JPH01292404A - Steering device for unmanned carrier vehicle - Google Patents

Steering device for unmanned carrier vehicle

Info

Publication number
JPH01292404A
JPH01292404A JP63122381A JP12238188A JPH01292404A JP H01292404 A JPH01292404 A JP H01292404A JP 63122381 A JP63122381 A JP 63122381A JP 12238188 A JP12238188 A JP 12238188A JP H01292404 A JPH01292404 A JP H01292404A
Authority
JP
Japan
Prior art keywords
curve
traveling
travel
sensor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63122381A
Other languages
Japanese (ja)
Inventor
Yukio Mukogasa
向笠 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63122381A priority Critical patent/JPH01292404A/en
Publication of JPH01292404A publication Critical patent/JPH01292404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To prevent an unmanned carrier vehicle from being derailed in a curved section by providing the title device with a means for detecting a curve start point and switching a guidance traveling to autonomous traveling (unguided traveling). CONSTITUTION:At the time of autonomous (unguided) traveling, the 1st sensor 2 fixed to the carrier vehicle 1 detects a curve start detecting chip 5 on the curve starting point of a guidance line 4 and drives a D-type FF 54. Consequently, an AND circuit 59 is connected, a keep relay Ry1 is excited and its contact is switched to the (b) side. As the result, the output voltage of a curve setter 52 is inputted to an inversion circuit 16 through the 2nd switch element 57 and the 1st switch element 56 and added or subtracted to/from a speed command voltage inputted from a speed setter 11. Thereby, the rotation of one driving motor 13 is reduced, the rotation of the other driving motor 32 is increased and L-shape or U-shape traveling is executed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は無人搬送車のカーブ走行時に自律走行(無誘
導走行)する操舵装置に関する。
The present invention relates to a steering device that allows an automatic guided vehicle to travel autonomously (run without guidance) when traveling around a curve.

【従来の技術】[Conventional technology]

一般に無人搬送車の走行誘導方式としては、誘導線を床
に敷設し電磁波を用いる電磁誘導方式、反射テープを床
に敷設し光を用いた光誘導方式が良く知られている。無
人搬送車には、床に敷設された誘導線に流れる所定周波
数の電流を検出する検出コイルセンサ、又は反射形光電
センサと、これらセンサの出力により誘導線9反射テー
プからのずれを検出して搬送車が誘導線、2反射テープ
に沿って進行するように制御する操舵回路と、速度設定
器により設定された速度で駆動輪を回転させるように駆
動モータを制御するサーボコントロール装置とを備えて
いる。そしてカーブにおいても誘導線や反射テープが敷
設され、センサ出力により操舵回路が誘導線9反射テー
プからのずれを制御しながら搬送車を走行させている。
In general, well-known methods for guiding the movement of automatic guided vehicles include an electromagnetic induction method in which guide wires are laid on the floor and electromagnetic waves are used, and an optical guidance method in which reflective tape is laid on the floor and light is used. The automatic guided vehicle is equipped with a detection coil sensor or a reflective photoelectric sensor that detects a current of a predetermined frequency flowing through a guide wire laid on the floor, and a sensor that detects deviation of the guide wire 9 from the reflective tape based on the output of these sensors. Equipped with a steering circuit that controls the transport vehicle to move along the guide line and two reflective tapes, and a servo control device that controls the drive motor to rotate the drive wheels at a speed set by a speed setting device. There is. Guide wires and reflective tape are also laid at curves, and the steering circuit runs the conveyance vehicle while controlling the deviation of the guide wire 9 from the reflective tape based on sensor output.

【発明が解決しようとする課題】[Problem to be solved by the invention]

無人搬送車の走行区間の中に床に金属があったり汚染の
激しい場所があるとセンサによる誘導線。 反射テープの検知が一時的に出来なくなり操舵回路によ
る制御が不能になる場合がある。この場合搬送車が直線
の走行区間を走行している場合には腰送車が進行するこ
とによりセンサによって誘導線1反射テープが検知され
て操舵回路による制御が回復されるが、搬送車がカーブ
の区間を走行している場合には操舵回路による制御が回
復せずに搬送車が脱線してしまうことがある。 そこでこの発明はカーブの走行区間に誘導線の敷設を必
要とせず、無人搬送車のカーブ走行時に自律走行(無誘
導走行)を行うことが可能な操舵装置を提供することを
目的とする。
If there is metal on the floor or a heavily contaminated area within the path of the automated guided vehicle, a sensor will activate the guide line. Detection of the reflective tape may become temporarily unavailable and control by the steering circuit may become impossible. In this case, if the guided vehicle is traveling in a straight line, the guide line 1 reflective tape will be detected by the sensor as the guided vehicle moves forward, and control by the steering circuit will be restored; however, if the guided vehicle is traveling in a straight line, If the vehicle is traveling in this section, control by the steering circuit may not be restored and the vehicle may derail. SUMMARY OF THE INVENTION An object of the present invention is to provide a steering device that does not require the installation of a guide line in a curved travel section and allows an automatic guided vehicle to autonomously travel (unguided travel) when traveling on a curve.

【課題を解決するための手段】[Means to solve the problem]

上記目的はこの発明によればこの無人搬送車に搭載され
、カーブ開始点と終了点とを検出する第1のセンサと、
カーブ開始点と終了点の中間に配された中間点を検出す
る第2のセンサと、第1のセンサの出力に基づいてカー
ブ開始点で誘導走行から自律走行に切替えカーブ終了点
で自律走行を誘導走行に切替える第1のスイッチ素子、
自律走行時のカーブの大きさを設定しカーブ信号を発生
するカーブ発生器、前記第2のセンサの信号によりカー
ブ信号の極性を反転する第2のスイッチ素子からなるカ
ーブ走行制御装置を備えた無人搬送車の操舵装置によっ
て達成される。
According to the present invention, the above object includes a first sensor that is mounted on the automatic guided vehicle and detects a curve start point and an end point;
A second sensor is placed between the curve start point and the end point to detect the intermediate point, and based on the output of the first sensor, the system switches from guided driving to autonomous driving at the curve start point and switches to autonomous driving at the curve end point. a first switch element for switching to guided travel;
An unmanned vehicle equipped with a curve generator that sets the size of the curve during autonomous travel and generates a curve signal, and a curve travel control device that includes a second switch element that reverses the polarity of the curve signal based on the signal from the second sensor. This is achieved by the steering system of the transport vehicle.

【作 用】[For use]

この発明は、無人搬送車に搭載されたカーブ走行制御装
置の第1のセンサによりカーブ開始点を検出して誘導走
行から自律走行へ切替え、そしてカーブ終了点を検出し
て自律走行から誘導走行へ切替え、第2のセンサでカー
ブ開始点とカーブ終了点の中間の中間点を検出してカー
ブ信号の極性を反転させ、前記カーブ走行制御装置によ
って駆動輪の回転速度を制御してL字、U字、S字カー
ブ走行中には無人搬送車を自律走行できる。
This invention detects a curve start point using a first sensor of a curve travel control device mounted on an automated guided vehicle to switch from guided travel to autonomous travel, and detects a curve end point to switch from autonomous travel to guided travel. The second sensor detects an intermediate point between the curve start point and the curve end point, and the polarity of the curve signal is reversed, and the curve travel control device controls the rotational speed of the drive wheels to create an L-shape or a U-shape. Automated guided vehicles can operate autonomously while driving in S-shaped or S-shaped curves.

【実施例】【Example】

以下図面に基づいてこの発明の詳細な説明する。第1図
はこの発明の実施例による無人搬送車の操舵装置の制御
ブロック図で、サーボコントローラ10で駆動モータ3
1.32を速度設定器11の速度指令電圧と操舵回路2
0またはカーブ走行制御装置50加減算により制御し駆
動輪41.42を駆動する。 サーボコントローラ装置10において、12.13.1
6゜17はオペアンプよりなる反転回路であり、14.
15はそれぞれ増幅器である。操舵回路20には第2図
に示す搬送車1に固定された誘導信号検出コイル8が接
続されている。 操舵回路20よる操舵制御は第1のスイッチ素子56が
a側に切換えられている状態で従来と同様に行われる。 すなわち、誘導信号検出コイル8からの出力信号により
操舵回路20は誘導線4(第2図)からのずれを検出し
、このずれがない場合には出力信号が零であるので駆動
モータ31,32が速度設定器11からの速度指令電圧
により同一回転数で駆動され搬送車1が直進する。誘導
vA4からのずれがある場合には操舵回路20からずれ
の方向と大きさに応じた正負のアナログ信号が出力され
、この出力信号が反転回路16と17とを介して一方の
系統に、また反転回路16と17とを介して他方の系統
に伝達されて速度指令電圧と加減算される。このように
して各駆動モータ31.32の回転数を異ならせ、回転
数の低い駆動モータに連結された駆動輪方向に進行方向
を向けてずれを調整する。 第2図、第3図ないし第4図はこの発明の実施例による
操舵装置を備えた無人搬送車のカーブでの走行を示す説
明図で第2図はL字走行、第3図はU字走行、第4図は
S字走行を表す。 第2図、第3図において、2は近接スイッチや光電スイ
ッチからなりカーブ開始検出片5.カーブ終了検出片6
を検知する第1のセンサ、第4図において3は近接スイ
ッチや光電スイッチ等からなり中間点検出片7を検知す
る第2のセンサである。各図において点線は搬送車1が
自律走行する軌跡を示している。 自律(無誘導)走行のときは、搬送車1に取りつけられ
た第1のセンサ2が誘導線4のカーブ開始点のカーブ開
始検出片5を検出し第1図のD型フリップフロップ素子
54が動作しQ出力端子からハイレベルの信号(以下H
信号という)が出力される。一方レベル検出器58は操
舵回路20の出力のうち誘導信号検出コイル日の出力信
号を操舵回路20で増幅した出力に接続されており、こ
れにより誘導線4に重なっている際にH信号、信号線4
から外れたときローレベルの信号(以下り信号という)
を出力する。搬送車がカーブに差しかかった状態ではレ
ベル検出器58からH信号が出力されており、これによ
りアンド回路59が導通して第1のスイッチ素子56を
構成するキープリレーRyIが励磁されてその接点がb
側へ切替わると直流電源51に接続されたカーブ設定器
52からの出力電圧が第2のスイッチ素子57と第1の
スイッチ素子56をへて反転回路16に入力され速度設
定器11からの速度指令電圧と加算あるいは減算され一
方の側の駆動モータ(例えば31)の回転が減少し他方
の側の駆動モータ(例えば32)の回転が増加し第2図
のL字走行または第3図のU字走行を行う。 搬送車がカーブ終了点に接近すると、レベル検出器58
の出力は誘導信号検出コイル8が誘導線4を検知する状
態となるので再びH信号となる。レベル検出器58の出
力がH信号となったときフリップフロップ素子54のQ
出力がH状態であるので第1のスイッチ素子56のキー
プリレーR91が励磁されてその接点がa側に切替わり
誘導走行に戻る。 こののち第1のセンサ2がカーブ終了点のカーブ終了検
出片6を検出するとフリップフロップ素子54は反転し
て元の状態に戻る。 7は力゛−ブ開始点とカーブ終了点6の中間点に配され
た中間点検出片で第1のセンサ2がカーブ開始検出片5
を検出後搬送車に搭載された第2のセンサ3が中間点検
出片7を検出するとD型フリップフロップ素子55が反
転してそのQ出力端子からのH信号により第2のスイッ
チ素子57のリレーR9,が励磁されてその接点が、b
側に切替わる。これによりカーブ設定器52の出力が反
転回路53を介してサーボコントロール装置10に供給
されるようになるので第2のセンサ3が中間点検出片7
を検出する前と後では反転回路16へ入力する極性は反
転し、カーブの方向が逆となり第4図のようにS字走行
ができる。S字走行終了時にはレベル検出器58のH出
力により第1のスイッチ素子56の接点がa側に切替わ
って誘導走行に戻る。そして第1のセンサ2がカーブ終
了検出片6を検出するとフリップフロップ素子54が反
転してその互出力端子からH信号が出力され、これによ
りフリップフロップ素子55がリセットされて元の状態
に戻り第2のスイッチ素子57の接点はa側に切替わる
。 第1のセンサ2と第2のセンサ3は回路構成を変え
ることにより共用することも可能である。 第1のスイ
ッチ素子56、第2のスイッチ素子57は無接点型の素
子を使用することも可能である。 カーブ終了点を検出
して誘導走行制御に戻る際、誘導線の信号(操舵回路の
信号)が中心に近づいたことを検出するレベル検出器5
8の出力と終了点出力とのアンド条件で第1のスイッチ
素子56を切替えてカーブ走行制御から誘導走行へ戻す
ことにより切替がなめらかにおこなわれる。
The present invention will be described in detail below based on the drawings. FIG. 1 is a control block diagram of a steering device for an automatic guided vehicle according to an embodiment of the present invention, in which a servo controller 10 controls a drive motor 3.
1.32 is the speed command voltage of speed setting device 11 and steering circuit 2
0 or the curve traveling control device 50 adds and subtracts to drive the drive wheels 41 and 42. In the servo controller device 10, 12.13.1
6.17 is an inverting circuit consisting of an operational amplifier; 14.
15 are amplifiers. An induction signal detection coil 8 fixed to the carrier vehicle 1 shown in FIG. 2 is connected to the steering circuit 20. Steering control by the steering circuit 20 is performed in the same manner as in the conventional case with the first switch element 56 being switched to the a side. That is, the steering circuit 20 detects a deviation from the guiding wire 4 (FIG. 2) based on the output signal from the guiding signal detection coil 8, and if there is no deviation, the output signal is zero and the drive motors 31, 32 are driven at the same rotational speed by the speed command voltage from the speed setting device 11, and the transport vehicle 1 moves straight. If there is a deviation from the guidance vA4, the steering circuit 20 outputs a positive or negative analog signal depending on the direction and magnitude of the deviation, and this output signal is sent to one system via the inverting circuits 16 and 17, or to the other system. It is transmitted to the other system via inverting circuits 16 and 17, and is added to or subtracted from the speed command voltage. In this way, the rotation speeds of the respective drive motors 31, 32 are made different, and the deviation is adjusted by directing the traveling direction toward the drive wheel connected to the drive motor with the lower rotation speed. Figures 2, 3 and 4 are explanatory diagrams showing how an automatic guided vehicle equipped with a steering device according to an embodiment of the present invention travels around a curve, in which Figure 2 shows L-shape travel, and Figure 3 shows U-shape travel. Traveling, Figure 4 represents S-shaped traveling. In FIGS. 2 and 3, 2 is a proximity switch or a photoelectric switch, and curve start detection piece 5. Curve end detection piece 6
In FIG. 4, reference numeral 3 denotes a second sensor that detects the intermediate point detection piece 7, which is composed of a proximity switch, a photoelectric switch, etc. In each figure, the dotted line indicates the locus along which the guided vehicle 1 autonomously travels. During autonomous (non-guided) travel, the first sensor 2 attached to the guided vehicle 1 detects the curve start detection piece 5 at the curve start point of the guide line 4, and the D-type flip-flop element 54 shown in FIG. It operates and a high level signal (hereinafter referred to as H) is output from the Q output terminal.
signal) is output. On the other hand, the level detector 58 is connected to the output of the steering circuit 20 which amplifies the output signal of the induction signal detection coil 20 by the steering circuit 20, so that when it overlaps the induction wire 4, an H signal is generated. line 4
A low-level signal when the signal is off (hereinafter referred to as the low signal)
Output. When the conveyance vehicle approaches a curve, an H signal is output from the level detector 58, which makes the AND circuit 59 conductive, and the keep relay RyI that constitutes the first switch element 56 is energized, and its contacts are closed. is b
When switching to the side, the output voltage from the curve setter 52 connected to the DC power source 51 is input to the inverting circuit 16 via the second switch element 57 and the first switch element 56, and the speed from the speed setter 11 is input to the inverting circuit 16. By adding or subtracting from the command voltage, the rotation of the drive motor on one side (for example 31) decreases and the rotation of the drive motor on the other side (for example 32) increases, resulting in L-shaped travel in Figure 2 or U in Figure 3. Run in a straight line. When the carrier approaches the end of the curve, the level detector 58
Since the induction signal detection coil 8 is in a state of detecting the induction wire 4, the output becomes an H signal again. When the output of the level detector 58 becomes an H signal, the Q of the flip-flop element 54 is
Since the output is in the H state, the keep relay R91 of the first switch element 56 is excited and its contact is switched to the a side, returning to guided travel. Thereafter, when the first sensor 2 detects the curve end detection piece 6 at the curve end point, the flip-flop element 54 is reversed and returns to its original state. Reference numeral 7 denotes an intermediate point detection piece disposed at an intermediate point between the force wave start point and the curve end point 6, and the first sensor 2 is connected to the curve start detection piece 5.
When the second sensor 3 mounted on the transport vehicle detects the intermediate point detection piece 7, the D-type flip-flop element 55 is inverted and the H signal from its Q output terminal activates the relay of the second switch element 57. R9, is energized and its contact becomes b
Switch to the side. As a result, the output of the curve setter 52 is supplied to the servo control device 10 via the inversion circuit 53, so that the second sensor 3 is connected to the intermediate point detection piece 7.
The polarity input to the reversing circuit 16 is reversed before and after the detection of , and the direction of the curve is reversed, allowing S-shaped travel as shown in FIG. At the end of S-curve travel, the contact of the first switch element 56 is switched to the a side by the H output of the level detector 58, and the vehicle returns to guided travel. When the first sensor 2 detects the curve end detection piece 6, the flip-flop element 54 is reversed and an H signal is output from its output terminal, thereby resetting the flip-flop element 55 and returning to the original state. The contact point of the second switch element 57 is switched to the a side. The first sensor 2 and the second sensor 3 can also be used in common by changing the circuit configuration. It is also possible to use non-contact type elements for the first switch element 56 and the second switch element 57. Level detector 5 detects when the guidance line signal (steering circuit signal) approaches the center when returning to guidance travel control after detecting the end point of the curve
Switching is performed smoothly by switching the first switch element 56 under the AND condition of the output of No. 8 and the end point output to return from curve travel control to guided travel.

【発明の効果】【Effect of the invention】

この発明によれば、カーブ開始検出片を搬送車に搭載し
た第1のセンサで検出し、カーブ走行制御装置によって
誘導走行から自律走行(無誘導走行)に切替え、カーブ
終了検出片を第1のセンサで検出し自律走行から誘導走
行に切替えるのでL字、0字カーブでの誘導線を必要と
しないでL字、0字カーブを走行できる。 また自律走行(無誘導走行)によりカーブ走行中に中間
点検出片7を第2のセンサによって検出しカーブ走行制
御装置によってカーブ信号の極性を反転させてカーブの
方向を逆向きになるように制御するので3字カーブでの
誘導線を必要としないで3字カーブを走行できる。 従ってカーブ走行時誘導線を用いた誘導走行の場合に問
題となった搬送車の脱線等の事故を゛なくすことができ
、さらにカーブ走行区間には誘導線を必要としないので
面倒な誘導線敷設工事の手間が省けるという効果を有す
る。
According to this invention, the curve start detection piece is detected by the first sensor mounted on the carrier, the curve travel control device switches from guided travel to autonomous travel (non-guided travel), and the curve end detection piece is detected by the first sensor mounted on the guided vehicle. Since the vehicle detects it with a sensor and switches from autonomous driving to guided driving, it can travel around L-shaped and 0-shaped curves without the need for guidance lines. Also, during autonomous driving (unguided driving), the intermediate point detection piece 7 is detected by the second sensor while driving around a curve, and the curve driving control device reverses the polarity of the curve signal to control the direction of the curve to be reversed. Therefore, it is possible to drive around the 3-shaped curve without the need for a guide line at the 3-shaped curve. Therefore, it is possible to eliminate accidents such as derailment of the guided vehicle, which is a problem when using guide lines when traveling on curves.Furthermore, there is no need for guide lines in curved sections, so there is no need to worry about laying guide lines. This has the effect of saving construction work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による無人搬送車の操舵装置
の制御ブロック図、第2図、第3図、第4図はこの発明
の実施例による操舵装置を備えた無人搬送車のカーブの
走行を示す説明図で第2図はL字走行、第3図はU字走
行、第4図はS字走行を表す。 1:搬送車、2:第1のセンサ、3:第2のセンサ、4
:誘導線、5:カーブ開始検出片、6:カーブ終了検出
片、7:中間点検出片、10:サーボコントローラ装置
、31.32:駆動モータ、41.42:駆動輪、50
:カーブ走行制御装置、56:第1のスイッチ素子、5
7:第2のスイッチ素子。
FIG. 1 is a control block diagram of a steering device for an automatic guided vehicle according to an embodiment of the present invention, and FIGS. 2, 3, and 4 show curves of an automatic guided vehicle equipped with a steering device according to an embodiment of the present invention In the explanatory diagrams showing the running, FIG. 2 shows L-shaped running, FIG. 3 shows U-shaped running, and FIG. 4 shows S-shaped running. 1: Transport vehicle, 2: First sensor, 3: Second sensor, 4
: Guide wire, 5: Curve start detection piece, 6: Curve end detection piece, 7: Intermediate point detection piece, 10: Servo controller device, 31.32: Drive motor, 41.42: Drive wheel, 50
: curve traveling control device, 56: first switch element, 5
7: Second switch element.

Claims (1)

【特許請求の範囲】[Claims] 1)搬送車を誘導線により誘導してサーボコントローラ
装置で駆動モータを制御し無人で搬送する無人搬送車に
おいて、この無人搬送車に搭載されカーブ開始点とカー
ブ終了点とを検出する第1のセンサと、カーブ開始点と
カーブ終了点の中間に配された中間点を検出する第2の
センサと、第1のセンサの出力に基づいてカーブ開始点
で誘導走行を自律走行に切替えカーブ終了点で自律走行
を誘導走行に切替える第1のスイッチ素子、自律走行時
のカーブの大きさを設定しカーブ信号を発生するカーブ
設定器、前記第2のセンサの信号によりカーブ信号の極
性を反転する第2のスイッチ素子からなるカーブ走行制
御装置を備え、カーブ走行時は前記カーブ走行制御装置
の信号によって駆動輪の回転速度を制御して自律走行を
行うことを特徴とする無人搬送車の操舵装置。
1) In an automated guided vehicle that guides the guided vehicle by a guide line and controls the drive motor with a servo controller device to transport the guided vehicle unmanned, a first device mounted on the automated guided vehicle detects a curve start point and a curve end point. a second sensor arranged between the curve start point and the curve end point to detect an intermediate point; and a curve end point for switching guided travel to autonomous travel at the curve start point based on the output of the first sensor. a first switch element that switches autonomous driving to guided driving; a curve setting device that sets the size of the curve during autonomous driving and generates a curve signal; and a first switch element that inverts the polarity of the curve signal based on the signal from the second sensor. 1. A steering device for an automatic guided vehicle, comprising: a curve travel control device comprising two switch elements; and when traveling on a curve, autonomous travel is achieved by controlling the rotational speed of a drive wheel according to a signal from the curve travel control device.
JP63122381A 1988-05-19 1988-05-19 Steering device for unmanned carrier vehicle Pending JPH01292404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63122381A JPH01292404A (en) 1988-05-19 1988-05-19 Steering device for unmanned carrier vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122381A JPH01292404A (en) 1988-05-19 1988-05-19 Steering device for unmanned carrier vehicle

Publications (1)

Publication Number Publication Date
JPH01292404A true JPH01292404A (en) 1989-11-24

Family

ID=14834413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122381A Pending JPH01292404A (en) 1988-05-19 1988-05-19 Steering device for unmanned carrier vehicle

Country Status (1)

Country Link
JP (1) JPH01292404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869815A (en) * 2012-12-18 2014-06-18 佳能精机株式会社 Automatic driving vehicle and automatic driving system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869815A (en) * 2012-12-18 2014-06-18 佳能精机株式会社 Automatic driving vehicle and automatic driving system
JP2014120081A (en) * 2012-12-18 2014-06-30 Canon Precision Inc Automatic traveling vehicle and automatic traveling system

Similar Documents

Publication Publication Date Title
JPS6345609A (en) Drive guiding device for unmanned vehicle
JPS5845042B2 (en) Trajectory control device for trackless moving objects
JPH01292404A (en) Steering device for unmanned carrier vehicle
JPH0934548A (en) Automatic guiding method for guided wagon
JP3267056B2 (en) Traveling control method and device for tracked bogie
JP3053517B2 (en) Operation control method of wireless mobile trolley
JPS6152710A (en) Unattended guided wagon
JPS61244660A (en) Travelling control facility for transfer car
JPS623444B2 (en)
JPS6180310A (en) Control system of unmanned guide type carrier car
JPS62185504A (en) Speed controller for moving body
JPS5942521B2 (en) electric car protection device
JPH0313768Y2 (en)
JPH0340821Y2 (en)
JPS62164116A (en) Carrier
JPS6031621A (en) Guiding method of self-travelling type truck
JPS635412A (en) Traveling control device for unmanned carrying car
JPH0624303U (en) Overhead carriage speed control device
JPS60230210A (en) Automatic running car
JPS63247163A (en) Steering device for unmanned conveying vehicle
JPH02116907A (en) Running guidance device for unmanned car
JPH07111651B2 (en) Derailment prevention device for emergency stop of automated guided vehicle
JPH0346843B2 (en)
JPH0447411A (en) Control method for unmanned car
JPH03294910A (en) Steering device of electromagnetic induction type unmanned carrying car