JPH0128332B2 - - Google Patents

Info

Publication number
JPH0128332B2
JPH0128332B2 JP55145617A JP14561780A JPH0128332B2 JP H0128332 B2 JPH0128332 B2 JP H0128332B2 JP 55145617 A JP55145617 A JP 55145617A JP 14561780 A JP14561780 A JP 14561780A JP H0128332 B2 JPH0128332 B2 JP H0128332B2
Authority
JP
Japan
Prior art keywords
load cell
acceleration
piezo
vibration
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55145617A
Other languages
Japanese (ja)
Other versions
JPS5769229A (en
Inventor
Tatsumi Ando
Susumu Takada
Masayoshi Harashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP14561780A priority Critical patent/JPS5769229A/en
Publication of JPS5769229A publication Critical patent/JPS5769229A/en
Publication of JPH0128332B2 publication Critical patent/JPH0128332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/36Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • G01N2203/0051Piezoelectric means

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 本発明は、防振ゴムのバネ定数、ダンピング係
数を測定するための防振ゴムの動的特性測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic characteristic measuring device for vibration isolating rubber for measuring the spring constant and damping coefficient of vibration isolating rubber.

一般に、上記ダンピング係数C、バネ定数K
は、防振ゴムに加振機により繰返し動的荷重Fを
加えたときのこの動的荷重Fに基く防振ゴムの変
位X〓、変位速度X及び加速度X〓により、次の運動
方程式から求められる。Mは防振ゴムの質量であ
る。
Generally, the above damping coefficient C, spring constant K
is obtained from the following equation of motion using the displacement X〓, displacement speed X, and acceleration It will be done. M is the mass of the vibration-proof rubber.

F=MX¨+CX+KX〓 このために、防振ゴムの動的特性を測定するた
めの装置は、防振ゴムの動的荷重を計測する荷重
センサーと、防振ゴムのたわみを計測するセンサ
ーとを最低備える必要があるが、従来は、荷重セ
ンサーとして、固定の基礎と加振機との間に被験
体としての防振ゴムと共に加振軸方向に直列に配
置されたピエゾロードセルを使用しているのに対
し、後者のセンサーとしては、直線電圧差動トラ
ンス、速度検出器、加速度検出器などを使用して
いた。このように、両センサーに種類の異なるも
のを使用すると、両センサーの位相特性を合せる
ことが難しくなり、防振ゴムの動的特性を高精度
で測定する上での大きな障害となつていた。
F=MX¨+CX+KX〓 For this reason, the device for measuring the dynamic characteristics of the anti-vibration rubber includes a load sensor that measures the dynamic load on the anti-vibration rubber and a sensor that measures the deflection of the anti-vibration rubber. Conventionally, a piezo load cell is used as a load sensor, which is placed in series in the vibration axis direction with vibration isolating rubber as a test object between a fixed foundation and a vibration exciter. In contrast, the latter sensors used linear voltage differential transformers, speed detectors, acceleration detectors, etc. In this way, when different types of sensors are used, it becomes difficult to match the phase characteristics of both sensors, which becomes a major obstacle in measuring the dynamic characteristics of anti-vibration rubber with high precision.

また、上記差動トランスでは、復調回路やロー
パスフイルタを必要とするため、位相遅れや高域
での周波数特性に難がある。速度検出器は比較的
優れているが、加振機の全ストロークに亘つて計
測可能にするにはそれ丈長いものが必要で、しか
も高周波低振幅加振時のコア棒の横ブレの影響を
回避するのが難しい。上記加速度検出器には、ゲ
ージ型と圧電型とがあるが、ゲージ型は高域に難
があり、圧電型は大きな放電時定数のものがない
ため低域特性に難がある。
Further, since the differential transformer requires a demodulation circuit and a low-pass filter, it has problems with phase lag and frequency characteristics in high frequencies. Speed detectors are relatively good, but they need to be long to be able to measure the entire stroke of the exciter, and they also need to be long enough to avoid the effects of lateral wobbling of the core rod during high-frequency, low-amplitude excitation. Difficult to avoid. The above-mentioned acceleration detectors include a gauge type and a piezoelectric type, but the gauge type has difficulty in high frequency characteristics, and the piezoelectric type has difficulty in low frequency characteristics because it does not have a large discharge time constant.

このため、上述のようなセンサーを使用した従
来の装置では、防振ゴムの動的特性を高精度で測
定するのに必要とされる、例えば1Hzの低周波数
から例えば1KHzの高周波数までの理想的な周波
数特性を位相特性と一諸に得ることは不可能であ
つた。
For this reason, conventional devices using the above-mentioned sensors cannot achieve the ideal frequency range from a low frequency of, for example, 1 Hz to a high frequency of, for example, 1 KHz, which is required to measure the dynamic characteristics of anti-vibration rubber with high precision. It has been impossible to obtain both the typical frequency characteristics and the phase characteristics at the same time.

本発明は上述した点に鑑みてなされたもので、
その目的とするところは、低周波数から高周波数
まで理想的な周波数特性と位相特性とを有し、防
振ゴムの動的特性の高精度の測定を可能にする防
振ゴムの動的特性測定装置を提供することにあ
る。
The present invention has been made in view of the above points, and
The purpose of this is to measure the dynamic characteristics of anti-vibration rubber, which has ideal frequency and phase characteristics from low frequencies to high frequencies, and enables highly accurate measurement of the dynamic characteristics of anti-vibration rubber. The goal is to provide equipment.

この目的を達成するためになされた本発明によ
る防振ゴムの動的特性測定装置は、基礎と繰返し
荷重を発生する加振機の可動部との間に被験体と
しての防振ゴムと直列に配列した第1のピエゾロ
ードセルと前記可動部に取付けた前記第1のピエ
ゾロードセルと同種の第2のピエゾロードセル及
び該第2のピエゾロードセルに取付けたデツドマ
スからなり、前記第2のピエゾロードセルが発生
する動的荷重信号及び前記デツドマスの質量とに
より求められる加速度信号を発生する加速度セン
サーとを備え、前記第1のピエゾロードセルが発
生する動的荷重信号と前記加速度センサーが発生
する加速度信号とに基き防振ゴムの動的特性を測
定するようになされている。ピエゾロードセルは
一般に、2000秒程度の大きな放電時定数を有する
ものが容易に得られ、デツドマスの重量を変更す
ることによつて高域も5KHz程度まで充分適用で
きるため、低周波数から高周波数まで理想的な周
波数特性が得られ、しかも第1のピエゾロードセ
ルと同種の第2のピエゾロードセルにデツドマス
を取付けて構成した加速度センサーにより得られ
る加速度信号と第1のロードセルにより得られる
荷重信号との間の位相関係を容易に合せることが
できるため、理想的な位相特性も得られ、このこ
とにより、防振ゴムの動的特性を高精度に測定す
ることができるようになる。
In order to achieve this objective, the vibration isolating rubber dynamic characteristic measuring device according to the present invention is designed to connect the vibration isolating rubber as a test object in series between the foundation and the movable part of the vibrator that generates repeated loads. The second piezo load cell is composed of an array of first piezo load cells, a second piezo load cell of the same type as the first piezo load cell attached to the movable part, and a dead mass attached to the second piezo load cell, and the second piezo load cell generates electricity. and an acceleration sensor that generates an acceleration signal determined from a dynamic load signal generated by the first piezo load cell and the mass of the dead mass, the acceleration signal being generated based on the dynamic load signal generated by the first piezo load cell and the acceleration signal generated by the acceleration sensor. It is designed to measure the dynamic characteristics of anti-vibration rubber. In general, piezo load cells can be easily obtained with a large discharge time constant of about 2000 seconds, and by changing the weight of the dead mass, they can be applied to high frequencies up to about 5KHz, making them ideal from low to high frequencies. A frequency characteristic is obtained, and the difference between the acceleration signal obtained by an acceleration sensor configured by attaching a dead mass to a second piezo load cell of the same type as the first piezo load cell and the load signal obtained by the first load cell is obtained. Since the phase relationship can be easily matched, ideal phase characteristics can also be obtained, thereby making it possible to measure the dynamic characteristics of the anti-vibration rubber with high precision.

本発明の好ましい実施例では、加速度センサー
を可動部について対称な位置に複数配列し、これ
らの信号を相加平均して加速度信号を得るように
している。このため、被験体のアンバランスなど
によつて特に高域で加振機の可動部が横ブレして
も、相加平均して得た加速度信号は、各々のセン
サーの計測誤差が相殺された正確なものとなる。
In a preferred embodiment of the present invention, a plurality of acceleration sensors are arranged at symmetrical positions with respect to the movable part, and these signals are arithmetic averaged to obtain an acceleration signal. Therefore, even if the movable part of the vibrator shakes horizontally, especially in the high range, due to unbalance of the subject, the measurement errors of each sensor are canceled out in the arithmetic averaged acceleration signal. It will be accurate.

以下、本発明の実施例を図面について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による装置を一部破断して示
し、図中1は基礎Bに固定された第1のピエゾロ
ードセル、2は第1のピエゾロードセル1と同じ
ように基礎Bに対して固定して設置された加振
機、3は第1のピエゾロードセル1と同種の第2
のピエゾロードセルで、加振機2の可動部2aの
一端に固着して取付けられると共にこの第2のピ
エゾロードセル3に固着して取付けられたデツド
マス4と共に加速度センサーを構成している。5
は被験体としての防振ゴムで、加振機2の可動部
2aの他端の取付テーブル6と第1のピエゾロー
ドセル1とにチヤツク6a及び1aをそれぞれ介
して取付けられている。
FIG. 1 shows a partially cutaway view of the device according to the present invention, in which 1 is a first piezo load cell fixed to a foundation B, and 2 is a first piezo load cell fixed to the foundation B in the same way as the first piezo load cell 1. 3 is a second piezo load cell of the same type as the first piezo load cell 1.
This piezo load cell is fixedly attached to one end of the movable part 2a of the vibrator 2, and together with a dead mass 4 fixedly attached to this second piezo load cell 3, constitutes an acceleration sensor. 5
is a vibration isolating rubber as a test object, which is attached to the mounting table 6 at the other end of the movable part 2a of the vibration exciter 2 and the first piezo load cell 1 via chucks 6a and 1a, respectively.

上述の構成にて、加振機2が防振ゴム5に繰返
し動的荷重を加えたとき、第1のピエゾロードセ
ル1によつて防振ゴム5の動的荷重信号が得ら
れ、第2のピエゾロードセル3によつて第2の荷
重信号が得られる。今、加振機2の可動部2aの
加速度をα、デツドマス4の重量をmとすると、
第2の荷重信号によつて表わされる荷重Fは F=mα となり、荷重Fと重量mが既知であるため、加速
度αが求められる。この加速度αを積分して得た
速度を更に積分することにより、変位、すなわち
防振ゴム5のたわみが求められる。
With the above configuration, when the vibrator 2 repeatedly applies a dynamic load to the vibration isolating rubber 5, the first piezo load cell 1 obtains a dynamic load signal of the vibration isolating rubber 5, and the second A second load signal is obtained by the piezo load cell 3. Now, if the acceleration of the movable part 2a of the vibrator 2 is α, and the weight of the dead mass 4 is m, then
The load F represented by the second load signal is F=mα, and since the load F and the weight m are known, the acceleration α can be determined. By further integrating the velocity obtained by integrating this acceleration α, the displacement, that is, the deflection of the vibration isolating rubber 5 is determined.

第1図に示すように、可動部2aに1個の加速
度センサーしか取付られていない場合には、防振
ゴム5のアンバランスなどにより、特に高域で可
動部2aが横ブレすると、加速度センサーによつ
て得られる加速度信号には計測誤差が導入される
ようになる。
As shown in FIG. 1, when only one acceleration sensor is attached to the movable part 2a, if the movable part 2a laterally shakes, especially at high frequencies, due to unbalance of the anti-vibration rubber 5, the acceleration sensor A measurement error will be introduced into the acceleration signal obtained by this method.

第2図はこのような加速度信号の計測誤差をな
くするためになされた好ましい実施例を示し、第
1図の第2のピエゾロードセル3とデツドマス4
との代りに、第1図に示すように可動部2aに取
付けられた取付テーブル6の可動部2aについて
対称な位置に、各々第2のロードセル3′とデツ
ドマス4′とからなる4つの加速度センサーを取
付け、これらのセンサーからの信号を相加平均し
て、すなわち4つの信号を加算して4で割つて加
速度信号を得ている。このように相加平均して得
た加速度信号は、可動部2aに横ブレがあつた
も、可動部2aの真の加速度に極めて近い加速度
を示すことになる。この第2図の実施例の加速度
センサーで得られる加速度信号は第1図で得られ
るものと位相が180゜ずれている。
FIG. 2 shows a preferred embodiment made to eliminate such measurement errors of acceleration signals, and the second piezo load cell 3 and dead mass 4 of FIG.
Instead, as shown in FIG. 1, four acceleration sensors each consisting of a second load cell 3' and a dead mass 4' are installed at symmetrical positions with respect to the movable part 2a of the mounting table 6 attached to the movable part 2a. is attached, and the signals from these sensors are arithmetic averaged, that is, the four signals are added and divided by four to obtain the acceleration signal. The acceleration signal obtained by arithmetic averaging in this way shows an acceleration that is extremely close to the true acceleration of the movable part 2a even if the movable part 2a has a lateral shake. The acceleration signal obtained by the acceleration sensor of the embodiment shown in FIG. 2 is out of phase with that obtained in FIG. 1 by 180 degrees.

なお、図示実施例では、被験体としての防振ゴ
ム5を加動部2aと第1のピエゾロードセル1と
の間に配列しているが、基礎Bと第1のロードセ
ル1との間に被験体を配列できるように、第1の
ロードセル1を可動部2aの方に固定して取付け
るようにしてもよい。
In the illustrated embodiment, the vibration isolating rubber 5 as a test object is arranged between the moving part 2a and the first piezo load cell 1, but the test object is arranged between the base B and the first load cell 1. The first load cell 1 may be fixedly attached to the movable part 2a so that the bodies can be arranged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による防振ゴムの動的特性測定
装置を一部破断して示す側面図、及び第2図は第
1図の一部分の変形例を示す斜視図である。 B……基礎、1……第1のピエゾロードセル、
2……加振機、2a……可動部、3,3′……第
2のピエゾロードセル、4,4′……デツドマス、
5……防振ゴム。
FIG. 1 is a partially cutaway side view showing a dynamic characteristic measuring device for vibration isolating rubber according to the present invention, and FIG. 2 is a perspective view showing a modification of a portion of FIG. 1. B...Basic, 1...First piezo load cell,
2... Vibrator, 2a... Movable part, 3, 3'... Second piezo load cell, 4, 4'... Dead mass,
5... Anti-vibration rubber.

Claims (1)

【特許請求の範囲】 1 基礎と繰返し荷重を発生する加振機の可動部
との間に被験体としての防振ゴムと直列に配列し
た第1のピエゾロードセルと、前記可動部に取付
けた前記第1のピエゾロードセルと同種の第2の
ピエゾロードセル及び該第2のピエゾロードセル
に取付けたデツドマスからなり、前記第2のピエ
ゾロードセルが発生する動的荷重信号及び前記デ
ツドマスの質量とにより求められる加速度信号を
発生する加速度センサーとを備え、前記第1のピ
エゾロードセルが発生する動的荷重信号と前記加
速度センサーが発生する加速度信号とに基き防振
ゴムの動的特性を測定するようになしたことを特
徴とする防振ゴムの動的特性測定装置。 2 前記加速度センサーを前記可動部について対
称な位置に複数配列し、これらのセンサーからの
信号を相加平均して加速度信号を得るようにした
ことを特徴とする特許請求の範囲第1項記載の防
振ゴムの動的特性測定装置。
[Scope of Claims] 1. A first piezo load cell arranged in series with a vibration isolating rubber serving as a test object between a foundation and a movable part of a vibration exciter that generates a repetitive load; A second piezo load cell of the same type as the first piezo load cell and a dead mass attached to the second piezo load cell, and an acceleration determined from a dynamic load signal generated by the second piezo load cell and the mass of the dead mass. and an acceleration sensor that generates a signal, and the dynamic characteristics of the anti-vibration rubber are measured based on the dynamic load signal generated by the first piezo load cell and the acceleration signal generated by the acceleration sensor. A device for measuring the dynamic characteristics of anti-vibration rubber. 2. A plurality of the acceleration sensors are arranged at symmetrical positions with respect to the movable part, and signals from these sensors are arithmetic averaged to obtain an acceleration signal. A device for measuring the dynamic properties of anti-vibration rubber.
JP14561780A 1980-10-20 1980-10-20 Measuring device for dynamic characteristics of rubber vibration insulator Granted JPS5769229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14561780A JPS5769229A (en) 1980-10-20 1980-10-20 Measuring device for dynamic characteristics of rubber vibration insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14561780A JPS5769229A (en) 1980-10-20 1980-10-20 Measuring device for dynamic characteristics of rubber vibration insulator

Publications (2)

Publication Number Publication Date
JPS5769229A JPS5769229A (en) 1982-04-27
JPH0128332B2 true JPH0128332B2 (en) 1989-06-02

Family

ID=15389165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14561780A Granted JPS5769229A (en) 1980-10-20 1980-10-20 Measuring device for dynamic characteristics of rubber vibration insulator

Country Status (1)

Country Link
JP (1) JPS5769229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010963A (en) * 2013-06-28 2015-01-19 国立大学法人 東京大学 Measurement device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677756A (en) * 2013-12-02 2015-06-03 国家电网公司 Synthetical fatigue testing system and method for extensional vibration and torsion of composite insulator
RU2650848C1 (en) * 2017-06-19 2018-04-17 Олег Савельевич Кочетов Method of testing multimass vibration isolation systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565138A (en) * 1978-11-10 1980-05-16 Saginomiya Seisakusho Inc Measuring unit of dynamic characteristic of vibration- proof rubber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565138A (en) * 1978-11-10 1980-05-16 Saginomiya Seisakusho Inc Measuring unit of dynamic characteristic of vibration- proof rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010963A (en) * 2013-06-28 2015-01-19 国立大学法人 東京大学 Measurement device

Also Published As

Publication number Publication date
JPS5769229A (en) 1982-04-27

Similar Documents

Publication Publication Date Title
Hixson Mechanical impedance
US4586377A (en) Dual accelerometer, method for its fabrication and application thereof
US4000658A (en) Method and apparatus for measuring displacement of fixed structures
US6032533A (en) Absolute amplitude sensor device
JPH0128332B2 (en)
JPS6122251B2 (en)
CN116519012B (en) Method and test device for trimming unbalanced mass of vibrating gyroscope
Brownjohn et al. Errors in mechanical impedance data obtained with impedance heads
JP2707032B2 (en) Mounting stand for calibration of acceleration pickup
Kumme et al. Dynamic properties and investigations of piezoelectric force measuring devices
Kumme Dynamic force measurement in practical applications
Jones et al. Calibration of vibration pickups at large amplitudes
Cole et al. Challenges in Developing a Family of MEMS Accelerometers for High-g-Navigation Applications
SU1651124A1 (en) Electrodynamic calibrating shaker unit
RU2764504C1 (en) Piezoelectric spatial vibration transducer and a method for monitoring its performance at a working facility
Ivarsson et al. Design, theory and validation of a low mass 6-dof transducer
SU1714461A1 (en) Device for vibration diagnostics of a cutting tool
RU2065589C1 (en) Force transducer
SU1117564A1 (en) Device for measuring geophone amplitude frequency characteristic
RU1795374C (en) Compensating accelerometer
SU1375886A1 (en) Force-measuring shock-absorber
Bouche Instruments and methods for measuring mechanical impedance
SU1408237A1 (en) Vibration meter
Kistler New precision calibration techniques for vibration transducers
SU1244559A1 (en) Electroacoustical hardness gauge