JPH01283956A - Semiconductor device and preparation thereof - Google Patents

Semiconductor device and preparation thereof

Info

Publication number
JPH01283956A
JPH01283956A JP63113935A JP11393588A JPH01283956A JP H01283956 A JPH01283956 A JP H01283956A JP 63113935 A JP63113935 A JP 63113935A JP 11393588 A JP11393588 A JP 11393588A JP H01283956 A JPH01283956 A JP H01283956A
Authority
JP
Japan
Prior art keywords
channel
side wall
gate electrode
transistor
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63113935A
Other languages
Japanese (ja)
Inventor
Shohei Shinohara
篠原 昭平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63113935A priority Critical patent/JPH01283956A/en
Publication of JPH01283956A publication Critical patent/JPH01283956A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form an n-channel transistor and a p-channel transistor each in optimum state by setting width of a side wall spacer for each transistor which act as self-aligning mask for ion implantation, differently to each other. CONSTITUTION:On a p-type Si substrate 1, an n-well 2, a field oxide film 3, a gate oxide film 4, and a gate electrode 5 are formed. On an n-channel area, an n<->-type diffused layer is formed by ion implantation of phosphorus as an example. Then, a first side wall spacer 7 is formed by depositing a SiO2 film thereon and applying ion etching. Using the gate electrode 5 and the side wall spacer 7 as masks, arsenic ions are implanted to the n-channel are only. A SiO2 film is deposited and etched to form a second side wall spacer 9. Then, applying the gate electrode 5, the first and second side wall spacers 7 and 9 as masks, BF2 ions are implanted to the p-channel area only, and a heat treatment is performed to form source and drain areas of each transistor. Thus, optimization of each channel becomes possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、Nチャネル、Pチャネルの両トランジスタの
ゲート電極側壁にスペーサを有する半導体装置とその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device having spacers on the side walls of gate electrodes of both N-channel and P-channel transistors, and a method for manufacturing the same.

従来の技術 半導体装置はますます微細化される傾向にあるが、Nチ
ャネル、Pチャネルの両トランジスタを有するCMO8
集積回路においても様々な問題が発生している。Nチャ
ネルトランジスタにおいては、ホットキャリア発生によ
る特性の劣化が問題となる。そのためドレイン付近の電
界を弱めるLlghtly Doped Draln構
造(以下LDD構造と呼ぶ)が採用されるようになって
きている。このLDD構造はゲート電極形成後、n″層
形成のためのイオン注入を行い、その後ゲート電極側面
に側壁スペーサJt[し、ソース・ドレインn4拡散層
形成のためのイオン注入を行うものである。Pチャネル
トランジスタにおいては、通常埋め込みチャネル構造と
なるため、ショートチャネル効果があられれやすい。そ
のためゲート電極側面に側壁スペーサを形成した後にソ
ース・ドレイン形成のためのイオン注入を行い、実効チ
ャネル長を大きくしている。
Conventional technology Semiconductor devices are becoming increasingly miniaturized, and CMO8, which has both N-channel and P-channel transistors,
Various problems are also occurring in integrated circuits. In N-channel transistors, deterioration of characteristics due to hot carrier generation poses a problem. Therefore, an Lightly Doped Draln structure (hereinafter referred to as an LDD structure) that weakens the electric field near the drain is increasingly being adopted. In this LDD structure, after forming a gate electrode, ion implantation is performed to form an n'' layer, then sidewall spacers Jt are formed on the side surfaces of the gate electrode, and ion implantation is performed to form a source/drain n4 diffusion layer. P-channel transistors usually have a buried channel structure, so they are prone to short channel effects.Therefore, after forming sidewall spacers on the sides of the gate electrode, ion implantation is performed to form the source and drain, increasing the effective channel length. are doing.

以下に上記の構造を採用した従来例について述べる。第
2図(a)〜(C)に従来例の断面図を主な工程の順に
示している。例えばP型Si基板1上にNウェル2、フ
ィールド酸化膜3を形成した後、例えば膜厚15nmの
ゲート酸化膜4上にn4多結晶シリコンを堆積し、ゲー
ト電極5を形成する[第2図(a)]。次に、Nウェル
2を形成していないNチャネル領域にLDD構造のため
のn−拡散層形成を、例えば燐をドーズ量2×10”c
m−”でイオン注入して行う。その後CVD法により例
えば膜厚250nmのSiOagを堆積し、この膜に対
して例えばCHF sガスによる異方性を持つ反応性イ
オンエツチングを施すことにより、ゲート電極5側面に
側壁スペーサ11を形成する[第2図(b)コ。この状
態でNチャネル領域には例えば砒素を4X10”cm−
”のドーズ量で、Nウェル中のPチャネル領域には例え
ばBF2イオンを3X10Iscm−”のドーズ量でイ
オン注入し、熱処理を行うことにより、それぞれのソー
ス−ドレイン領域8.10を形成する[第2図(C)]
A conventional example employing the above structure will be described below. FIGS. 2(a) to 2(C) show sectional views of a conventional example in the order of main steps. For example, after forming an N well 2 and a field oxide film 3 on a P-type Si substrate 1, N4 polycrystalline silicon is deposited on a gate oxide film 4 with a thickness of 15 nm, for example, to form a gate electrode 5 [Fig. (a)]. Next, an n-diffusion layer for the LDD structure is formed in the N-channel region where the N-well 2 is not formed, for example, by dosing phosphorus at a dose of 2×10”c.
This is done by ion implantation with 250 nm thick film by CVD method, and this film is subjected to anisotropic reactive ion etching using, for example, CHF s gas to form the gate electrode. Sidewall spacers 11 are formed on the 5 sides [FIG. 2(b)]. In this state, for example, arsenic is applied to the N channel region at a thickness of 4 x 10" cm.
For example, BF2 ions are implanted into the P channel region in the N well at a dose of 3×10 Iscm-, and heat treatment is performed to form respective source-drain regions 8.10. Figure 2 (C)]
.

この後、層間絶縁膜を形成し、コンタクト孔を開孔して
、例えばA1合金による配線層を形成するとトランジス
タは完成する。
Thereafter, an interlayer insulating film is formed, a contact hole is opened, and a wiring layer made of, for example, an A1 alloy is formed to complete the transistor.

以上のような従来の方法によれば、Nチャネルトランジ
スタにおいてはLDD構造が実現され、Pチャネルトラ
ンジスタにおいては側壁スペーサ11の存在により実効
チャネル長を大きくすることができる。
According to the conventional method as described above, an LDD structure is realized in the N-channel transistor, and the effective channel length can be increased in the P-channel transistor due to the presence of the sidewall spacer 11.

発明が解決しようとする課題 しかしながら上に述べた方法によれば、ゲート電極5側
面に形成した側壁スペーサ11の幅(断面表示における
厚みをさし、以下スペーサ幅と呼ぶ)が両チャネルに共
通となっているため、必ずしもそれぞれのチャネルに対
して適切なスペーサ幅となっていない。Nチャネルトラ
ンジスタにおけるLDD構造では、スペーサ幅が大きい
とn−拡散層が長くなり、ソース争ドレインへの直列抵
抗の付加が大きくなる。逆に、スペーサ幅が小さすぎる
と電界緩和効果が得られないが、ある程度のスペーサ幅
があれば電界緩和効果が得られる。
Problems to be Solved by the Invention However, according to the method described above, the width of the sidewall spacer 11 formed on the side surface of the gate electrode 5 (referring to the thickness in cross-sectional view, hereinafter referred to as spacer width) is common to both channels. Therefore, the spacer width is not necessarily appropriate for each channel. In the LDD structure of an N-channel transistor, if the spacer width is large, the n-diffusion layer becomes long, and the addition of series resistance between the source and the drain becomes large. Conversely, if the spacer width is too small, the electric field relaxation effect cannot be obtained, but if the spacer width is to a certain extent, the electric field relaxation effect can be obtained.

一方、Pチャネルトランジスタにおいては、スペーサ幅
の増加によって実効チャネル長が増大し、ショートチャ
ネル効果が抑えられる。したがって、それぞれのチャネ
ルにより最適なスペーサ幅が存在するので、別々にスペ
ーサ幅を設定できることが望まれる。
On the other hand, in a P-channel transistor, increasing the spacer width increases the effective channel length and suppresses the short channel effect. Therefore, since there is an optimal spacer width for each channel, it is desirable to be able to set the spacer widths separately.

そこで、本発明はNチャネルとPチャネルの両トランジ
スタがそれぞれ最適な状態で形成された半導体装置およ
びその製造方法を提供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor device in which both N-channel and P-channel transistors are formed in optimal conditions, and a method for manufacturing the same.

課題を解決するための手段 本発明の技術的手段は、ソース書ドレイン領域形成のた
めの自己整合的なイオン注入のマスクとなる側壁スペー
サの幅を、NチャネルとPチャネルのそれぞれのトラン
ジスタで別々に設定することである。
Means for Solving the Problems The technical means of the present invention is to separate the widths of sidewall spacers, which serve as masks for self-aligned ion implantation for forming source write/drain regions, for N-channel and P-channel transistors. It is to set it to .

作用 本発明によれば前記した構造により、Nチャネルトラン
ジスタの特性の最適化とPチャネルトランジスタの特性
の最適化がそれぞれ独立に行え、両トランジスタとも最
適の特性が得られるようになる。
According to the present invention, with the above-described structure, the characteristics of the N-channel transistor and the P-channel transistor can be optimized independently, and the optimal characteristics can be obtained for both transistors.

実施例 本発明の実施例の断面図を第1図(a)〜(c)に示し
た。以下に工程の順を追って説明する。
Embodiment Cross-sectional views of an embodiment of the present invention are shown in FIGS. 1(a) to 1(c). The steps will be explained step by step below.

例えばP型Si基板1上にNウェル2、フィールド酸化
r!X3を形成した後、例えば膜厚15nmゲート酸化
膜4上にn4多結晶シリコンを堆積し、ゲート電極5を
形成し、Nチャネル領域にLDD構造のためのn−拡散
層形成を、例えば燐をドーズff12X 10”cm−
2でイオン注入して行う工程までは従来例と同様である
。次に、CVD法により例えば膜厚150nmの5in
2膜を堆積し、この膜に対して例えばCHF aガスに
よる異方性を持つ反応性イオンエツチングを施すことに
より、ゲート電極5の側面に約150nmの幅を持つ第
1の側壁スペーサ7を形成する[第1図(a)]。
For example, on a P-type Si substrate 1, an N well 2 and a field oxidation r! After forming X3, for example, N4 polycrystalline silicon is deposited on the gate oxide film 4 with a film thickness of 15 nm, a gate electrode 5 is formed, and an n- diffusion layer for an LDD structure is formed in the N channel region by, for example, phosphorus. Dose ff12X 10”cm-
The steps up to step 2 of ion implantation are the same as in the conventional example. Next, for example, a 5-inch film with a film thickness of 150 nm is formed by the CVD method.
A first sidewall spacer 7 having a width of about 150 nm is formed on the side surface of the gate electrode 5 by depositing two films and subjecting this film to anisotropic reactive ion etching using, for example, CHFa gas. [Figure 1(a)].

ゲート電極5と第1の側壁スペーサ7とを自己整合的な
イオン注入のマスクとして、Nチャネル領域のみに例え
ば砒素を4X 10I′cm−’のドーズ量でイオン注
入する[第1図(b)コ0 さらに1CVD法により例
えば膜厚150nmのS i 02膜を堆積し、これに
異方性エツチングを施すことにより、第1の側壁スペー
サ7の外側に約150nmの幅を持つ第2の側壁スペー
サ9を形成し、ゲート電極5と第1の側壁スペーサ7と
第2の側壁スペーサ9とを自己整合的なイオン注入のマ
スクとして、Pチャネル領域にのみ例えばBF2イオン
を3X 10”cm”のドーズ量でイオン注入する。
Using the gate electrode 5 and the first sidewall spacer 7 as a mask for self-aligned ion implantation, ions of arsenic, for example, are implanted only into the N channel region at a dose of 4×10 I'cm [FIG. 1(b)] Further, by depositing a SiO2 film with a thickness of, for example, 150 nm by CVD method and subjecting it to anisotropic etching, a second side wall spacer having a width of about 150 nm is formed outside the first side wall spacer 7. 9, and using the gate electrode 5, the first sidewall spacer 7, and the second sidewall spacer 9 as masks for self-aligned ion implantation, for example, BF2 ions are implanted only in the P channel region at a dose of 3×10 cm. ions are implanted in large amounts.

その後熱処理を行うことにより、それぞれのチャネルの
トランジスタのソース・ドレイン領域8.10を形成す
る[第2図(C)]。さらに、層間絶縁膜を形成し、コ
ンタクト孔を開孔して、例えばA1合金による配線層を
形成してトランジスタを完成させる工程は従来例と同様
である。
Thereafter, a heat treatment is performed to form source/drain regions 8.10 of transistors of each channel [FIG. 2(C)]. Further, the steps of forming an interlayer insulating film, opening contact holes, and forming a wiring layer made of, for example, A1 alloy to complete the transistor are the same as in the conventional example.

以上のように、本実施例によれば、Nチャネルトランジ
スタとPチャネル−トランジスタとの自己整合的なソー
ス・ドレインへのイオン注入のマスクとしてそれぞれ異
なる側壁スペーサ幅を設定できる。すなわち、上記の例
でいえば自己整合的なイオン注入のマスクの幅は、Nチ
ャネルでは、ゲート電極5に第1の側壁スペーサ7の幅
を加えたものとなり、PチャネルではNチャネルのマス
ク幅にさらに第2の側壁スペーサ9の幅を加えたものと
なっている。
As described above, according to this embodiment, different sidewall spacer widths can be set as masks for self-aligned ion implantation into the sources and drains of an N-channel transistor and a P-channel transistor. That is, in the above example, the width of the mask for self-aligned ion implantation is the width of the gate electrode 5 plus the width of the first sidewall spacer 7 for the N channel, and the width of the mask for the N channel for the P channel. , plus the width of the second side wall spacer 9.

なお、実施例において第1の側壁スペーサ7のスペーサ
幅を約150nmとし、第2の側壁スペーサ9のスペー
サ幅を約150nmとしたが、最適なスペーサ幅はトラ
ンジスタのゲート酸化膜の膜厚や基板の不純物プロファ
イル等により異なるので、上記のスペーサ幅がすべての
トランジスタに有効というわけではなく、スペーサ幅は
変えてもよいことは言うまでもない。
In the example, the spacer width of the first sidewall spacer 7 was approximately 150 nm, and the spacer width of the second sidewall spacer 9 was approximately 150 nm, but the optimal spacer width depends on the thickness of the gate oxide film of the transistor and the substrate. It goes without saying that the above spacer width is not effective for all transistors because it differs depending on the impurity profile, etc., and that the spacer width may be changed.

発明の詳細 な説明したように、本発明によれば、NチャネルとPチ
ャネルのそれぞれのトランジスタのソース・ドレイン形
成のためのイオン注入において、自己整合的なイオン注
入のマスクの幅をチャネルごとに独立に設定することが
でき、その結果、NチャネルにおいてはLDD構造のR
適化が図られ、またPチャネルトランジスタにおいては
実効チャネル長の増大によるショートチャネル効果の改
善が図られるので、その実用的効果は大きい。
As described in detail, according to the present invention, in ion implantation for forming sources and drains of N-channel and P-channel transistors, the width of a self-aligned ion implantation mask is adjusted for each channel. can be set independently, and as a result, in the N channel, the R of the LDD structure
This has a great practical effect because optimization is achieved, and in the case of P-channel transistors, the short channel effect is improved by increasing the effective channel length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における実施例を工程順に示した半導体
装置の断面図、第2図は従来例を工程順に示した半導体
装置の断面図である。 1・・・・P型St基板、2・・・・Nウェル、5・・
・・ゲート電極、6・・・・n−拡散層、7・・・・第
1の側壁スペーサ、8・・・・n″″拡散層、9・・・
・第2の側壁スペーサ、10・・・・p4拡散層、11
・・・・側壁スペーサ。 代理人の氏名 弁理士 中尾敏男 はが1名ト  ト Φ 派      − 1Ω                       
          ′−〇 ヘ          リ
FIG. 1 is a cross-sectional view of a semiconductor device showing an embodiment of the present invention in the order of steps, and FIG. 2 is a cross-sectional view of a semiconductor device showing a conventional example in the order of steps. 1...P type St substrate, 2...N well, 5...
...gate electrode, 6...n-diffusion layer, 7...first sidewall spacer, 8...n'' diffusion layer, 9...
・Second sidewall spacer, 10...p4 diffusion layer, 11
...Side wall spacer. Name of agent: Patent attorney Toshio Nakao, 1 person, Φ faction − 1Ω
′−〇Heli

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上にNチャネル、Pチャネルの両MO
Sトランジスタを有し、ゲート電極側面に形成され、ソ
ース・ドレイン領域形成のための自己整合的なイオン注
入のマスクとなる側壁スペーサの幅をそれぞれのチャネ
ルごとに設定することを特徴とする半導体装置。
(1) Both N-channel and P-channel MO on a semiconductor substrate
A semiconductor device having an S transistor, characterized in that the width of a sidewall spacer formed on a side surface of a gate electrode and serving as a mask for self-aligned ion implantation for forming a source/drain region is set for each channel. .
(2)半導体基板上のゲート電極側面に第1の側壁スペ
ーサを形成し、Nチャネルトランジスタのソース・ドレ
イン形成のためのイオン注入を行った後、前記第1の側
壁スペーサの外側に第2の側壁スペーサを形成し、Pチ
ャネルトランジスタのソース・ドレイン形成のためのイ
オン注入を行うことを特徴とする半導体装置の製造方法
(2) After forming a first sidewall spacer on the side surface of the gate electrode on the semiconductor substrate and performing ion implantation to form the source and drain of an N-channel transistor, a second sidewall spacer is formed on the outside of the first sidewall spacer. A method of manufacturing a semiconductor device, comprising forming sidewall spacers and performing ion implantation to form a source and drain of a P-channel transistor.
JP63113935A 1988-05-11 1988-05-11 Semiconductor device and preparation thereof Pending JPH01283956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113935A JPH01283956A (en) 1988-05-11 1988-05-11 Semiconductor device and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113935A JPH01283956A (en) 1988-05-11 1988-05-11 Semiconductor device and preparation thereof

Publications (1)

Publication Number Publication Date
JPH01283956A true JPH01283956A (en) 1989-11-15

Family

ID=14624885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113935A Pending JPH01283956A (en) 1988-05-11 1988-05-11 Semiconductor device and preparation thereof

Country Status (1)

Country Link
JP (1) JPH01283956A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110003A (en) * 1991-10-16 1993-04-30 Nec Corp Semiconductor integrated circuit device and manufacture thereof
US5296401A (en) * 1990-01-11 1994-03-22 Mitsubishi Denki Kabushiki Kaisha MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof
JPH06268165A (en) * 1991-02-27 1994-09-22 Samsung Electron Co Ltd Preparation of semiconductor transistor and its structure
JPH06342884A (en) * 1991-07-09 1994-12-13 Samsung Electron Co Ltd Mos semiconductor device and its manufacture
JPH07122649A (en) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Fabrication of cmos transistor
JPH08321557A (en) * 1995-05-24 1996-12-03 Nec Corp Fabrication of cmos semiconductor device
KR100234700B1 (en) * 1996-11-27 1999-12-15 김영환 Manufacturing method of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593918A (en) * 1982-06-29 1984-01-10 Toshiba Corp Manufacture of complementary semiconductor device
JPS6484659A (en) * 1987-09-28 1989-03-29 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593918A (en) * 1982-06-29 1984-01-10 Toshiba Corp Manufacture of complementary semiconductor device
JPS6484659A (en) * 1987-09-28 1989-03-29 Toshiba Corp Manufacture of semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296401A (en) * 1990-01-11 1994-03-22 Mitsubishi Denki Kabushiki Kaisha MIS device having p channel MOS device and n channel MOS device with LDD structure and manufacturing method thereof
JPH06268165A (en) * 1991-02-27 1994-09-22 Samsung Electron Co Ltd Preparation of semiconductor transistor and its structure
JPH06342884A (en) * 1991-07-09 1994-12-13 Samsung Electron Co Ltd Mos semiconductor device and its manufacture
JPH05110003A (en) * 1991-10-16 1993-04-30 Nec Corp Semiconductor integrated circuit device and manufacture thereof
JPH07122649A (en) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Fabrication of cmos transistor
JPH08321557A (en) * 1995-05-24 1996-12-03 Nec Corp Fabrication of cmos semiconductor device
KR100234700B1 (en) * 1996-11-27 1999-12-15 김영환 Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JP2976197B2 (en) Method for manufacturing semiconductor device
US6221709B1 (en) Method of fabricating a CMOS integrated circuit device with LDD N-channel transistor and non-LDD P-channel transistor
JP2897004B2 (en) CMOSFET manufacturing method
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPS62242358A (en) Manufacture of optimized cmos fet circuit
JP2001156290A (en) Semiconductor device
JP2004508717A (en) Method and device for reducing gate induced drain leakage (GIDL) current in thin gate oxide MOSFETs
JPH01283956A (en) Semiconductor device and preparation thereof
JPH04218925A (en) Semiconductor device and manufacture thereof
JP3425043B2 (en) Method for manufacturing MIS type semiconductor device
JP2730535B2 (en) Method for manufacturing semiconductor device
JPH01259560A (en) Semiconductor integrated circuit device
JP2809080B2 (en) Method for manufacturing semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JPH10256549A (en) Semiconductor device and manufacture thereof
JPH0738095A (en) Semiconductor device and its manufacturing method
JPH0575045A (en) Manufacture of semiconductor device
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JPH06140590A (en) Manufacture of semiconductor device
JPS62130563A (en) Semiconductor device
JPH08186252A (en) Semiconductor device
JPH06196642A (en) Semiconductor device and manufacture thereof
JP2000091444A (en) Manufacture of semiconductor device
JPH0964361A (en) Manufacture of semiconductor device
JPH08250726A (en) Insulated gate field-effect transistor and manufacturing method thereof