11 works effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマX線発生装置に係わり、特に超L 
S I製造に用いられるX線リソグラフィーやX線顕微
鏡などに好適なX線発生装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma X-ray generator, and particularly to an ultra-L
The present invention relates to an X-ray generator suitable for X-ray lithography, X-ray microscopes, etc. used in SI manufacturing.

〔従来の技術〕[Conventional technology]

従来の装置は、特願昭61−114448号に記載のよ
うに、第2図の如き構成となっていた。すなわち、真空
容器4の中に設けた内導体1と外感体2の間にコンデン
サ5からスイッチ6通じて大電流を供給し、絶縁体3の
表面に沿面放電を発生させこれを初期プラズマとし、こ
のプラズマを進展させ、放電空間8に2ピンチ効果によ
り高温高密度のプラズマを発生させ、この高温高密度プ
ラズマからX線を発生させた。ここで、4′は気体の導
入孔、4”は気体の排出孔、2′は前記外導体2に設け
たX線取り出し開孔、7はX線取り出しのためのベリリ
ウム膜を示す。
A conventional device has a configuration as shown in FIG. 2, as described in Japanese Patent Application No. 114448/1982. That is, a large current is supplied from a capacitor 5 through a switch 6 between an inner conductor 1 and an outer sensing element 2 provided in a vacuum vessel 4, and a creeping discharge is generated on the surface of the insulator 3, which becomes an initial plasma. This plasma was developed to generate high-temperature, high-density plasma in the discharge space 8 due to the two-pinch effect, and X-rays were generated from this high-temperature, high-density plasma. Here, 4' is a gas introduction hole, 4'' is a gas discharge hole, 2' is an X-ray extraction hole provided in the outer conductor 2, and 7 is a beryllium membrane for X-ray extraction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、初期プラズマが絶縁体表面に均一に、
再現性良く生成するための配慮がされておらず、X線強
度の値がばらつくという問題があった。同時に、このよ
うなばらつきによって、X線強度の平均値も低く抑えら
れていた。
In the above conventional technology, the initial plasma is uniformly spread over the insulator surface.
There was a problem in that the X-ray intensity values varied because no consideration was given to generation with good reproducibility. At the same time, due to such variations, the average value of the X-ray intensity was also kept low.

本発明の目的は、上記の問題点を解決し、強度が安定し
た高出力のプラズマX線発生装置を提供することにある
An object of the present invention is to solve the above-mentioned problems and provide a high-output plasma X-ray generator with stable intensity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記絶縁体表面または前記絶縁体内に、前記内
外導体と直流的には絶縁され、交流的には結合さ才して
いる導体を、付着あるいは埋め込んだ構造を用いること
によって前記従来の問題点を解決したものである。
The present invention solves the above-mentioned problems by using a structure in which a conductor is attached or embedded on the surface of the insulator or in the insulator, and is insulated from the inner and outer conductors in terms of direct current and coupled with them in terms of alternating current. This solves the problem.

〔作用〕[Effect]

絶縁体内に埋め込まれた導体を、1−リガ導体と呼ぶこ
とにする。第1図aにトリガ導体11の配置を示した。
A conductor embedded within an insulator will be referred to as a 1-Riga conductor. FIG. 1a shows the arrangement of the trigger conductor 11.

同図すには1へリガ導体1コの周辺の拡大説明図も示し
である。I・リガ尋体]]は、交流的には、外導体2と
容量CIで、内導体]と容量C2で結合されている。内
外瀦体]、2間にパルス電圧が印加されると、電圧は、
C1とC2の容量の逆比で分圧されるが、図からもわか
るように、絶縁体3の誘@率が高く、内厚体]と十分接
近しているとすれば、C2とCsに比べて十分大きい。
The figure also shows an enlarged explanatory view of the periphery of one helical conductor. In terms of alternating current, the I.Riga body is connected to the outer conductor 2 through a capacitor CI, and to the inner conductor through a capacitor C2. When a pulse voltage is applied between the inside and outside body], the voltage is
The voltage is divided by the inverse ratio of the capacitance of C1 and C2, but as can be seen from the figure, if insulator 3 has a high permittivity and is sufficiently close to the inner thick body, then C2 and Cs It's big enough in comparison.

従って、印加電圧は大部分外導体2と1−リガ導体11
の間の沿面部分にかかり、この部分には、容易に放電破
壊を生起する。放電破壊が生起した後には、トリガ感体
は外導体2に心通しておす、しかも前記放電破壊によっ
て得られた荷電粒子が種と成るので、残りの絶縁体表面
には、均一に、再現性良く沿面放電を生起せしめること
ができる。〔実施例〕 本発明の実施例を第1図および第3図乃至第5図に示す
Therefore, the applied voltage is mostly applied to the outer conductor 2 and 1-Riga conductor 11.
In this area, discharge damage easily occurs. After the discharge breakdown occurs, the trigger sensitive body is passed through the outer conductor 2, and since the charged particles obtained by the discharge breakdown serve as seeds, the remaining insulator surface is uniformly and reproducibly Creeping discharge can be generated well. [Example] An example of the present invention is shown in FIG. 1 and FIGS. 3 to 5.

第1図は、本発明の第1の実施例を示す。内外導体1及
び2と真空容器4は、W −Cu合金等からなる円筒状
導体電極である。内外導体1,2の間には、高誘電率で
、しかも誘電損失が少なく、高耐圧特性を有する、アル
ミナ等のファインセラミックス等からなる円筒状絶縁体
3が配置されている。絶縁体3には、リング状、または
、直流的には、内外導体1,2の双JJから絶縁された
扇状のトリガ電極1]が同軸状に埋め込まれている。
FIG. 1 shows a first embodiment of the invention. The inner and outer conductors 1 and 2 and the vacuum container 4 are cylindrical conductive electrodes made of W--Cu alloy or the like. A cylindrical insulator 3 made of fine ceramics such as alumina, which has a high dielectric constant, low dielectric loss, and high voltage characteristics, is arranged between the inner and outer conductors 1 and 2. In the insulator 3, a ring-shaped or, in terms of direct current, a fan-shaped trigger electrode 1 which is insulated from the twin JJ of the inner and outer conductors 1 and 2, is coaxially embedded.

ところで、1〜リガ8体は交流的Fこは、内外導体に容
量を介して結合されている。トリガ電極1]の材質は、
LaBe等の、低仕事関数の金属を用いるとよい。4は
、ステンレス等からなる真空容器であり、容器中には、
Ne等の、プラズマ源となる気体がOi〜1.0Tor
r程度入れられている。
Incidentally, the alternating current F of the 1 to 8 riggers are coupled to the inner and outer conductors via capacitance. The material of the trigger electrode 1 is
It is preferable to use a metal with a low work function, such as LaBe. 4 is a vacuum container made of stainless steel or the like, and inside the container,
The plasma source gas such as Ne is Oi ~ 1.0 Tor
Approximately r is included.

7は、Be箔等からなる軟X線のと取り出し窓である。7 is a soft X-ray extraction window made of Be foil or the like.

5は、大容量で高速のコンテンサ電源(1〜100μド
)であり、]〜50 k、 V程度に充電される。6は
、エアギャップスイッチなとの大電流スイッチである。
5 is a large-capacity, high-speed capacitor power supply (1 to 100 μm), which is charged to approximately 50 kV. 6 is a large current switch such as an air gap switch.

スイッチ6が閉しられると、正極性のパルス電圧が内導
体1に加わる。このことによって、トリガ電極11と、
外導体2の間の絶縁体表面で沿面放電が発生し、これが
予備電離の効果を発揮して、絶縁体3全体を包み込むよ
うな均一な沿面放電が発生し、内導体1と外導体2間に
大電流が流れる。
When the switch 6 is closed, a positive pulse voltage is applied to the inner conductor 1. By this, the trigger electrode 11 and
A creeping discharge occurs on the surface of the insulator between the outer conductor 2, which exerts the effect of pre-ionization, and a uniform creeping discharge that wraps around the entire insulator 3 occurs, causing a discharge between the inner conductor 1 and the outer conductor 2. A large current flows through the

この大電流によって発生する磁気圧によってプラズマは
、均一性を保ったまま絶縁体3の表面から離れ、ディス
ク状のプラズマシートを形成し、さらに内導体1の先端
に達すると自己圧縮加熱され。
Due to the magnetic pressure generated by this large current, the plasma separates from the surface of the insulator 3 while maintaining its uniformity, forming a disk-shaped plasma sheet, and when it reaches the tip of the inner conductor 1, it is heated by self-compression.

軟X線を発生する。自己圧縮加熱を正常に起こすには、
均一な沿面放電を発生させることが重要で、このために
、トリガ電極11が有効に作用する。
Generates soft X-rays. To properly cause self-compression heating,
It is important to generate a uniform creeping discharge, and the trigger electrode 11 works effectively for this purpose.

第3図に、第2の実施例を示す。FIG. 3 shows a second embodiment.

この実施例は、トリガ感体の形状を円筒系にし、内厚体
との対抗面積を広くして、容量的な結合を増加させたも
のである。その他の部分は、第1図の実施例と同じであ
る。
In this embodiment, the shape of the trigger sensitive member is cylindrical, and the area facing the inner thick body is increased to increase capacitive coupling. The other parts are the same as the embodiment shown in FIG.

第4図に、第3の実施例を示す。ここでは、コンデンサ
ハングの極性が逆になっており、また、同軸状絶縁体3
は、外導体2に接触した配置になっている。沿面放電開
始の時点で、電子源は1〜リガ湛体11であるので、ト
リガ導体11は、外心体との間の容量的結合が強くなる
ように配置されている。他の部分は、第1の実施例と同
じである。
FIG. 4 shows a third embodiment. Here, the polarity of the capacitor hang is reversed, and the coaxial insulator 3
is arranged in contact with the outer conductor 2. Since the electron source is the trigger conductor 1 to the trigger conductor 11 at the start of the creeping discharge, the trigger conductor 11 is arranged so that the capacitive coupling between the trigger conductor 11 and the eccentric body is strong. Other parts are the same as in the first embodiment.

第5図(a)に、第4の実施例を示す。この実施例では
、金属の薄い帯や、薄板等の導体片を適当な間隔で絶縁
体表面に付着させたものをI〜リガ導体14としたもの
である。この時、絶縁体3の第1導体1の周囲での内径
と外径の差を十分小さくして、各導体片の内海体との容
量的結合が、十分取れるようにしである。同図(b)に
は、同図(a)の破線部の拡大図を示した。拡大図で、
CI□+ c、2. Cps、  ・・・・・等は、各
導体片と内導体の聞の容量である。Cs 1g C,i
 S 2 + Cs s 、   等は、導体片間の容
量である。ただし、Cs1は、外導体に一番近い導体片
と、外心体との間の容量である。
FIG. 5(a) shows a fourth embodiment. In this embodiment, the I~Riga conductor 14 is made by attaching conductor pieces such as thin metal strips or thin plates to the surface of the insulator at appropriate intervals. At this time, the difference between the inner diameter and outer diameter of the insulator 3 around the first conductor 1 is made sufficiently small to ensure sufficient capacitive coupling between each conductor piece and the inner sea body. FIG. 5(b) shows an enlarged view of the broken line portion in FIG. 1(a). In the enlarged view,
CI□+c, 2. Cps, etc. are the capacitance between each conductor piece and the inner conductor. Cs 1g C,i
S 2 + Cs s , etc. is the capacitance between the conductor pieces. However, Cs1 is the capacitance between the conductor piece closest to the outer conductor and the outer core.

ここでは、C工+ > Cs 1. CI 2 > C
S 21   等となっている。この構成で、内外導体
間にパルス電圧か加わると、外導体2に最も近い導体片
と外導体の間の絶縁体3表面で沿面放電が生ずるととも
に、外導体2とこの導体片]4が速やかに同電位となり
、隣接した導体片との間に沿面放電が起こることになる
。この過程が次々に伝搬して行き、均一な沿面放電が発
生する。
Here, C + > Cs 1. CI2 > C
S 21 etc. With this configuration, when a pulse voltage is applied between the inner and outer conductors, creeping discharge occurs on the surface of the insulator 3 between the conductor piece closest to the outer conductor 2 and the outer conductor 2 and this conductor piece 4. They will have the same potential, and a creeping discharge will occur between the adjacent conductor pieces. This process propagates one after another, and a uniform creeping discharge occurs.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、均一な沿面放電を再現性良く発生でき
るのできるので、X線強度のばらつきの少ない(1,0
%以下に抑えられる)X線発生装置が得られる。
According to the present invention, uniform creeping discharge can be generated with good reproducibility, so there is little variation in X-ray intensity (1,0
% or less) can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例のX線発生装置の縦断面
図およびトリガ湛体部の拡大断面図、第2図は従来のプ
ラズマ軟X線発生装置の縦断面図、第3乃至第5図は、
本発明の他の実施例のX線発生装置の縦断面図である。 ■・内心体、2・・外導体、3 ・絶縁体、4・・放電
容器、5・コンデンサ、6 放電スイッチ、7ベリリウ
ム窓、8・放電空間、1. i、 、  1 /1.−
1〜リガ導体片。
FIG. 1 is a longitudinal sectional view and an enlarged sectional view of the trigger chamber part of an X-ray generator according to a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a conventional plasma soft X-ray generator, and FIG. Figures 5 to 5 are
FIG. 3 is a longitudinal cross-sectional view of an X-ray generator according to another embodiment of the present invention. ■・Inner core body, 2・Outer conductor, 3・Insulator, 4・Discharge vessel, 5・Capacitor, 6 Discharge switch, 7 Beryllium window, 8・Discharge space, 1. i, , 1 /1. −
1 ~ Riga conductor piece.

Claims (1)

【特許請求の範囲】[Claims] 1、少なくとも正負二つの電極を持ち、前記電極の両方
に接触して配置された絶縁体を持ち、前記電極間にパル
ス電圧を印加する手段を具えたプラズマX線発生装置に
おいて、前記絶縁体表面または前記絶縁体内に、前記内
外導体と直流的には絶縁され、交流的には結合されてい
る導体を、付着あるいは埋め込んだことを特徴とするプ
ラズマX線発生装置。
1. In a plasma X-ray generator having at least two positive and negative electrodes, an insulator placed in contact with both of the electrodes, and means for applying a pulse voltage between the electrodes, the insulator surface Alternatively, a plasma X-ray generating device characterized in that a conductor is attached or embedded in the insulator, the conductor being insulated from the inner and outer conductors in terms of direct current and coupled in terms of alternating current.
JP63125720A 1988-05-25 1988-05-25 Plasma x-ray generating device Pending JPH01296596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63125720A JPH01296596A (en) 1988-05-25 1988-05-25 Plasma x-ray generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63125720A JPH01296596A (en) 1988-05-25 1988-05-25 Plasma x-ray generating device

Publications (1)

Publication Number Publication Date
JPH01296596A true JPH01296596A (en) 1989-11-29

Family

ID=14917093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63125720A Pending JPH01296596A (en) 1988-05-25 1988-05-25 Plasma x-ray generating device

Country Status (1)

Country Link
JP (1) JPH01296596A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007484A3 (en) * 2000-07-04 2002-04-25 Lambda Physik Ag Method of producing short-wave radiation from a gas-discharge plasma and device for implementing it
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
JP2006260948A (en) * 2005-03-17 2006-09-28 Kyoto Univ Ionizer equipped with x-ray generator
JP2008084656A (en) * 2006-09-27 2008-04-10 Kyoto Univ X-ray irradiation type ionizer
USRE41362E1 (en) 2000-07-03 2010-06-01 Asml Netherlands B.V. Radiation source, lithographic apparatus, device manufacturing method, and device manufactured thereby

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41362E1 (en) 2000-07-03 2010-06-01 Asml Netherlands B.V. Radiation source, lithographic apparatus, device manufacturing method, and device manufactured thereby
WO2002007484A3 (en) * 2000-07-04 2002-04-25 Lambda Physik Ag Method of producing short-wave radiation from a gas-discharge plasma and device for implementing it
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
JP4880179B2 (en) * 2000-07-04 2012-02-22 エクストリーム テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
JP2006260948A (en) * 2005-03-17 2006-09-28 Kyoto Univ Ionizer equipped with x-ray generator
JP2008084656A (en) * 2006-09-27 2008-04-10 Kyoto Univ X-ray irradiation type ionizer

Similar Documents

Publication Publication Date Title
US4201921A (en) Electron beam-capillary plasma flash x-ray device
JP4918628B2 (en) Ion generator and ion generator
US4715054A (en) Plasma x-ray source
JP2000332091A (en) Electrostatic chuck and treatment device
JPH08236602A (en) Electrostatic chuck
Radu et al. Dielectric barrier discharges in helium at atmospheric pressure: experiments and model in the needle-plane geometry
Jedynak Vacuum insulation of high voltages utilizing dielectric coated electrodes
JPH01296596A (en) Plasma x-ray generating device
US20090211895A1 (en) Ozone generator
JPH01243349A (en) Plasma extreme ultraviolet light generator
JP4338961B2 (en) Magnetic flux irradiation device
JPH02276143A (en) Apparatus and method for generating soft x-ray for extra-fine pattern
JPS63211598A (en) Plasma x-ray generation device
RU2751547C1 (en) Gas discharge device for plasma treatment at atmosphere pressure of surface of biocompatible polymers
JPS6127570A (en) Discharge device
GB2079053A (en) Electret device
US3602760A (en) Sintered coaxial plasma gun
JP3473244B2 (en) Corona generator
JPH04229992A (en) Deelectrification and deelectrifying electrode
JPS62254349A (en) X-ray generator
KR20030089110A (en) Creeping discharge reactor for ozone generation
KR970042259A (en) Ozone generator
JPS58166630A (en) Coupled line type discharge tube
JPH06136158A (en) Corona discharge treatment apparatus
JPH0596062U (en) Plasma processing device