JPH01283374A - Method for depositing thin aluminum film - Google Patents

Method for depositing thin aluminum film

Info

Publication number
JPH01283374A
JPH01283374A JP11434388A JP11434388A JPH01283374A JP H01283374 A JPH01283374 A JP H01283374A JP 11434388 A JP11434388 A JP 11434388A JP 11434388 A JP11434388 A JP 11434388A JP H01283374 A JPH01283374 A JP H01283374A
Authority
JP
Japan
Prior art keywords
aluminum
growth
film
substrate
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11434388A
Other languages
Japanese (ja)
Inventor
Chiaki Sasaoka
千秋 笹岡
Kazuo Mori
一男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11434388A priority Critical patent/JPH01283374A/en
Publication of JPH01283374A publication Critical patent/JPH01283374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow a thin Al film having a low concn. of carbon at a low temp. by using an organometallic compd. having one or two Al-Cl bonds in the molecule as starting material in vapor growth of Al with an organometallic compd. CONSTITUTION:When a thin Al film is deposited by a vapor growth method with an organometallic compd., an organometallic compd. having one or two Al-Cl bonds in the molecule is used as starting material. This compd. is converted into Al chloride by thermal decomposition and Al is produced from the Al chloride by a disproportionation reaction. Since this reaction does not take place in the presence of an added org. group, the resulting Al film is hardly contaminated by carbon. In the case where diethylaluminum chloride is used as the organometallic compd., the growth temp. can be reduced and selective growth can be carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミニウム薄膜の堆積方法詳しくは有機金属
気相成長方法にかかる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method of depositing an aluminum thin film, and more particularly to a metal organic vapor phase epitaxy method.

(従来の技術) 半導体素子の集積度が高くなるにしたがい、より高度な
微細加工技術が要求されるようになった。例えば16M
ビットDRAMではサブミクロンの精度が必要となる。
(Prior Art) As the degree of integration of semiconductor devices increases, more advanced microfabrication techniques are required. For example 16M
Bit DRAM requires submicron precision.

特に微細配線技術は素子サイズに直接影響を与えること
からますます重要になってきている。配線材料にはアル
ミニウムが用いられることが多いが、従来は蒸着により
アルミニウム堆積を行なってきた。しかし加工精度がサ
ブミクロンになると、蒸着法ではコンタクトホールを埋
めきることができない等の問題点が生じる。また選択成
長も不可能であった。このため気相成長法(Chemi
cal Vapor Deposition; CVD
)によりアルミニウムを堆積することが近年試みられて
いる。アルミニウムCVDのソースとして有機アルミニ
ウム、例えばトリメチルアルミニウム(TMA)、トリ
イソブチルアルミニウム(TIBA)などが用いられる
ことが多い。
In particular, fine wiring technology is becoming increasingly important as it directly affects device size. Aluminum is often used as a wiring material, and conventionally aluminum has been deposited by vapor deposition. However, when the processing precision becomes sub-micron, problems arise such as the inability to completely fill the contact hole using the vapor deposition method. Also, selective growth was not possible. For this reason, the vapor phase growth method (Chemi)
cal vapor deposition; CVD
) has recently been attempted to deposit aluminum. Organic aluminum, such as trimethylaluminum (TMA) and triisobutylaluminum (TIBA), is often used as a source for aluminum CVD.

(発明が解決しようとする問題点) TMAをソースとしたアルミニウムCVDの場合、分解
温度が高いため成長温度が高くなるという欠点があった
。また成長層のカーボン汚染がかなりあり、抵抗率等に
影響を与える。プラズマCVD等の手法により成長温度
の低下が試みられているが、カーボン汚染については改
善されていない。
(Problems to be Solved by the Invention) In the case of aluminum CVD using TMA as a source, there is a drawback that the growth temperature is high due to the high decomposition temperature. In addition, there is considerable carbon contamination in the grown layer, which affects resistivity and the like. Attempts have been made to lower the growth temperature using techniques such as plasma CVD, but carbon contamination has not been improved.

また選択成長は困難である。Also, selective growth is difficult.

一方これらの問題点を解決するものとしてTIBAをソ
ースとした成長が行なわれており、低)話でかつカーボ
ン汚染の少ない膜が得られている。
On the other hand, as a solution to these problems, growth using TIBA as a source has been carried out, and a film with low carbon pollution and less carbon contamination has been obtained.

しかし、原料の蒸気圧が40’CにおいてITorrと
低く、また50°Cにすると蒸気圧の低いジイソブチル
アルミニウムハイドライドに分解してしまうなどの問題
点があり、成長装置、条件などの制約が多い。
However, there are problems in that the vapor pressure of the raw material is as low as ITorr at 40'C, and it decomposes into diisobutylaluminum hydride, which has a low vapor pressure at 50°C, and there are many restrictions on the growth equipment, conditions, etc.

(問題を解決するための手段) 本発明は、アルミニウムを含む有機金属を基板上で熱分
解させ、上記基板上にアルミニウムを堆積させるアルミ
ニウムの有機金属気相成長法(MOCVD)において、
アルミニウムと塩素原子の結合を1個または2個含むよ
うな有機金属を原料とすることを特徴としたアルミニウ
ム薄膜の堆積方法を提供するものである。
(Means for Solving the Problems) The present invention provides an aluminum metal organic chemical vapor deposition method (MOCVD) in which an organic metal containing aluminum is thermally decomposed on a substrate and aluminum is deposited on the substrate.
The present invention provides a method for depositing an aluminum thin film, characterized in that an organic metal containing one or two bonds between aluminum and chlorine atoms is used as a raw material.

(作用) アルミニウムと塩素原子の結合を1個または2個含む有
機金属は、熱分解によりAlClまたはAlCl2とな
る。これらのアルミニウム塩化物からは3AIC1→2
A1 + AlCl3 3AICI。→A1+2AIC13 なる不均等化反応によりアルミニウムが生成する。これ
らの不均等化反応は有機基が付加した状態ではおきない
ため、この反応により生成、堆積したアルミニウム膜は
カーボンによる汚染の少ないものとなる。これに対し塩
素原子との結合を含まない有機アルミニウム化合物の場
合、完全に熱分解せず有機基がついた状態でも堆積する
ためカーホン汚染が多くなる。
(Function) An organic metal containing one or two bonds between aluminum and chlorine atoms becomes AlCl or AlCl2 by thermal decomposition. From these aluminum chlorides, 3AIC1→2
A1 + AlCl3 3AICI. →A1+2AIC13 Aluminum is produced by the disproportionation reaction. Since these unequalization reactions do not occur in a state where organic groups are added, the aluminum film produced and deposited by this reaction is less contaminated by carbon. On the other hand, in the case of organoaluminum compounds that do not contain bonds with chlorine atoms, they do not completely thermally decompose and are deposited even with organic groups attached, resulting in increased carphone contamination.

さらにジエチルアルミニウムクロライド((C2I−I
5)2AICI; DEAICI)をソースとした場合
、成長)温度の低温化および選択成長が可能となる。図
1はアルミニウム基板上にDEAICIを供給したとき
の生成炭化水素のマススペクトルであるが、この場合D
EAICIはアルミニウム基板表面での触媒作用によっ
でβ解離により分解しC2H4を生成する。β解離によ
る分解は活性化エネルギーが低いため低温での成長が可
能となる。一方5102上にDEAICIを供給したと
きは、図2に示すようにラジカル解裂によりC4H1o
を生成する。ラジカル解裂による分解の活性化エネルギ
ーはβ解離より高いのでβ解離に比べより高い分解温度
が必要になる。したがってアルミニウム基板上でのβ解
離は起きるが、5102上でのラジカル解裂は起きない
温度で成長を行なうことにより、アルミニウム基板上の
みに選択的に成長することが可能となる。同様にGaA
sや81基板表面でもアルミニウム基板表面のような触
媒作用があるため、選択的にアルミニウムを成長させる
ことができる。またラジカル解裂が起きる温度で成長す
ることにより選択性のない成長を行なうことも可能であ
る。
Furthermore, diethylaluminum chloride ((C2I-I
5) When 2AICI; DEAICI) is used as a source, lowering the growth temperature and selective growth are possible. Figure 1 shows the mass spectrum of hydrocarbons produced when DEAICI is supplied onto an aluminum substrate; in this case, D
EAICI is decomposed by β dissociation by catalytic action on the aluminum substrate surface to generate C2H4. Decomposition by β dissociation has a low activation energy, making growth possible at low temperatures. On the other hand, when DEAICI was supplied onto 5102, C4H1o
generate. Since the activation energy for decomposition due to radical dissociation is higher than that for β dissociation, a higher decomposition temperature is required than for β dissociation. Therefore, by performing growth at a temperature where β dissociation occurs on the aluminum substrate but radical decomposition on 5102 does not occur, it becomes possible to grow selectively only on the aluminum substrate. Similarly, GaA
Since the surface of the S and 81 substrates has the same catalytic effect as the surface of the aluminum substrate, aluminum can be selectively grown. It is also possible to perform non-selective growth by growing at a temperature at which radical decomposition occurs.

(実施例) 以下本発明について実施例を示す図面を参照して説明す
る。
(Example) The present invention will be described below with reference to drawings showing examples.

第3図は本発明に基づくアルミニウム薄膜堆積装置の概
略である。DEAICIIは水素キャリアカス2により
バブルされ反応・管3に導入した。水素キャリアガス2
の流量は流量制御器4により制御した。
FIG. 3 is a schematic diagram of an aluminum thin film deposition apparatus according to the present invention. DEAIC II was bubbled by the hydrogen carrier gas 2 and introduced into the reaction tube 3. Hydrogen carrier gas 2
The flow rate of was controlled by a flow rate controller 4.

DEAICIIは恒温槽5により60°Cに保たれる。DEAIC II is maintained at 60°C in a constant temperature bath 5.

途中配管はDEAICIの析出を防ぐためヒーター6に
より80°Cに昇温した。基板7はカーボンサセプタ8
上におかれ、高周波加熱により成長温度まで昇温される
。反応管3は圧力制御器9、ポンプ10およびコン)・
ロールバルブ11により100Torrに保った。
The temperature of the intermediate piping was raised to 80°C using a heater 6 to prevent the precipitation of DEAICI. Substrate 7 is carbon susceptor 8
The temperature is raised to the growth temperature by high-frequency heating. The reaction tube 3 is equipped with a pressure controller 9, a pump 10 and a controller).
The pressure was maintained at 100 Torr using a roll valve 11.

DEAICIのキャリア水素は400SCCMとし、全
水素流量を28LMとした。基板には半絶縁性GaAs
(100)基板、5i(100)n型基板、および5i
(100)基板に5i02を3000人堆積したものを
用い、成長温度300°C13500C1450°Cに
おいて30分間成長を行った。
The carrier hydrogen of DEAICI was 400 SCCM, and the total hydrogen flow rate was 28 LM. The substrate is semi-insulating GaAs
(100) substrate, 5i (100) n-type substrate, and 5i
Using a (100) substrate with 3,000 deposits of 5i02, growth was performed for 30 minutes at a growth temperature of 300°C, 13500°C, and 1450°C.

450°Cにおける成長ではGaAs、 Si、31(
8102)基板のいずれにもアルミニウムの堆積がみら
れた。段差計による膜厚測定では、成長層は基板によら
ず約200OAであった。一方350°Cで成長を行な
った場合、5102をつけた基板上にはアルミニウムの
堆積はみられなかった。GaAs、 Si上のアルミニ
ウム膜厚は約1oooAであった。また300°Cで成
長したものは、350°Cの時と同様GaAs、 Si
基板上にのみアルミニウムが堆積したが、膜厚は500
人であった。
For growth at 450°C, GaAs, Si, 31(
8102) Aluminum deposition was observed on both substrates. The thickness of the grown layer was approximately 200 OA, regardless of the substrate, according to film thickness measurement using a step meter. On the other hand, when growth was performed at 350°C, no aluminum deposition was observed on the substrate with 5102 attached. The aluminum film thickness on GaAs and Si was about 1oooA. Also, those grown at 300°C are similar to those grown at 350°C, such as GaAs and Si.
Aluminum was deposited only on the substrate, but the film thickness was 500 mm.
It was a person.

3500Gで成長した膜を2次イオン質量分析法(SI
MS)により分析した結果、アルミニウム膜中のカーボ
ン濃度は0.1%以下であり、カーボン汚染の少ないア
ルミニウム薄膜が得られた。
The film grown at 3500G was subjected to secondary ion mass spectrometry (SI
As a result of analysis by MS), the carbon concentration in the aluminum film was 0.1% or less, and an aluminum thin film with little carbon contamination was obtained.

実施例では減圧下での成長例を示したが本成長法におけ
る選択性は基板表面の触媒作用に起因するものであり、
常圧下の成長でも同様の効果が得られる。また同じ理由
から、高周波加熱炉のかわりにホットウォール類を用い
ることもできる。また原料ガスとしてはDEAICIを
用いたが、これ以外の原料ガス例えばジメチルアルミニ
ウムクロライド、エチルアルミニウムジクロライド、メ
チルアルミニウムジクロライドなどのA1塩素結合を持
つ種々有機金属原料を用いることができる。
In the example, an example of growth under reduced pressure was shown, but the selectivity in this growth method is due to the catalytic action of the substrate surface.
A similar effect can be obtained by growth under normal pressure. Also, for the same reason, hot walls can be used instead of the high frequency heating furnace. Although DEAICI was used as the raw material gas, various organic metal raw materials having an A1 chlorine bond such as dimethylaluminum chloride, ethylaluminum dichloride, methylaluminum dichloride, etc. can be used.

(発明の効果) 本成長法によれば、カーボン濃度の低いアルミニウム薄
膜を低温で成長させることができ、成長条件により選択
成長も可能となる。このため半導体素子の配線材料など
の用途に適する。
(Effects of the Invention) According to this growth method, an aluminum thin film with a low carbon concentration can be grown at a low temperature, and selective growth is also possible depending on the growth conditions. Therefore, it is suitable for applications such as wiring materials for semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はA1基板上にDEAICIを供給したときに生
成される炭化水素のマススペクトル。 第2図は8102基板上にDEAICIを供給したとき
に生成される炭化水素のマススペクトル。 第3図は本発明にかかる実施例を示す概略図。 I   DEAICI 2  キャリア水素 3  反応管 4 流量制御器 5  恒温槽 6  ヒーター 7  基板 8  カーボンサセプタ 9 圧力制御器 10  ポンプ 11  コントロールバルブ
Figure 1 shows the mass spectrum of hydrocarbons produced when DEAICI is supplied onto an A1 substrate. Figure 2 shows the mass spectrum of hydrocarbons produced when DEAICI is supplied onto the 8102 substrate. FIG. 3 is a schematic diagram showing an embodiment according to the present invention. I DEAICI 2 Carrier hydrogen 3 Reaction tube 4 Flow rate controller 5 Constant temperature chamber 6 Heater 7 Substrate 8 Carbon susceptor 9 Pressure controller 10 Pump 11 Control valve

Claims (1)

【特許請求の範囲】 1)アルミニウムを含む有機金属を熱分解させアルミニ
ウム薄膜を堆積させるアルミニウムの有機金属気相成長
法(MOCVD)において、分子内にアルミニウムと塩
素原子の結合を1または2つもつ有機金属を原料とする
ことを特徴とするアルミニウム薄膜の堆積方法。 2)原料有機金属がジエチルアルミニウムクロライドで
あることを特徴とする特許請求の範囲第1項に記載のア
ルミニウム薄膜の堆積方法。
[Claims] 1) In metal organic chemical vapor deposition (MOCVD) of aluminum, which deposits an aluminum thin film by thermally decomposing an organic metal containing aluminum, an aluminum compound having one or two bonds between aluminum and chlorine atoms in the molecule A method for depositing an aluminum thin film characterized by using an organic metal as a raw material. 2) The method for depositing an aluminum thin film according to claim 1, wherein the organic metal source is diethylaluminum chloride.
JP11434388A 1988-05-10 1988-05-10 Method for depositing thin aluminum film Pending JPH01283374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11434388A JPH01283374A (en) 1988-05-10 1988-05-10 Method for depositing thin aluminum film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11434388A JPH01283374A (en) 1988-05-10 1988-05-10 Method for depositing thin aluminum film

Publications (1)

Publication Number Publication Date
JPH01283374A true JPH01283374A (en) 1989-11-14

Family

ID=14635393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11434388A Pending JPH01283374A (en) 1988-05-10 1988-05-10 Method for depositing thin aluminum film

Country Status (1)

Country Link
JP (1) JPH01283374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492734A (en) * 1991-02-04 1996-02-20 Canon Kabushiki Kaisha Method of forming deposition film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589467A (en) * 1978-12-27 1980-07-07 Nec Corp Growth of aluminum in gaseous phase
JPS62186528A (en) * 1986-02-13 1987-08-14 Canon Inc Deposited film forming method
JPH01252776A (en) * 1988-03-31 1989-10-09 Sony Corp Formation of aluminum film by vapor growth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589467A (en) * 1978-12-27 1980-07-07 Nec Corp Growth of aluminum in gaseous phase
JPS62186528A (en) * 1986-02-13 1987-08-14 Canon Inc Deposited film forming method
JPH01252776A (en) * 1988-03-31 1989-10-09 Sony Corp Formation of aluminum film by vapor growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492734A (en) * 1991-02-04 1996-02-20 Canon Kabushiki Kaisha Method of forming deposition film

Similar Documents

Publication Publication Date Title
US11244825B2 (en) Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11967488B2 (en) Method for treatment of deposition reactor
US20210225643A1 (en) Method for deposition of silicon nitride layer using pretreatment, structure formed using the method, and system for performing the method
JP2021038459A (en) Chalcogenide film, and method and device for depositing structure including the same
KR20230119083A (en) Method and system for treatment of deposition reactor
US5695819A (en) Method of enhancing step coverage of polysilicon deposits
US7393783B2 (en) Methods of forming metal-containing structures
EP1842231A2 (en) Micro-feature fill process and apparatus using hexachlorodisilane or other chlorine-containing silicon precursor
US6106898A (en) Process for preparing nitride film
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
EP1189706A1 (en) Method and apparatus for metal oxide chemical vapor deposition on a substrate surface
JPH01283374A (en) Method for depositing thin aluminum film
JPH01252776A (en) Formation of aluminum film by vapor growth
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
TWI747943B (en) System for treatment of deposition reactor
JP3251990B2 (en) Al or Al alloy film forming method
US6743474B1 (en) Method for growing thin films
WO2021158633A2 (en) Precursors for high-temperature deposition of silicon-containing films
JPH02200781A (en) Method for depositing aluminum thin film
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JPS62185878A (en) Method for growing metal in vapor phase
JPH04192323A (en) Manufacture of semiconductor device
JPH0445273A (en) Selective formation of thin al film
Davis et al. Growth, nitrogen vacancy reduction and solid solution formation in cubic GaN thin films and the subsequent fabrication of superlattice structures using AlN and InN
JPS6251212A (en) Metal-organic chemical vapor deposition