JPH01290517A - Method and apparatus for raw gas treatment in high purity liquified co2 plant - Google Patents

Method and apparatus for raw gas treatment in high purity liquified co2 plant

Info

Publication number
JPH01290517A
JPH01290517A JP63122892A JP12289288A JPH01290517A JP H01290517 A JPH01290517 A JP H01290517A JP 63122892 A JP63122892 A JP 63122892A JP 12289288 A JP12289288 A JP 12289288A JP H01290517 A JPH01290517 A JP H01290517A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
gaseous
adsorption tower
dehumidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63122892A
Other languages
Japanese (ja)
Other versions
JPH0780685B2 (en
Inventor
Kentaro Shibamura
芝村 謙太郎
Kiyoshi Uenoyama
清 上野山
Osamu Wakamura
修 若村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63122892A priority Critical patent/JPH0780685B2/en
Publication of JPH01290517A publication Critical patent/JPH01290517A/en
Publication of JPH0780685B2 publication Critical patent/JPH0780685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain refined liquified CO2 of high quality contg. smaller amount of oxygen and nitrogen oxide by treating the raw gas contg. CO2 and NO into crude gaseous CO2 in a CO2 adsorption tower and liquifying it after deoxidation and dehumidification. CONSTITUTION:Gaseous CO2 is adsorbed in a gaseous CO2 adsorption tower 3 to be separated from the raw gas 2 generated in an LDG boiler 1. The crude gaseous CO2 4 discharged from the adsorption tower 3 is compressed to about 15kg/cm<2> by a compressor 5 and sent into a deoxidation unit 6 filled with catalyst. H2 is introduced through another piping into the unit 6 filled with a metallic catalyst, such as Pt or Ni, so that O2 contained in the gaseous CO2 4 is reacted with H2 to form vapor H2O. Then, the deoxidized gaseous CO2 7 is introduced into a dehumidifier 8 to remove the vapor contained in the gaseous CO2 4, and the gaseous CO2 passed through the dehumidifier 8 is dehydrated so that the dew point under atmospheric pressure becomes about -60 deg.C, and moreover, NO is removed as NO2 to obtain liquified CO2 of high quality with smaller content of NO2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボイラー排ガス等を原料ガスとしてこれから
高純度液化炭酸を製造する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for producing high-purity liquefied carbonic acid from boiler exhaust gas or the like as a raw material gas.

〔従来の技術〕[Conventional technology]

食品工業分野で使用される液化炭酸は、アンモニア合成
プラント、酸化エチレンプラント等から発生するオフガ
スを原料とし、第3図に示した設備を使用して製造され
ている(昭和61年2月1日株式会社フジ・テクノシス
テム発行「副生ガス及び合成ガスを中心としたガス分離
・精製とその利用技術」第59〜62頁)。
Liquefied carbonic acid used in the food industry is produced using off-gas generated from ammonia synthesis plants, ethylene oxide plants, etc., using the equipment shown in Figure 3 (February 1, 1986). "Gas separation/purification and its utilization technology focusing on by-product gas and synthesis gas" published by Fuji Techno System Co., Ltd., pp. 59-62).

たとえば、アンモニア合成プラント31で発生した原料
ガス32を、炭酸ガス吸収塔33を通過させて原料ガス
32に含まれている炭酸ガスをアルカリiに吸収させる
。吸収された炭酸ガスは、アルカリ液を減圧、スチーム
加熱することによって、純度90%以上の組成炭酸ガス
34として分離される。
For example, the raw material gas 32 generated in the ammonia synthesis plant 31 is passed through the carbon dioxide absorption tower 33, and the carbon dioxide contained in the raw material gas 32 is absorbed by the alkali i. The absorbed carbon dioxide gas is separated as carbon dioxide gas 34 having a purity of 90% or more by reducing the pressure of the alkaline solution and heating it with steam.

組成炭酸ガス34は、第1表に示すように少量の不純物
を含むものである。そして、食品工業用に使用される炭
酸ガスは、同表に示すレベルを満足するまで不純物を低
下させることが食品衛生法上から要求される。そこで、
組成炭酸ガス34を洗浄塔35.コンプレッサー36.
脱湿器37.脱臭塔38に流して予備処理し、液化精製
装置39で純度99.9%以上の炭酸ガスに精製してい
る。なお、第1表における痕跡fi t r 、  は
、食品衛生法で規定された分析法により検出されないレ
ベルをいう。
The composition of the carbon dioxide gas 34 contains a small amount of impurities as shown in Table 1. According to the Food Sanitation Law, carbon dioxide gas used in the food industry is required to reduce its impurities to the level shown in the same table. Therefore,
The composition carbon dioxide gas 34 is sent to a cleaning tower 35. Compressor 36.
Dehumidifier 37. It is passed to a deodorizing tower 38 for pretreatment, and then purified to a carbon dioxide gas with a purity of 99.9% or more in a liquefaction purification device 39. Note that the trace fi tr in Table 1 refers to a level that is not detected by the analysis method specified in the Food Sanitation Act.

第       1       表 また、最近では、前掲した文献にも紹介されているよう
に、原料ガス32として、製鉄所で副生じた転炉ガス(
LDG)、高炉ガス(B F G)、コークス炉ガス(
COG)、石灰炉ガス等から圧力スイング吸着法によっ
て炭酸ガスを回収し、予備処理した後で液化精製する方
法も確立されている。
Table 1 In addition, recently, as introduced in the above-mentioned literature, converter gas (as a by-product in steel works) has been used as raw material gas32.
LDG), blast furnace gas (BFG), coke oven gas (
A method has also been established in which carbon dioxide gas is recovered from lime furnace gas (COG), lime furnace gas, etc. by a pressure swing adsorption method, and is pretreated and then liquefied and purified.

この場合、アンモニア合成プラントや酸化エチレンプラ
ント等で発生したガスと異なり、窒素酸化物NOが原料
ガスに含まれている。Noは、吸着剤に対する吸着性が
低く、また水に対する溶解度も高くないために、脱臭塔
38や洗浄塔35で除去することが困難である。しかも
、このNoは、液化精製装置39で残留02と反応して
NO2となり、液相側に移行して、精製された炭酸ガス
の品質を下げる原因にもなる。
In this case, unlike gases generated in ammonia synthesis plants, ethylene oxide plants, etc., nitrogen oxide NO is contained in the raw material gas. Since No has low adsorption to an adsorbent and does not have high solubility in water, it is difficult to remove it in the deodorizing tower 38 or the cleaning tower 35. Moreover, this No reacts with residual O2 in the liquefaction purification device 39 to become NO2, which moves to the liquid phase side and becomes a cause of lowering the quality of the purified carbon dioxide gas.

そこで、K M n 04を使用してNOをKNO3と
しぞ固定することによって、炭酸ガスから分離する方法
(以下、これをKMnO,法という)が−船釣に採用さ
れている。
Therefore, a method of separating NO from carbon dioxide by fixing NO as KNO3 using KMn04 (hereinafter referred to as the KMnO method) has been adopted for boat fishing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、KMnO,法は、固形のKMnO,をアルカ
リに溶解して、炭酸ガス吸収塔に送り込むため、複雑な
設備が必要となる。また、NOを吸収した後のアルカリ
からK N O3を除去するフィルターブレス等の濾過
装置や、廃液に対する処理設備も要求される。そのため
、設備費、用役費に対する負担が大きく、またメンテナ
ンスも複雑になる。
However, the KMnO method requires complicated equipment because solid KMnO is dissolved in an alkali and sent to a carbon dioxide absorption tower. Additionally, a filtration device such as a filter breath that removes K N O3 from the alkali after absorbing NO and treatment equipment for waste liquid are also required. Therefore, the burden on equipment costs and utility costs is large, and maintenance becomes complicated.

そこで、本発明は、組成炭酸ガスに含まれている02を
予め除去する脱酸素設備を脱湿器の上流側に設けること
により、複雑な工程を必要とするK M n OI法に
よらずに、液化精製装置に送り込まれる炭酸ガス中の酸
素含有1を下げ、薄化精製装置でNO2となって液相側
に移行する窒素酸化物の量を減少させ、精製される炭酸
ガスの品質を向上させることを目的とする。
Therefore, the present invention eliminates the need for the KM n OI method, which requires a complicated process, by providing a deoxidizing equipment upstream of the dehumidifier to remove 02 contained in the carbon dioxide composition in advance. , lowers the oxygen content 1 in the carbon dioxide gas sent to the liquefaction purification device, reduces the amount of nitrogen oxides that become NO2 in the thinning purification device and transfers to the liquid phase side, and improves the quality of the purified carbon dioxide gas. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明の処理方法は、その目的を達成するために、少な
くともC02及びNOを含有するガスを炭酸ガス吸着塔
で処理して組成炭酸ガスとした後で、液化wI製装冒で
液化炭酸にする工程に先立って、前記組成炭酸ガスを脱
酸素した後、水蒸気を除去することを特徴とする。
In order to achieve the objective, the treatment method of the present invention processes a gas containing at least CO2 and NO in a carbon dioxide gas adsorption tower to convert it into composition carbon dioxide gas, and then converts it into liquefied carbon dioxide in a liquefaction wI equipment. Prior to this process, the carbon dioxide composition is deoxidized and then water vapor is removed.

また、この方法を実施するための装置は、少な(ともC
02及びNoを含有するガスから組成炭酸ガスを得る炭
酸ガス吸着塔と液化精製装置との間に、工程順にコンプ
レッサー、脱酸素装蜜、脱湿器及び脱臭塔を配列したこ
とを特徴とする。
In addition, the equipment for carrying out this method is small (and C
The present invention is characterized in that a compressor, a deoxidizer, a dehumidifier, and a deodorizing tower are arranged in the order of steps between a carbon dioxide gas adsorption tower that obtains compositional carbon dioxide from gas containing No. 02 and No. 02 and a liquefaction purification device.

〔作用〕[Effect]

ボイラー排ガス等の原料ガスは、目標成分としてのco
2の外に、N2. N O,N O2,H−0,S O
2゜H2S、 O,、CO等の不純物を含んでいる。こ
れら各不純物は、たとえば活性炭等の吸着剤に対して、
次の順のように吸着性に差がある。
Raw material gas such as boiler exhaust gas contains CO as a target component.
In addition to 2, N2. N O, N O2, H-0, S O
Contains impurities such as 2°H2S, O, and CO. For example, each of these impurities is
There are differences in adsorption properties in the following order:

N2.02. N O,CO< C02< H2O,S
 02. H2S、 NO2ま゛た、各不純物の沸点も
、この順位に従って高くなる。そこで、予備処理された
炭酸ガスを液化精製装置で精製するとき、残留するNO
2は、吸収液側に残留し、液化炭酸に不純物として移行
する。他方、NOは、低沸点のために精製液に吸収され
ずに、放出される。
N2.02. NO, CO<C02< H2O, S
02. The boiling points of impurities such as H2S and NO2 also increase in this order. Therefore, when pre-treated carbon dioxide is purified using a liquefaction purifier, the remaining NO
2 remains on the absorption liquid side and transfers to liquefied carbonic acid as an impurity. On the other hand, NO is not absorbed into the purified liquid due to its low boiling point, but is released.

ところが、本発明者等の研究によると、脱臭塔から送ら
れて来た炭酸ガスに02が含まれているとき、液化精製
装置においてNoがN O2に酸化され、精製液に吸収
され易くなり、その結果精製された炭酸ガスの純度が低
下することが判った。
However, according to research by the present inventors, when the carbon dioxide gas sent from the deodorizing tower contains 02, No is oxidized to NO2 in the liquefaction purification equipment and easily absorbed into the purified liquid. As a result, it was found that the purity of the purified carbon dioxide gas decreased.

そこで、本発明においては、組成炭酸ガスに含まれてい
る02 を脱酸素装置で水蒸気に変え、この水蒸気を脱
湿器で除去することによって、前述した○、による影響
、すなわちN○→N O2の反応を抑制し、純度の高い
炭酸ガスを製造するものである。
Therefore, in the present invention, by converting the 02 contained in the composition carbon dioxide into water vapor using a deoxidizer and removing this water vapor using a dehumidifier, the influence of ○ mentioned above, that is, N○ → NO2 This suppresses the reaction of carbon dioxide and produces carbon dioxide gas with high purity.

なお、本発明において使用される原料ガスは、炭酸ガス
を含んでいる限り、各種のガスが使用される。たとえば
、転炉ガス(LDG)、高炉ガス(BF G)、コーク
ス炉ガス(COG)、石灰炉ガス等の、排熱をスチーム
として回収した後の、ボイラー排ガスを使用することも
できる。
Note that various gases can be used as the raw material gas used in the present invention as long as they contain carbon dioxide gas. For example, it is also possible to use boiler exhaust gas, such as converter gas (LDG), blast furnace gas (BFG), coke oven gas (COG), lime furnace gas, after the exhaust heat is recovered as steam.

〔実施例〕〔Example〕

以下、図面を参照しながら、実施例により本発明のvF
@を具体的に説明する。
Hereinafter, with reference to the drawings, the vF of the present invention will be described by way of example.
Let me explain @ in detail.

LDGボイラー1で発生した原料ガス2から、炭酸ガス
吸着塔3で炭酸ガスが吸着分離される。
Carbon dioxide gas is adsorbed and separated from the raw material gas 2 generated in the LDG boiler 1 in the carbon dioxide adsorption tower 3 .

この炭酸ガス吸着塔3としては、たとえば圧力を周期的
に変動させて吸着及び脱着を行うものが使用される。吸
着分離された炭酸ガスは、組成炭酸ガス4として炭酸ガ
ス吸M塔3から放出され、コンプレッサー5で約15k
g/c+rl程度に昇圧された後、触媒が充填された脱
酸素装置6に送り込まれる。
As this carbon dioxide gas adsorption tower 3, for example, one that performs adsorption and desorption by periodically varying the pressure is used. The adsorbed and separated carbon dioxide gas is released from the carbon dioxide absorbing tower 3 as a composition carbon dioxide gas 4, and is compressed by a compressor 5 to approximately 15 kg.
After being pressurized to approximately g/c+rl, it is sent to a deoxidizer 6 filled with a catalyst.

脱酸素装置6には、Pt、  Ni等の金属触媒が充填
されている。また、別系統の配管から、N2 が導入さ
れる。したがって、組成炭酸ガス4に含まれている02
は、金属触媒の作用でN2と反応して水蒸気H,Oとな
る。たとえば、粒径2〜4 mmのアルミナをキャリア
とするPd品位1.8±0.2g/Lの触媒を充填した
脱酸素装置6に温度40℃で02含有量200ppmの
組成炭酸ガス4をSV約10.000で供給し、脱酸素
装置6の内部を温度40℃、圧力15kg/clTlG
に維持し、当量の2〜3倍過剰の流量で温度40℃のN
2  と反応させたところ、脱酸素装置6から排出され
たガスの02含有量はippm以下に低下しており、実
質的に全量の02がN20に変化していた。
The deoxidizer 6 is filled with a metal catalyst such as Pt or Ni. In addition, N2 is introduced from another system of piping. Therefore, the 02 contained in the composition carbon dioxide 4
reacts with N2 to form water vapor H and O under the action of a metal catalyst. For example, carbon dioxide gas 4 having a composition of 200 ppm of 02 is heated at a temperature of 40° C. to a deoxidizing device 6 filled with a catalyst having a Pd grade of 1.8±0.2 g/L and using alumina with a particle size of 2 to 4 mm as a carrier. The inside of the deoxidizer 6 is heated at a temperature of 40°C and a pressure of 15 kg/clTlG.
N at a temperature of 40°C with a flow rate of 2-3 times excess of the equivalent amount.
When reacted with 2, the 02 content of the gas discharged from the deoxidizer 6 was reduced to less than ippm, and substantially the entire amount of 02 was changed to N20.

脱酸素装置6としては、たとえば第2図に示すように二
槽式のものを使用することができる。この場合ミ導入配
管6a及び導出配管6hに設けられている開閉弁5b、
 5c及び6f、 6gの切換え操作によって、組成炭
酸ガス及びN7を脱酸素槽6d又は6eの何れかに導入
する。そして、ガスを導入していない脱酸素槽6e又は
6dでは、触媒を賦活させる。そして、所定時間が経過
した後、開閉弁5b、 5c、 5f。
As the deoxidizing device 6, for example, a two-tank type device as shown in FIG. 2 can be used. In this case, an on-off valve 5b provided in the inlet pipe 6a and the outlet pipe 6h,
By switching between 5c, 6f, and 6g, the composition carbon dioxide and N7 are introduced into either the deoxidizing tank 6d or 6e. Then, in the deoxidizing tank 6e or 6d to which no gas is introduced, the catalyst is activated. After a predetermined period of time has elapsed, the on-off valves 5b, 5c, and 5f are opened.

6gを切り換え、賦活された触媒が充填されている脱酸
素装置6e又は6dで組成炭酸ガス4を脱酸素する。こ
のようにして、コンプレッサー5から送られてくる組成
炭酸ガス4を連続的に処理することができる。    
              、脱酸素された炭酸ガス
7は、次いで脱湿器8に導入される。この脱湿器8には
、たとえばシリカゲル等の吸湿剤が充填されている。こ
の脱湿器8では、当初から組成炭酸ガス4に含まれてい
る水蒸気と共に、前述の脱酸素反応で精製した水蒸気も
除去され、脱湿器8を通過したガス9は、大気圧下の露
点−60℃程度にまで水分除去される。
6g, and the carbon dioxide gas 4 is deoxidized in the deoxidizer 6e or 6d filled with an activated catalyst. In this way, the composition carbon dioxide gas 4 sent from the compressor 5 can be continuously processed.
The deoxidized carbon dioxide gas 7 is then introduced into a dehumidifier 8. This dehumidifier 8 is filled with a moisture absorbent such as silica gel. In this dehumidifier 8, the water vapor purified by the above-mentioned deoxidation reaction is removed together with the water vapor contained in the composition carbon dioxide gas 4 from the beginning, and the gas 9 that has passed through the dehumidifier 8 has a dew point under atmospheric pressure. Moisture is removed to about -60°C.

その後、除湿炭酸ガス9は、脱臭塔10に導入される。Thereafter, the dehumidified carbon dioxide gas 9 is introduced into the deodorizing tower 10.

脱臭塔10には、たとえば活性炭等の吸着剤が充填され
ており、吸着性の高いH,S、So□。
The deodorizing tower 10 is filled with an adsorbent such as activated carbon, which has high adsorption properties for H, S, and So□.

NO2等が吸着除去される。NO2 etc. are adsorbed and removed.

次いで、脱臭後のガスは、蒸溜分離式の液化精製装置1
1に導入され、冷媒によって約−30℃まで冷却され、
低温蒸溜塔で蒸溜液化される。このとき、前述した沸点
の差によりN2.  No等がCO2から分離される。
Next, the deodorized gas is passed through a distillation separation type liquefaction purification device 1.
1 and cooled to approximately -30°C by a refrigerant,
It is distilled into liquid in a low-temperature distillation tower. At this time, due to the boiling point difference mentioned above, N2. No. etc. are separated from CO2.

この脱臭塔10から液化精製装置11に流れる除湿炭酸
ガス9は、前工程である脱酸素によって02 のない状
態となっている。そのため、N O,Ox等が濃縮され
易い液化精製装置11の蒸盾塔頂部で、Noが酸化され
てNO2となることがない。したがって、液化精製装置
11から排出された液化炭酸12は、NO□含有量の少
ない高品質のものとなる。
The dehumidified carbon dioxide gas 9 flowing from the deodorizing tower 10 to the liquefaction purification device 11 has been deoxidized in the previous step and is free of O2. Therefore, NO is not oxidized to NO2 at the top of the steam shield column of the liquefaction purification device 11, where NO, Ox, etc. are likely to be concentrated. Therefore, the liquefied carbonic acid 12 discharged from the liquefaction purification device 11 is of high quality and has a low NO□ content.

次の第2表は、以上に説明した脱酸素の効果を具体的に
表したものである。
The following Table 2 specifically shows the effect of oxygen removal explained above.

第       2       表 なお、第2表における比較例は、第1図において脱酸素
装置6を設けずに組成炭酸ガス4を予備処理した場合を
示す。この対比から明らかなように、比較例においては
得られた液化炭酸に食品衛生上から望ましくないとされ
ているN O2が50ppm含まれているのに対し、本
実施例の場合には検出できない程度にNO2が除かれて
いる。これは、脱臭塔10から液化精製装置11に送り
込まれるガスに酸素が含有されておらず、液化精製装置
11の蒸溜塔で2NO+(L→NO2の反応が起こって
いないことを示すものである。
Table 2 The comparative example in Table 2 shows the case where the composition carbon dioxide gas 4 was pretreated without providing the deoxidizing device 6 in FIG. 1. As is clear from this comparison, in the comparative example, the obtained liquefied carbonic acid contained 50 ppm of N O2, which is considered undesirable from a food hygiene perspective, whereas in the case of this example, the amount was undetectable. NO2 is removed. This indicates that the gas sent from the deodorizing tower 10 to the liquefaction purification device 11 does not contain oxygen, and that the 2NO+ (L→NO2 reaction) is not occurring in the distillation column of the liquefaction purification device 11.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、液化精製装
置に送り込む炭酸ガスを、予め脱酸素することによって
、炭酸ガスから分離されたNOがNCh に酸化され液
化炭酸に吸収されることを防いでいる。そのため、得ら
れた液化炭酸は、極めて純度の高い製品となる。しかも
、予備処理工程に脱酸素装置を設けるだけで良いため、
生産性の高い液化炭酸製造プラントが構築される。
As explained above, in the present invention, by deoxidizing the carbon dioxide gas sent to the liquefaction purification device in advance, NO separated from the carbon dioxide gas is oxidized to NCh and absorbed into the liquefied carbon dioxide. There is. Therefore, the obtained liquefied carbonic acid is a product with extremely high purity. Moreover, since it is only necessary to provide a deoxidizer in the pretreatment process,
A highly productive liquefied carbon dioxide production plant will be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例のプロセスを説明するためのブロ
ック図であり、第2図は該プロセスに組み込まれる脱酸
素装置の一例を示す。他方、第3図は、従来の液化炭酸
製造プラントを示すブロック図である。 1:LDGボイラー    2.32:原料ガス3;炭
酸ガス吸着塔   4.34:組成炭酸ガス5.36:
コンプレッサー  6:脱酸素装置7:脱酸素後の炭酸
ガス 8.37:脱湿器9:除湿炭酸ガス    10
.38:脱臭塔11:液化精製装置    12:液化
炭酸31:アンモニア合成プラント 33:炭酸ガス吸収塔   35:洗浄塔39:液化m
製装置
FIG. 1 is a block diagram for explaining a process according to an embodiment of the present invention, and FIG. 2 shows an example of an oxygen removing device incorporated in the process. On the other hand, FIG. 3 is a block diagram showing a conventional liquefied carbon dioxide production plant. 1: LDG boiler 2.32: Raw material gas 3; Carbon dioxide adsorption tower 4.34: Composition carbon dioxide gas 5.36:
Compressor 6: Deoxidizer 7: Carbon dioxide after deoxygenation 8.37: Dehumidifier 9: Dehumidified carbon dioxide 10
.. 38: Deodorizing tower 11: Liquefaction purification device 12: Liquefied carbonic acid 31: Ammonia synthesis plant 33: Carbon dioxide absorption tower 35: Washing tower 39: Liquefaction m
manufacturing equipment

Claims (1)

【特許請求の範囲】 1、少なくともCO_2及びNOを含有するガスを炭酸
ガス吸着塔で処理して組成炭酸ガスとした後、液化精製
装置で液化炭酸にする工程に先立って、前記組成炭酸ガ
スを脱酸素した後、水蒸気を除去することを特徴とする
高純度液化炭酸製造プラントにおける原料ガスの処理方
法。 2、少なくともCO_2及びNOを含有するガスから組
成炭酸ガスを得る炭酸ガス吸着塔と液化精製装置との間
に、工程順にコンプレッサー、脱酸素装置、脱湿器及び
脱臭塔を配列したことを特徴とする高純度液化炭酸製造
プラントにおける原料ガスの予備処理装置。
[Claims] 1. After a gas containing at least CO_2 and NO is treated in a carbon dioxide adsorption tower to produce a compositional carbon dioxide gas, the compositional carbonate gas is converted into a compositional carbonic acid gas prior to the step of converting it into liquefied carbonic acid in a liquefaction purification device. A method for processing raw material gas in a high-purity liquefied carbon dioxide production plant, which comprises removing water vapor after deoxidizing it. 2. A compressor, a deoxidizer, a dehumidifier, and a deodorizing tower are arranged in the order of steps between a carbon dioxide adsorption tower for obtaining compositional carbon dioxide from gas containing at least CO_2 and NO and a liquefaction purification device. A pre-processing device for raw material gas in a high-purity liquefied carbon dioxide production plant.
JP63122892A 1988-05-18 1988-05-18 Method and apparatus for processing raw material gas in high-purity liquefied carbon dioxide production plant Expired - Lifetime JPH0780685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63122892A JPH0780685B2 (en) 1988-05-18 1988-05-18 Method and apparatus for processing raw material gas in high-purity liquefied carbon dioxide production plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63122892A JPH0780685B2 (en) 1988-05-18 1988-05-18 Method and apparatus for processing raw material gas in high-purity liquefied carbon dioxide production plant

Publications (2)

Publication Number Publication Date
JPH01290517A true JPH01290517A (en) 1989-11-22
JPH0780685B2 JPH0780685B2 (en) 1995-08-30

Family

ID=14847215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63122892A Expired - Lifetime JPH0780685B2 (en) 1988-05-18 1988-05-18 Method and apparatus for processing raw material gas in high-purity liquefied carbon dioxide production plant

Country Status (1)

Country Link
JP (1) JPH0780685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202426A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Apparatus and method for recovering co2
JP2010533117A (en) * 2007-07-13 2010-10-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for purifying gas containing CO2
WO2011068007A1 (en) * 2009-12-02 2011-06-09 株式会社 東芝 Device for separating and recovering carbon dioxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205310A (en) * 1981-06-08 1982-12-16 Hoxan Corp Producing apparatus for gaseous carbon dioxide
JPS5969415A (en) * 1982-10-06 1984-04-19 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of liquefied gaseous carbon dioxide
JPS61133117A (en) * 1984-11-30 1986-06-20 Ube Ind Ltd Separation of gaseous carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205310A (en) * 1981-06-08 1982-12-16 Hoxan Corp Producing apparatus for gaseous carbon dioxide
JPS5969415A (en) * 1982-10-06 1984-04-19 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of liquefied gaseous carbon dioxide
JPS61133117A (en) * 1984-11-30 1986-06-20 Ube Ind Ltd Separation of gaseous carbon dioxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533117A (en) * 2007-07-13 2010-10-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Method for purifying gas containing CO2
JP2010202426A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Apparatus and method for recovering co2
US8377184B2 (en) 2009-02-27 2013-02-19 Mitsubishi Heavy Industries, Ltd. CO2 recovery apparatus and CO2 recovery method
WO2011068007A1 (en) * 2009-12-02 2011-06-09 株式会社 東芝 Device for separating and recovering carbon dioxide
CN102905773A (en) * 2009-12-02 2013-01-30 株式会社东芝 Device for separating and recovering carbon dioxide
AU2010327767B2 (en) * 2009-12-02 2014-02-27 Kabushiki Kaisha Toshiba Device for separating and recovering carbon dioxide
AU2010327767C1 (en) * 2009-12-02 2014-08-28 Kabushiki Kaisha Toshiba Device for separating and recovering carbon dioxide
US8926919B2 (en) 2009-12-02 2015-01-06 Kabushiki Kaisha Toshiba Carbon dioxide separation and recovery apparatus

Also Published As

Publication number Publication date
JPH0780685B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
JP3279585B2 (en) Method for producing purified air
KR101301805B1 (en) Method of removing impurities from a gas
JPH0359727B2 (en)
JP2016147766A (en) Method for purifying nitrous oxide
JP3080736B2 (en) Processing method of raw material gas in high purity carbon dioxide gas purification plant
JPH06234511A (en) Method and apparatus for purification using compression heat
CN113336225A (en) Production device and process for preparing electronic-grade carbon monoxide from synthetic ammonia tail gas
EP0052482A1 (en) Process for treating industrial gas stream
US20100290977A1 (en) Method of removing hydrocarbon impurities from a gas
JPH01290517A (en) Method and apparatus for raw gas treatment in high purity liquified co2 plant
JPS5949818A (en) Method for concentrating carbon monoxide in gaseous mixture containing carbon monoxide by using adsorption method
JPH11209117A (en) Refining method and refining device for coarse gaseous carbon dioxide for production of liquefied carbonic acid
JPH03242302A (en) Production of hydrogen and carbon monoxide
JPH01290518A (en) Method and apparatus for preliminary treatment of raw gas in liquified co2 plant
JPH0230607A (en) Production of highly pure nitrogen
JPH0243923A (en) Raw material gas denitrification method and apparatus in liquefied carbon dioxide manufacturing plant
TW201938487A (en) Method of removing oxygen from crude carbon monoxide gas and method of purifying carbon monoxide gas
JPH03242313A (en) Purification of carbon monoxide
JPS605012A (en) Purification of carbon monoxide from mixed gas containing carbon monoxide by using adsorption
JPH09264666A (en) Nitrogen and oxygen manufacturing system
JPS60155519A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
JPS63251496A (en) Method of purifying gas mainly composed of carbon monoxide
EP1298090A2 (en) Oxygen enrichment of a sulfuric acid plant furnace
JP2000272905A (en) Removal of organic impurity in methanol degradation gas by closed tsa method
CN117229888A (en) Device and method for preparing carbon dioxide by purifying tail gas from ethanol preparation by industrial gas