JP2707032B2 - Mounting stand for calibration of acceleration pickup - Google Patents

Mounting stand for calibration of acceleration pickup

Info

Publication number
JP2707032B2
JP2707032B2 JP4286722A JP28672292A JP2707032B2 JP 2707032 B2 JP2707032 B2 JP 2707032B2 JP 4286722 A JP4286722 A JP 4286722A JP 28672292 A JP28672292 A JP 28672292A JP 2707032 B2 JP2707032 B2 JP 2707032B2
Authority
JP
Japan
Prior art keywords
pickup
mounting
pick
base
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4286722A
Other languages
Japanese (ja)
Other versions
JPH06118098A (en
Inventor
明則 横田
▲たか▼弘 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP4286722A priority Critical patent/JP2707032B2/en
Publication of JPH06118098A publication Critical patent/JPH06118098A/en
Application granted granted Critical
Publication of JP2707032B2 publication Critical patent/JP2707032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は振動計に用いられる加速
度ピツクアツプの校正用取付け台に関し、特に三軸同時
計測用加速度ピツクアツプの校正用取付け台に適用して
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mount for calibrating an acceleration pickup used in a vibrometer, and more particularly to a mount for calibrating an acceleration pickup for simultaneous measurement of three axes.

【0002】[0002]

【従来の技術】従来、三軸同時計測用加速度ピツクアツ
プの校正は、被検対象の三軸同時計測用加速度ピツクア
ツプを専用の取付け台に固定し、当該取付け台を加振器
により振動させた際に得られる被検加速度ピツクアツプ
の感度及び周波数特性に基づいて行われる。
2. Description of the Related Art Conventionally, the acceleration pickup for simultaneous measurement of three axes is calibrated by fixing the acceleration pickup for simultaneous measurement of three axes of a test object to a dedicated mounting table and vibrating the mounting table by a vibrator. This is performed based on the sensitivity and frequency characteristics of the acceleration pickup to be obtained.

【0003】ここで図7に示すように、取付け台1は板
状の基台部2及び直方体形状のピツクアツプ装着部3が
一体となつて形成され、当該板状の基台部2を加振器4
の上面に固定する。また直方体形状のピツクアツプ装着
部3の一側面に被検対象のピツクアツプ5をねじ等の取
付け手段によつて取り付けると共に、当該被検ピツクア
ツプの取付け側面に対向する側面に被検ピツクアツプ5
と同質量のダミーマス6を取り付け、このとき取付け台
1をy方向に振動させるようになされている。
As shown in FIG. 7, a mounting base 1 is formed by integrally forming a plate-like base portion 2 and a rectangular parallelepiped pickup mounting portion 3, and vibrates the plate-like base portion 2. Vessel 4
To the top of Further, the pick-up 5 to be inspected is attached to one side surface of the pickup pickup portion 3 having a rectangular parallelepiped shape by an attachment means such as a screw, and the pick-up target 5 is attached to a side surface opposite to the attaching side surface of the pick-up target.
At this time, a dummy mass 6 having the same mass is attached, and at this time, the attachment table 1 is vibrated in the y direction.

【0004】また取付け台1の内部には基準ピツクアツ
プ7が内設されており、当該基準ピツクアツプ7より得
られる基準信号S1と被検ピツクアツプ5より得られる
出力信号S2とをそれぞれ増幅器8及び9を介して周波
数分析器(FFT)10に送出することにより、当該周
波数分析器10が被検ピツクアツプ5の出力信号S2と
基準信号S1との間の伝達関数に基づいて被検ピツクア
ツプ5の感度及び周波数特性を算出するようになされて
いる。また周波数分析器10に内蔵されている信号源は
増幅器11を介して加振器4に加振信号S3を送出して
加振器4を振動させる。
[0004] A reference pickup 7 is provided inside the mounting table 1, and a reference signal S1 obtained from the reference pickup 7 and an output signal S2 obtained from the test pickup 5 are supplied to amplifiers 8 and 9, respectively. The signal is sent to the frequency analyzer (FFT) 10 via the FFT 10 so that the sensitivity and the frequency of the pickup 5 are determined based on the transfer function between the output signal S2 of the pickup 5 and the reference signal S1. The characteristics are calculated. A signal source built in the frequency analyzer 10 sends an excitation signal S3 to the exciter 4 via the amplifier 11 to cause the exciter 4 to vibrate.

【0005】[0005]

【発明が解決しようとする課題】ところでこのような取
付け台1においては、被検ピツクアツプ5の受感軸方向
の振動変位と基準ピツクアツプ7の受感軸方向の振動変
位とが等しくなるように被検ピツクアツプ5及び基準ピ
ツクアツプ7を振動させる必要がある。
By the way, in such a mounting table 1, the vibration displacement of the test pickup 5 in the sense axis direction is equal to the vibration displacement of the reference pickup 7 in the sense axis direction. It is necessary to vibrate the pickup 5 and the reference pickup 7.

【0006】ところが従来の取付け台1は重心が高い位
置におかれた形状となつているため、取付け台1をy方
向に振動させて被検ピツクアツプ5のy軸の特性を測定
しようとする場合、取付け台1がy方向の振動成分以外
に例えばx方向の振動成分を有する横揺れ(以下これを
ロツキング運動と呼ぶ)を生じ、このとき被検ピツクア
ツプ5と基準ピツクアツプ7との受感軸方向(y方向)
の振動変位が一致せず、被検ピツクアツプ5の特性を正
確に測定することができなくなるという問題がある。
However, since the conventional mounting table 1 has a shape in which the center of gravity is located at a high position, the mounting table 1 is vibrated in the y direction to measure the y-axis characteristics of the pickup 5 to be tested. Then, the mounting table 1 generates a rolling motion having a vibration component in the x direction, for example, in addition to the vibration component in the y direction (hereinafter referred to as rocking motion). At this time, the direction of the sensitive axis between the pickup 5 to be tested and the reference pickup 7 is measured. (Y direction)
There is a problem that the characteristics of the pickup 5 to be measured cannot be measured accurately because the vibration displacements of the pickups do not match.

【0007】また被検ピツクアツプ5と基準ピツクアツ
プ7の受感軸方向の振動変位が一致しなくなる原因とし
ては、上述のロツキング運動の他に、取付け台1に振動
を与えた際に取付け台1自体に生じる面歪み(モード)
によるものがある。すなわち取付け台1に面歪みが生じ
た場合、基準ピツクアツプ7が設けられた位置と被検ピ
ツクアツプ5が取り付けられた位置とでは面歪みによつ
て振動特性に差異が生じ、正確な感度測定ができないと
いう問題があつた。
The cause of the inconsistency of the vibration displacement of the pick-up 5 and the reference pickup 7 in the sense axis direction in addition to the above-described rocking motion is that the mounting base 1 itself is subjected to vibration when the mounting base 1 is vibrated. Surface distortion (mode)
There is something. That is, when surface distortion occurs in the mounting table 1, a difference in vibration characteristics occurs due to the surface distortion between the position where the reference pickup 7 is provided and the position where the test pickup 5 is mounted, and accurate sensitivity measurement cannot be performed. There was a problem.

【0008】本発明は以上の点を考慮してなされたもの
で、取付け台のロツキング運動及び取付け台の面歪みを
抑制して被検ピツクアツプと基準ピツクアツプとの間の
振動変位の差を低減すると共に、これらの間に振動変位
の差が生じた場合においても、幅広い周波数帯域におい
て被検ピツクアツプの特性を測定できる加速度ピツクア
ツプの校正用取付け台を提案しようとするものである。
The present invention has been made in view of the above points, and suppresses the rocking motion of the mounting table and the surface distortion of the mounting table to reduce the difference in vibration displacement between the pickup to be tested and the reference pickup. It is another object of the present invention to propose a mounting base for calibrating an acceleration pickup capable of measuring characteristics of a pickup to be measured in a wide frequency band even when a difference in vibration displacement occurs between them.

【0009】[0009]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、所定の加振器31に取り付けら
れ、加振器31により与えられる振動を被検対象の加速
度ピツクアツプ32及び基準の加速度ピツクアツプ39
〜41に伝達し、被検加速度ピツクアツプ32及び基準
加速度ピツクアツプ39〜41から得られる出力信号S
10〜S13に基づいて被検加速度ピツクアツプ32の
特性を測定する加速度ピツクアツプの校正用取付け台3
0において、ほぼ錐台形状の基台部30Aと、正四角柱
形状でなり、基台部30Aの上面において基台部30A
と一体に形成されたピツクアツプ装着部30Bと、ピツ
クアツプ装着部30Bに形成された基準ピツクアツプ取
付け部36〜38とを備え、ピツクアツプ装着部30B
の一側面Jに被検ピツクアツプ32を取り付けると共
に、一側面Jに対向する側面Kに被検ピツクアツプ32
とほぼ同等の質量でなるダミーマス33を取り付けるよ
うにする。
According to the present invention, in order to solve the above-mentioned problems, the vibration provided by the vibrator 31 is attached to a predetermined vibrator 31, and the vibration provided by the vibrator 31 is applied to the acceleration pickup 32 of the subject and the reference acceleration. Pickup 39
To 41, and output signals S obtained from the test acceleration pickup 32 and the reference acceleration pickups 39 to 41.
Acceleration pickup calibration base 3 for measuring the characteristics of the acceleration pickup 32 to be measured based on 10 to S13.
0, the base portion 30A has a substantially frustum shape, and the base portion 30A has a square prism shape, and the base portion 30A
And a reference pick-up mounting portion 36-38 formed on the pick-up mounting portion 30B. The pick-up mounting portion 30B
The pick-up 32 is attached to one side J, and the pick-up 32 is attached to a side K facing the one side J.
A dummy mass 33 having a mass substantially equal to that of the dummy mass 33 is attached.

【0010】また本発明においては、基準ピツクアツプ
取付け部36〜38は被検ピツクアツプ32が取り付け
られる一側面Jから一側面Jに対向する側面Kに向つて
等間隔で並ぶように穿設された第1、第2及び第3の装
填用穴36、37及び38でなり、第1、第2及び第3
の基準ピツクアツプ装填用穴36、37及び38のそれ
ぞれに第1、第2及び第3の基準ピツクアツプ39、4
0及び41を装填するようにする。
Further, in the present invention, the reference pick-up mounting portions 36 to 38 are formed so as to be arranged at equal intervals from one side J to which the pick-up 32 to be tested is mounted to a side K opposed to the one side J. The first, second and third loading holes 36, 37 and 38;
The first, second and third reference pick-ups 39, 4 are respectively inserted into the reference pick-up loading holes 36, 37 and 38.
0 and 41 are loaded.

【0011】[0011]

【作用】ロツキング運動及び面歪みを抑制し得る形状の
取付け台30を用いることにより、取付け台30が加振
器31により加振されると、取付け台30はロツキング
運動が抑制され、y方向に安定に振動すると共に、取付
け台30の内部に生じる面歪みが抑制され、被検ピツク
アツプ32と基準ピツクアツプ39〜41との間の振動
変位の差が低減される。
When the mounting table 30 is vibrated by the vibrator 31 by using the mounting table 30 having a shape capable of suppressing the rocking movement and the surface distortion, the mounting table 30 is restrained from rocking movement and is moved in the y direction. While vibrating stably, the surface distortion generated inside the mounting table 30 is suppressed, and the difference in vibration displacement between the test pickup 32 and the reference pickups 39 to 41 is reduced.

【0012】また取付け台30にロツキング運動が生じ
た場合、及び又は取付け台30の内部に面歪みが生じた
場合にも、第1、第2及び第3の基準ピツクアツプ3
9、40及び41が被検ピツクアツプ取付け面の正確な
振動変位を検出する。かくして被検ピツクアツプ32の
振動変位を正確に検出できることにより、被検ピツクア
ツプ32の特性を正確に測定することができる。
Also, when a rocking motion occurs on the mounting base 30 and / or when a surface distortion occurs inside the mounting base 30, the first, second, and third reference pickups 3 are also provided.
Reference numerals 9, 40 and 41 detect an accurate vibration displacement of the pick-up mounting surface. Thus, since the vibration displacement of the pickup 32 can be accurately detected, the characteristics of the pickup 32 can be accurately measured.

【0013】[0013]

【実施例】以下図面について、本発明の一実施例を詳述
する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.

【0014】(1)取付け台の構成 図1及び図2において、30は全体として三軸同時計測
用加速度ピツクアツプの校正用取付け台を示し、加振器
31により取付け台30をy方向に加振することにより
加速度ピツクアツプ32のy軸方向の感度及び周波数特
性を測定するようになされている。取付け台30は正四
角錐の先端を底面と平行に切り欠いた正四角錐台形状の
基台部30Aと当該基台部30Aの上面と同一面積の底
面を有する正四角柱形状のピツクアツプ装着部30Bと
が一体となつて構成されていると共に、左右及び前後方
向に対称な形状を有し、さらに取付け台30は従来の取
付け台1(図7)に比して重心が低い位置に設定され、
ロツキング運動をすることなくy方向(並進方向)に安
定して振動するようになされていると共に、取付け台3
0の内部に生じる面歪みをできるだけ軽減できる形状と
なつている。尚基台部30Aの加振器31に取り付ける
底面側においては、所定高さだけ投影面積が一定の四角
柱形状部30Cが形成されている。
(1) Structure of the mounting table In FIGS. 1 and 2, reference numeral 30 denotes a mounting table for calibrating an acceleration pickup for simultaneous three-axis measurement, and the mounting table 30 is vibrated in the y direction by a vibrator 31. By doing so, the sensitivity and frequency characteristics of the acceleration pickup 32 in the y-axis direction are measured. The mounting base 30 includes a base part 30A having a truncated square pyramid shape in which the tip of a square pyramid is cut out in parallel with the bottom surface, and a pickup mounting part 30B having a square base shape having a bottom surface having the same area as the upper surface of the base part 30A. It is integrally formed, has a symmetrical shape in the left-right and front-rear directions, and the mounting base 30 is set at a position where the center of gravity is lower than that of the conventional mounting base 1 (FIG. 7).
It is designed to stably vibrate in the y direction (translation direction) without rocking motion, and
The shape is such that the surface distortion generated inside the zero can be reduced as much as possible. On the bottom surface side of the base portion 30A attached to the vibrator 31, a quadrangular prism-shaped portion 30C having a constant projected area by a predetermined height is formed.

【0015】取付け台30のピツクアツプ装着部30B
を構成する正四角柱のうち対向する2つの側面J及びK
にはそれぞれ被検対象の加速度ピツクアツプ32及び当
該加速度ピツクアツプ32とほぼ同等の質量を有するダ
ミーマス33が接着剤により接着されている。また取付
け台30の基台部30Aの各側面には上下方向に貫通す
るように取付け用孔34A〜34Dが穿設され、当該取
付け用孔34A〜34Dを通して加振器31にボルト等
の締結手段を介挿することにより、取付け台30を加振
器31に安定に固定できるようになされている。また取
付け台30は十分な剛性を有するチタン材料により形成
されている。
Pickup mounting portion 30B of mounting base 30
Opposing two side faces J and K of the square prisms constituting
Each of the acceleration pickups 32 to be inspected and a dummy mass 33 having substantially the same mass as the acceleration pickup 32 are adhered by an adhesive. In addition, mounting holes 34A to 34D are formed in the respective side surfaces of the base portion 30A of the mounting base 30 so as to penetrate vertically, and fastening means such as bolts are attached to the vibrator 31 through the mounting holes 34A to 34D. , The mounting table 30 can be stably fixed to the vibrator 31. The mounting base 30 is formed of a titanium material having sufficient rigidity.

【0016】かかる構成に加えて、図2に示すように、
取付け台30の上面には被検ピツクアツプ32の取付け
側面J寄りの位置に上面を形成する正方形の一辺のほぼ
2分の1の直径でなる円柱状の凹部35が所定深さ穿設
されている。凹部35の底面には取付け台30の上面の
中心位置から被検ピツクアツプ取付け側面J方向に並ぶ
ように基準ピツクアツプ装填用穴36、37及び38が
互いに隣接して穿設されている。
In addition to the above configuration, as shown in FIG.
In the upper surface of the mounting base 30, a columnar concave portion 35 having a diameter of approximately one half of one side of a square forming the upper surface is formed at a predetermined depth near the mounting side surface J of the pickup 32 to be inspected. . Reference pickup holes 36, 37 and 38 are formed adjacent to each other in the bottom surface of the concave portion 35 so as to be aligned in the direction of the pick-up mounting side surface J from the center position of the upper surface of the mounting base 30.

【0017】基準ピツクアツプ装填用穴36、37及び
38には、第1、第2及び第3の基準ピツクアツプ3
9、40及び41がそれぞれ装填され、このとき取付け
台30と同一部材の蓋42(図1)を凹部35に圧入し
て凹部35を密閉することにより、基準ピツクアツプ3
9、40及び41は装填用穴36、37及び38内にお
いて全方向に安定に保持され、取付け台30が加振され
た際取付け台30と一体となつて加振し得るようになさ
れている。
The first, second and third reference pickups 3 are provided in the reference pickup holes 36, 37 and 38, respectively.
At this time, the lid 42 (FIG. 1) of the same member as the mounting base 30 is pressed into the recess 35 to seal the recess 35, thereby obtaining the reference pickup 3.
9, 40 and 41 are stably held in all directions in the loading holes 36, 37 and 38, so that when the mounting table 30 is vibrated, it can be vibrated integrally with the mounting table 30. .

【0018】第1、第2及び第3の基準ピツクアツプ3
9、40及び41は同一構成及び同一感度を有する圧電
剪断型の加速度ピツクアツプとなつている。すなわち、
基準ピツクアツプ39、40及び41はほぼ中心位置に
円柱形状のベースが固定されていると共に、当該ベース
の外周に設けられた環状の圧電素子を介して円筒形状の
重錘が環状圧電素子に接着固定され、これにより当該基
準ピツクアツプ39、40及び41が加振された際、重
錘の質量と加振力に応じた力が環状圧電素子に伝わり出
力が得られるようになされている。
First, second and third reference pickups 3
Numerals 9, 40 and 41 are piezoelectric shearing type acceleration pickups having the same configuration and the same sensitivity. That is,
The reference pick-ups 39, 40 and 41 have a cylindrical base fixed at a substantially central position, and a cylindrical weight is bonded and fixed to the ring-shaped piezoelectric element via a ring-shaped piezoelectric element provided on the outer periphery of the base. Thus, when the reference pickups 39, 40 and 41 are vibrated, a force corresponding to the mass of the weight and the vibrating force is transmitted to the annular piezoelectric element to obtain an output.

【0019】また取付け台30には各基準ピツクアツプ
装填用穴36〜38からピツクアツプ装着部33Bの一
側面Lに貫通したリード線引き出し孔43、44及び4
5が穿設され、当該リード線引き出し孔43〜45を通
して各基準ピツクアツプ39〜41に接続されたリード
線を取付け台30の外部に引き出すようになされてい
る。
The mounting base 30 has lead-out holes 43, 44 and 4 which penetrate through the reference pick-up mounting holes 36 to 38 to one side L of the pick-up mounting portion 33B.
5 is provided so that the lead wires connected to the respective reference pickups 39 to 41 are drawn out of the mounting table 30 through the lead wire drawing holes 43 to 45.

【0020】実施例の場合、取付け台30の実用的な寸
法として、基台部33Aの底面は一辺が70〔mm〕の正方
形、ピツクアツプ装着部33Bの上面は一辺が30〔mm〕
の正方形、底面から上面までの高さすなわち基台部33
A及びピツクアツプ装着部33Bを合わせた取付け台3
0の全体の高さは55〔mm〕、基台部33Aの高さは30
〔mm〕、ピツクアツプ装着部33Bの高さは25〔mm〕、
基準ピツクアツプ装填用穴35の直径は16〔mm〕、第1
の基準ピツクアツプ39の中心から被検ピツクアツプ3
2の取付け側面Jまでの距離及び各基準ピツクアツプ3
9、40及び41の中心間の距離は共に 5〔mm〕に選定
されている。
In the case of the embodiment, as the practical dimensions of the mounting table 30, the bottom of the base 33A is a square having a side of 70 [mm], and the upper surface of the pickup mounting section 33B is 30 [mm] on a side.
Square, the height from the bottom to the top, that is, the base 33
A mounting table 3 combining A and pick-up mounting section 33B
0 has a total height of 55 mm, and the base 33A has a height of 30 mm.
[Mm], the height of the pickup mounting portion 33B is 25 [mm],
The diameter of the reference pick-up loading hole 35 is 16 [mm].
From the center of the reference pick-up 39 of the test pick-up 3
2 Distance to mounting side J and each reference pickup 3
The distance between the centers of 9, 40 and 41 is selected to be 5 [mm].

【0021】(2)測定装置の構成 図3は加速度ピツクアツプの測定装置を示し、被検ピツ
クアツプ32により得られる出力は検出信号S10とし
てチヤージアンプ構成の増幅器50を介して周波数分析
器51に送出される。これに対して、第1の基準ピツク
アツプ39により得られる検出信号S11は取付け面振
動検出回路52の増幅器53を介して加算器54に送出
される。また第2の基準ピツクアツプ40により得られ
る検出信号S12は取付け面振動検出回路52の増幅器
55及び符号反転器56を介して加算器54に送出され
る。さらに第3の基準ピツクアツプ41により得られる
検出信号S13は取付け面振動検出回路52の増幅器5
7を介して加算器54に送出される。
(2) Configuration of the Measuring Device FIG. 3 shows an acceleration pickup measuring device. The output obtained by the pickup 32 to be tested is sent to the frequency analyzer 51 as the detection signal S10 through the amplifier 50 having a charge amplifier configuration. . On the other hand, the detection signal S11 obtained by the first reference pickup 39 is sent to the adder 54 via the amplifier 53 of the mounting surface vibration detection circuit 52. The detection signal S12 obtained by the second reference pickup 40 is sent to the adder 54 via the amplifier 55 and the sign inverter 56 of the mounting surface vibration detection circuit 52. Further, the detection signal S13 obtained by the third reference pickup 41 is supplied to the amplifier 5 of the mounting surface vibration detection circuit 52.
7 to the adder 54.

【0022】ここで増幅器57は負荷として帰還容量30
0 〔pF〕を有するチヤージアンプ構成でなり、さらに増
幅器53及び増幅器55は負荷として帰還容量100 〔p
F〕を有するチヤージアンプ構成となつている。
Here, the amplifier 57 has a feedback capacitance 30 as a load.
0 [pF], and the amplifier 53 and the amplifier 55 have a feedback capacitance of 100 [pF] as a load.
F].

【0023】ここで図4は直線上に並ぶように配置され
た被検ピツクアツプ32及び基準ピツクアツプ39〜4
1の配列方向をx軸とし、さらに加振器31による加振
方向をy軸として表したものであり、被検ピツクアツプ
32の取付面Jにおけるx軸方向の位置をP0、基準ピ
ツクアツプ39〜41のx軸方向の取付け位置をそれぞ
れP1、P2及びP3とすると共に基準ピツクアツプ3
9〜41から検出信号S11〜S13として得られるy
軸方向の変位量をそれぞれy1 、y2 及びy3とする
と、図3の取付け面振動検出回路52は検出信号S11
〜S13に基づいて、次式、
FIG. 4 shows the pickup 32 and the reference pickups 39 to 4 arranged so as to be arranged on a straight line.
1 is an x-axis, and a vibration direction by the vibrator 31 is a y-axis. The position of the test pickup 32 in the x-axis direction on the mounting surface J of the pickup 32 is P0, and the reference pickups 39 to 41. Are set at positions P1, P2 and P3, respectively, in the x-axis direction.
9 to 41 obtained as detection signals S11 to S13
When the axial displacement of each and y 1, y 2 and y 3, the mounting surface vibration detection circuit 52 of FIG. 3 is detected signal S11
Based on -S13,

【数1】 の演算を実行して、取付け面におけるy方向の振動変位
0 を検出するようになされている。
(Equation 1) Is executed to detect the vibration displacement y 0 in the y direction on the mounting surface.

【0024】すなわち取付け面振動検出回路52はそれ
ぞれ等間隔に配置された第1、第2及び第3の基準ピツ
クアツプ39、40及び41の位置P1、P2及びP3
(図4)のy方向の振動変位量y1 、y2 及びy3 に基
づいて取付け面P0従つて被検ピツクアツプ32のy方
向の振動変位量y0 を推定する。
That is, the mounting surface vibration detecting circuit 52 is provided at the positions P1, P2 and P3 of the first, second and third reference pickups 39, 40 and 41 which are arranged at regular intervals, respectively.
Based on the vibration displacement amounts y 1 , y 2 and y 3 in the y direction of FIG. 4, the vibration displacement amount y 0 of the test pickup 32 in the y direction is estimated based on the mounting surface P0.

【0025】このとき取付け面振動検出回路52により
実行される(1)式は、取付け台30が加振された際被
検ピツクアツプ取付け面P0(図4)、第1の基準ピツ
クアツプ39、第2の基準ピツクアツプ40及び第3の
基準ピツクアツプ41の振動変位y0 、y1 、y2 及び
3 が同一の二次曲線L1 (図4)上にあることを表現
したもので、これにより取付け面P0従つて被検ピツク
アツプ32のy方向の振動変位量y0 を近似的に推定し
ようとするものである。
At this time, the expression (1) executed by the mounting surface vibration detecting circuit 52 is as follows. When the mounting base 30 is vibrated, the pick-up mounting surface P0 to be inspected (FIG. 4), the first reference pickup 39, and the second And that the vibration displacements y 0 , y 1 , y 2 and y 3 of the reference pickup 40 and the third reference pickup 41 are on the same quadratic curve L 1 (FIG. 4). the vibration displacement y 0 in the y direction of the surface P0 accordance connexion test pickup 32 is intended to approximate estimate.

【0026】すなわち、(1)式は二次曲線の一般式と
して、次式、
That is, equation (1) is a general equation of a quadratic curve,

【数2】 に取付け面P0従つて被検ピツクアツプ32の位置
(0、y0 )、第1の基準ピツクアツプP1の位置(x
0 、y1 )、第2の基準ピツクアツプP2の位置(2x
0 、y2 )、及び第3の基準ピツクアツプP3の位置
(3x0 、y3 )をそれぞれ代入して、次式、
(Equation 2) The position (0, y 0 ) of the test pickup 32 and the position (x) of the first reference pickup P 1
0 , y 1 ), the position of the second reference pickup P2 (2x
0 , y 2 ) and the position (3x 0 , y 3 ) of the third reference pickup P3, respectively, and

【数3】 (Equation 3)

【数4】 (Equation 4)

【数5】 (Equation 5)

【数6】 を得、これら(3)〜(6)式からy方向の変位量の関
係を求めたものである。
(Equation 6) And the relationship between the displacement amounts in the y direction is obtained from these equations (3) to (6).

【0027】取付け面振動検出回路52により実行され
る(1)式は振動による取付け台30の面歪みを考慮し
て近似的に被検ピツクアツプ32のy方向の振動変位量
0を推定する式であるが、これと同時に(1)式は取
付け台30全体が並進運動をした場合においても、y1
=y2 =y3 とおくと、y0 =y1 となることにより並
進運動にも対応できる。さらに図5は取付け台30がロ
ツキング運動をした場合の各点P0〜P3の変位量を示
すもので、取付け台30全体がロツキング運動した場合
すなわち取付け台30がy方向以外にx方向(又はz方
向)にも振動成分をもつた横揺れをした場合において
は、基準ピツクアツプ39〜41の位置P1、P2及び
P3におけるy方向の振動変位量y1 、y2 及びy3
次式、
The equation (1) executed by the mounting surface vibration detecting circuit 52 is a formula for approximately estimating the y-direction vibration displacement y 0 of the pickup 32 to be tested in consideration of the surface distortion of the mounting table 30 due to vibration. However, at the same time, the expression (1) indicates that even when the entire mounting table 30 performs a translational movement, y 1
When y = y 2 = y 3 , it is possible to cope with translational movement by setting y 0 = y 1 . FIG. 5 shows the displacement of each of the points P0 to P3 when the mounting table 30 performs rocking motion. When the entire mounting table 30 performs rocking motion, that is, when the mounting table 30 moves in the x direction (or z direction) in addition to the y direction. in the case where also the roll which has a vibration component in the direction), vibration displacement y 1 in the y direction of the position P1, P2 and P3 of the reference pickup 39-41, y 2 and y 3 is expressed by the following equation,

【数7】 で示す直線L2 上に並んでおり、従つて基準ピツクアツ
プ39〜41の位置P1、P2及びP3の座標より、次
式、
(Equation 7) Are arranged on the straight line L 2 represented by, from the coordinates of the positions P1, P2 and P3 of the sub connexion reference pickup 39 to 41, the following equation,

【数8】 (Equation 8)

【数9】 (Equation 9)

【数10】 を得ることができる。この(8)〜(10)式を(1)
式に代入するとy0 =bとなる。ここでロツキング運動
している際に推定しようとするy0 も同様にして上記各
基準ピツクアツプ39〜41と同一直線L2 上に位置
し、当該y0 の値は(7)式から次式、
(Equation 10) Can be obtained. Equations (8) to (10) are replaced by (1)
Substituting into the equation gives y 0 = b. Here y 0 to be estimated when you are Rotsukingu motion are similarly located on the same straight line L 2 and the respective reference pickup 39 to 41, the value of the y 0 the following formulas (7),

【数11】 となる。従つて(11)式の結果は(1)式に(8)〜
(10)式を代入した結果と一致することにより、
(1)式はロツキング運動にも用いることができる。
[Equation 11] Becomes Therefore, the result of equation (11) is obtained by adding equation (8) to equation (1).
By agreeing with the result of substituting equation (10),
Equation (1) can also be used for rocking exercises.

【0028】かくして取付け面振動検出回路52は各基
準ピツクアツプ39〜41からの検出信号S11〜S1
3に基づいて、取付け台30の内部に面歪みが生じた場
合、又は取付け台30がロツキング運動をした場合、さ
らには取付け台30が並進運動をした場合の全ての場合
において、被検ピツクアツプ取付け面P0の正確な振動
変位を推定して、これを基準信号S14として周波数分
析器51に送出するようになされている。
Thus, the mounting surface vibration detection circuit 52 detects the detection signals S11 to S1 from the respective reference pickups 39 to 41.
In the case where surface distortion occurs inside the mounting base 30, or when the mounting base 30 performs a rocking movement, and further, when the mounting base 30 performs a translational movement, the pickup pickup to be inspected is mounted based on the method described in FIG. An accurate vibration displacement of the plane P0 is estimated and sent to the frequency analyzer 51 as a reference signal S14.

【0029】周波数分析器51は2チヤンネル構成とな
つており、被検ピツクアツプ32により得られる検出信
号S10と取付け面振動検出回路52により得られる基
準信号S14との間の伝達関数の振幅特性を求め、これ
により被検ピツクアツプ32の感度及び周波数特性を算
出するようになされている。周波数分析器51に内蔵さ
れている信号源はパワーアンプ構成の増幅器58を介し
てランダム信号でなる加振信号S15を加振器31に送
出して加振器31を振動させる。
The frequency analyzer 51 has a two-channel configuration, and determines the amplitude characteristic of the transfer function between the detection signal S10 obtained by the pickup 32 to be tested and the reference signal S14 obtained by the mounting surface vibration detection circuit 52. Thus, the sensitivity and frequency characteristics of the pickup 32 to be tested are calculated. A signal source built in the frequency analyzer 51 sends a vibration signal S15, which is a random signal, to the vibrator 31 via an amplifier 58 having a power amplifier structure to vibrate the vibrator 31.

【0030】(3)実施例の動作 以上の構成において、取付け台30は加振器31により
振動が与えられると、当該取付け台30の形状によつて
ロツキング運動が抑制され、y方向のみの振動成分から
なる並進運動をする。またこのとき取付け台30自体の
面歪みも抑制され、被検ピツクアツプ32と各基準ピツ
クアツプ39〜41との振動変位の差が低減される。
(3) Operation of the embodiment In the above configuration, when the mounting table 30 is vibrated by the vibrator 31, the rocking motion is suppressed by the shape of the mounting table 30, and the vibration only in the y-direction. Makes a translational motion composed of components. At this time, the surface distortion of the mounting table 30 itself is also suppressed, and the difference in vibration displacement between the test pickup 32 and each of the reference pickups 39 to 41 is reduced.

【0031】これにも関わらず取付け台30にロツキン
グ運動及び又は面歪みが生じ、被検ピツクアツプ取付け
面Jと各基準ピツクアツプ39〜41との間に振動変位
の差が生じた場合には、取付け面振動検出回路52が各
基準ピツクアツプ39〜41により得られる検出信号S
11〜S13に基づいて被検ピツクアツプ32における
正確な振動を推定し、この推定値を基準信号S14とし
て周波数分析器51に送出する。次に、周波数分析器5
1が被検ピツクアツプ32により得られる検出信号S1
0を当該基準信号S14と比較することにより被検ピツ
クアツプ32の感度及び周波数特性を測定する。
Despite this, if a rocking motion and / or surface distortion occurs on the mounting base 30 and a difference in vibration displacement occurs between the pick-up mounting surface J to be inspected and each of the reference pick-ups 39 to 41, mounting is performed. The surface vibration detection circuit 52 detects the detection signal S obtained by each of the reference pickups 39 to 41.
An accurate vibration of the pickup 32 to be detected is estimated based on 11 to S13, and the estimated value is sent to the frequency analyzer 51 as a reference signal S14. Next, the frequency analyzer 5
1 is a detection signal S1 obtained by the pickup 32 to be tested.
By comparing 0 with the reference signal S14, the sensitivity and frequency characteristics of the pickup 32 to be measured are measured.

【0032】ここで測定された被検ピツクアツプ32の
特性曲線は、図6の実線60で示すように、0〜3.5
〔kHz〕の周波数帯域でなだらかな曲線となり、このこ
とはこの周波数帯域内で被検ピツクアツプ32の感度及
び周波数特性を正確に測定できることを示し、破線61
で示すように、従来の取付け台1に被検ピツクアツプを
取付けて測定した特性曲線が1.4 〔kHz〕及び2.5 〔k
Hz〕付近にロツキング運動及び又は面歪みによる共振点
が表れ、感度測定上の大きな誤差となつているのに対し
て、測定し得る周波数帯域が格段に広がつたことを示し
ている。因に、図6はフラツト部分を0〔dB〕として示
す特性曲線図である。
The characteristic curve of the pickup 32 measured here is 0 to 3.5 as shown by the solid line 60 in FIG.
A gentle curve is obtained in the [kHz] frequency band, which indicates that the sensitivity and frequency characteristics of the pickup 32 to be tested can be accurately measured in this frequency band.
As shown in the figure, the characteristic curves measured by mounting the test pickup on the conventional mounting table 1 are 1.4 [kHz] and 2.5 [k].
[Hz], a resonance point due to rocking motion and / or surface distortion appears, which is a large error in sensitivity measurement, but indicates that the measurable frequency band is significantly widened. FIG. 6 is a characteristic curve diagram showing the flat portion as 0 [dB].

【0033】(4)実施例の効果 以上の構成によれば、取付け台30を重心の低い形状に
したことにより、取付け台30をy方向に安定に振動さ
せることができる。これに加えて、取付け台30が面歪
みを抑制できるような形状を有することにより、被検ピ
ツクアツプ32と基準ピツクアツプ39〜41との間の
振動変位の差を減少させることができる。
(4) Effects of the Embodiment According to the above configuration, the mounting base 30 is formed to have a low center of gravity, so that the mounting base 30 can be vibrated stably in the y direction. In addition, the difference in vibration displacement between the test pickup 32 and the reference pickups 39 to 41 can be reduced by the mounting table 30 having a shape capable of suppressing surface distortion.

【0034】また取付け台30に第1〜第3の基準ピツ
クアツプ39〜41を設け、当該各ピツクアツプ39〜
41の検出信号S11〜S13に基づいて被検ピツクア
ツプ取付け面POにおける実際の振動量を推定するよう
にしたことにより、取付け台30がロツキング運動した
場合、又は取付け台30自体に面歪みが生じた場合に
も、広い測定範囲で被検ピツクアツプ32の感度及び周
波数特性を正確に測定することができる。
The mounting base 30 is provided with first to third reference pickups 39 to 41, and the respective pickups 39 to 41 are provided.
By estimating the actual amount of vibration on the pick-up mounting surface PO to be tested based on the detection signals S11 to S13 of 41, when the mounting base 30 rocks or the mounting base 30 itself is distorted. In this case, the sensitivity and frequency characteristics of the pickup 32 can be accurately measured over a wide measurement range.

【0035】(5)他の実施例 なお上述の実施例においては、基台部30Aの形状を正
四角錐台形状にする場合について述べたが、本発明はこ
れに限らず、基台部30Aの形状を例えば円錐台形状あ
るいは頭部を切り取つた釣鐘形状とした場合においても
上述の場合と同様の効果を得ることができ、要は底面に
対して平行な上面を有し、かつ底面にいくに従つて裾広
がりとなるようなほぼ錐台形状であれば良い。また上述
の実施例においては、被検対象ピツクアツプ32及びダ
ミーマス33を取付け台に取り付ける方法として接着剤
による接着手段を用いる場合について述べたが、本発明
はこれに限らず、取付け台30に雄ねじ又は雌ねじを形
成すると共に、被検ピツクアツプ32及びダミーマス3
3に雌ねじ又は雄ねじを形成して、取付け台30に被検
ピツクアツプ32及びダミーマス33を締結することに
より取付けても良く、種々の取付け手段を適用すること
ができる。
(5) Other Embodiments In the above-described embodiment, the case where the shape of the base 30A is a truncated square pyramid has been described. However, the present invention is not limited to this. Even when the shape is, for example, a truncated conical shape or a bell-shaped shape with the head cut off, the same effect as in the above case can be obtained, in short, it has an upper surface parallel to the bottom surface, and Therefore, it is sufficient if the shape is substantially frustum-shaped such that the skirt spreads. Further, in the above-described embodiment, the case of using the adhesive means with an adhesive as a method for attaching the pick-up 32 and the dummy mass 33 to be inspected to the mounting table has been described. While forming a female screw, the pickup 32 and the dummy
3, a female screw or a male screw may be formed, and the test pick-up 32 and the dummy mass 33 may be fastened to the mounting base 30 by fastening, and various mounting means can be applied.

【0036】また上述の実施例においては、取付け台3
0の底面を貫通するように取付け用孔34A〜34Dを
穿設し、当該取付け用孔34A〜34Dにボルトを介挿
することにより取付け台30を加振器31に固定するよ
うにした場合について述べたが、本発明はこれに限ら
ず、取付け用孔34A〜34Dを穿設する代わりに接着
等の手段により取付け台30を加振器31に固定しても
良く、種々の取付け手段を適用することができる。
In the above embodiment, the mounting table 3
In the case where mounting holes 34A to 34D are formed so as to penetrate the bottom surface of the mounting base 30 and bolts are inserted into the mounting holes 34A to 34D, the mounting table 30 is fixed to the vibrator 31. As described above, the present invention is not limited to this, and the mounting table 30 may be fixed to the vibrator 31 by means such as bonding instead of drilling the mounting holes 34A to 34D, and various mounting means are applied. can do.

【0037】また上述の実施例においては、基準ピツク
アツプ39〜41の構成及び感度を同一とし、各基準ピ
ツクアツプ39〜41から出力される検出信号S11〜
S13をそれぞれ帰還容量100 〔pF〕及び300 〔pF〕の
増幅器を介して加算器54に送出する場合について述べ
たが、本発明はこれに限らず、各基準ピツクアツプ39
〜41に同一の振動変位が与えられた際基準ピツクアツ
プ39及び40が基準ピツクアツプ41に対して3倍の
電荷を出力するような各基準ピツクアツプ39、40及
び41を選定すれば、増幅器53、55及び57を同一
の構成とすることができる。
In the above-described embodiment, the construction and sensitivity of the reference pickups 39 to 41 are the same, and the detection signals S11 to S11 output from the reference pickups 39 to 41 are used.
Although the case where S13 is transmitted to the adder 54 via the amplifier having the feedback capacitance of 100 [pF] and 300 [pF] has been described, the present invention is not limited to this, and each reference pickup 39 is not limited to this.
If the reference pickups 39, 40 and 41 are selected such that the reference pickups 39 and 40 output three times the electric charge with respect to the reference pickup 41 when the same vibration displacement is applied to .about.41, the amplifiers 53 and 55 are selected. And 57 can have the same configuration.

【0038】また上述の実施例においては、取付け台3
0の加振方向yと被検ピツクアツプ32のy軸とを一致
させるように被検ピツクアツプ32を取付け台30に固
着させて被検ピツクアツプ32のy軸の感度及び周波数
特性を測定する場合について述べたが、被検ピツクアツ
プ32を90度回転させて取付け台30の加振方向yと被
検ピツクアツプ32のx軸とを一致させるように被検ピ
ツクアツプ32を取付け台30に固着させれば、被検ピ
ツクアツプ32のx軸の感度及び周波数特性を測定する
ことができる。
In the above embodiment, the mounting table 3
A description will be given of a case where the pickup 32 is fixed to the mounting table 30 so that the excitation direction y of zero and the y-axis of the pickup 32 coincide with each other, and the sensitivity and frequency characteristics of the y-axis of the pickup 32 are measured. However, if the pick-up 32 is rotated by 90 degrees and the pick-up 32 is fixed to the mount 30 so that the vibration direction y of the mount 30 matches the x-axis of the pick-up 32, The sensitivity and frequency characteristics of the x-axis of the pickup 32 can be measured.

【0039】さらに上述の実施例においては、第3の基
準ピツクアツプ41の中心が取付け台30の上面の中心
位置と一致するように第3の基準ピツクアツプ41を設
けると共に、当該第3の基準ピツクアツプ41と被検ピ
ツクアツプ取付け面との間の距離を3等分するように第
1及び第2の基準ピツクアツプ39及び40を設ける場
合について述べたが、第3の基準ピツクアツプ41の中
心が取付け台30の上面の中心位置に一致する必要はな
く、要は第1〜第3の基準ピツクアツプ39〜41が被
検ピツクアツプ取付け面の直角方向に一直線に並び、か
つ取付け面及び第1の基準ピツクアツプ39、第1の基
準ピツクアツプ39及び第2の基準ピツクアツプ40、
第2の基準ピツクアツプ40及び第3の基準ピツクアツ
プ41の間の距離がそれぞれ等間隔になるように基準ピ
ツクアツプ装填用穴36〜38を設け、各基準ピツクア
ツプ39〜41を装填するようにすれば良い。
Further, in the above embodiment, the third reference pickup 41 is provided so that the center of the third reference pickup 41 coincides with the center position of the upper surface of the mounting base 30, and the third reference pickup 41 is provided. The case where the first and second reference pickups 39 and 40 are provided so as to divide the distance between the pickup pick-up mounting surface and the test pickup mounting surface into three equal parts has been described, but the center of the third reference pickup 41 is located at the center of the mounting base 30. It is not necessary to coincide with the center position of the upper surface. In short, the first to third reference pick-ups 39 to 41 are aligned in a direction perpendicular to the pick-up mounting surface to be tested, and the mounting surface and the first reference pick-up 39, A first reference pickup 39 and a second reference pickup 40,
The reference pickup holes 36 to 38 may be provided so that the distance between the second reference pickup 40 and the third reference pickup 41 is equal, and the reference pickups 39 to 41 may be loaded. .

【0040】[0040]

【発明の効果】上述のように本発明によれば、取付け台
を、ほぼ錐体形状でなる基台部と正四角柱形状のピツク
アツプ装着部とが一体となるように形成したことによ
り、ロツキング運動を減少させることができると共に、
取付け台自体に生じる面歪みを抑制でき、被検ピツクア
ツプと基準ピツクアツプとの間の振動変位の差を低減す
ることができる。
As described above, according to the present invention, the rocking motion is achieved by forming the mounting base such that the base part having a substantially pyramid shape and the pickup mounting part having the square prism shape are integrated. Can be reduced,
The surface distortion generated in the mounting table itself can be suppressed, and the difference in vibration displacement between the test pickup and the reference pickup can be reduced.

【0041】また被検ピツクアツプが取り付けられる一
側面から当該一側面に対向する側面に向つて等間隔で並
ぶように第1、第2及び第3の基準ピツクアツプを装填
するようにしたことにより、ロツキング運動及び面歪み
が生じた場合においても、被検ピツクアツプが取付けら
れた位置での正確な振動を検出でき、一段と広い周波数
帯域で被検ピツクアツプの感度及び周波数特性を正確に
測定することができる。
Further, the first, second and third reference pickups are mounted so as to be arranged at equal intervals from one side on which the pickup to be tested is attached to the side opposite to the one side, so that locking is achieved. Even when movement and surface distortion occur, it is possible to accurately detect vibration at the position where the pickup is mounted, and to accurately measure the sensitivity and frequency characteristics of the pickup in a wider frequency band.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加速度ピツクアツプ校正用取付け
台の一実施例を基準ピツクアツプを含む断面で示す縦断
面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a mounting base for calibrating an acceleration pickup according to the present invention in a cross section including a reference pickup.

【図2】本発明による加速度ピツクアツプ校正用取付け
台の全体構成を示す平面図である。
FIG. 2 is a plan view showing an overall configuration of a mounting base for accelerating pick-up according to the present invention.

【図3】測定装置の全体構成を示すブロツク図である。FIG. 3 is a block diagram showing the overall configuration of the measuring device.

【図4】面歪みによる取付け台の変位量を示す略線図で
ある。
FIG. 4 is a schematic diagram illustrating an amount of displacement of a mounting table due to surface distortion.

【図5】ロツキング運動による取付け台の変位量を示す
略線図である。
FIG. 5 is a schematic diagram illustrating a displacement amount of a mounting table due to a rocking motion.

【図6】測定結果の周波数特性を示す特性曲線図であ
る。
FIG. 6 is a characteristic curve diagram showing a frequency characteristic of a measurement result.

【図7】従来の校正用取付け台の全体構成図である。FIG. 7 is an overall configuration diagram of a conventional mounting base for calibration.

【符号の説明】[Explanation of symbols]

1、30……加速度ピツクアツプ校正用取付け台、2、
30A……基台部、3、30B……ピツクアツプ装着
部、4、31……加振器、5、32……被検加速度ピツ
クアツプ、6、33……ダミーマス、7、39〜41…
…基準ピツクアツプ、10、51……周波数分析器、3
6〜38……基準ピツクアツプ装填用穴。
1, 30 ... Mounting base for acceleration pickup calibration
30A ... base part, 3, 30B ... pick-up mounting part, 4, 31 ... vibrator, 5, 32 ... ... acceleration pickup to be measured, 6, 33 ... dummy mass, 7, 39-41 ...
… Reference pickup, 10, 51 …… Frequency analyzer, 3
6 to 38: Reference pickup hole.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定の加振器に取り付けられ、当該加振器
により与えられる振動を被検対象の加速度ピツクアツプ
及び基準の加速度ピツクアツプに伝達し、当該被検加速
度ピツクアツプ及び基準加速度ピツクアツプから得られ
る出力信号に基づいて被検加速度ピツクアツプの特性を
測定する加速度ピツクアツプの校正用取付け台におい
て、 ほぼ錐台形状でなる基台部と、 正四角柱形状でなり、上記基台部の上面において上記基
台部と一体に形成されたピツクアツプ装着部と、 上記ピツクアツプ装着部に形成された基準ピツクアツプ
取付け部と、 を具え、上記ピツクアツプ装着部の一側面に上記被検ピ
ツクアツプを取り付けると共に、当該一側面に対向する
側面に上記被検ピツクアツプとほぼ同等の質量でなるダ
ミーマスを取り付けることを特徴とする加速度ピツクア
ツプの校正用取付け台。
1. A vibration sensor attached to a predetermined vibrator and transmitting vibration given by the vibrator to an acceleration pickup of a test object and a reference acceleration pickup, and obtained from the test acceleration pickup and the reference acceleration pickup. An acceleration pick-up calibration mount for measuring the characteristics of a test acceleration pick-up based on an output signal has a substantially frustum-shaped base and a square prism-shaped base, and the base is formed on the upper surface of the base. A pick-up mounting portion formed integrally with the portion, and a reference pick-up mounting portion formed on the pick-up mounting portion. A special feature is to attach a dummy mass with approximately the same mass as the pick-up to be inspected to the side to be inspected. Mounting base for calibration of acceleration pickup.
【請求項2】上記基準ピツクアツプ取付け部は上記被検
ピツクアツプが取り付けられる一側面から当該一側面に
対向する側面に向つて等間隔で並ぶように穿設された第
1、第2及び第3の装填用穴でなり、当該第1、第2及
び第3の基準ピツクアツプ装填用穴のそれぞれに第1、
第2及び第3の基準ピツクアツプを装填するようにした
ことを特徴とする請求項1に記載の加速度ピツクアツプ
の校正用取付け台。
2. The first, second and third reference pickup mounting portions are provided so as to be arranged at equal intervals from one side surface on which the pickup to be tested is mounted to a side surface opposite to the one side surface. The first, second, and third reference pick-up loading holes are first and second holes respectively.
2. A mount for calibrating an acceleration pickup according to claim 1, wherein said second and third reference pickups are loaded.
JP4286722A 1992-10-01 1992-10-01 Mounting stand for calibration of acceleration pickup Expired - Lifetime JP2707032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4286722A JP2707032B2 (en) 1992-10-01 1992-10-01 Mounting stand for calibration of acceleration pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4286722A JP2707032B2 (en) 1992-10-01 1992-10-01 Mounting stand for calibration of acceleration pickup

Publications (2)

Publication Number Publication Date
JPH06118098A JPH06118098A (en) 1994-04-28
JP2707032B2 true JP2707032B2 (en) 1998-01-28

Family

ID=17708170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4286722A Expired - Lifetime JP2707032B2 (en) 1992-10-01 1992-10-01 Mounting stand for calibration of acceleration pickup

Country Status (1)

Country Link
JP (1) JP2707032B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869299B2 (en) * 2008-08-07 2012-02-08 株式会社東芝 How to modify pattern layout
JP6886846B2 (en) * 2017-03-23 2021-06-16 戸田建設株式会社 Pseudo-vibration device

Also Published As

Publication number Publication date
JPH06118098A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US5691471A (en) Acceleration and angular velocity detector
US6360176B1 (en) Touch signal probe
JP4223554B2 (en) Sensor device for three-dimensional measurement of posture or acceleration
JP3089399B2 (en) 3-component seismometer
US20050140356A1 (en) Multiaxial micromachined differential accelerometer
US6230565B1 (en) Pressure-compensated transducers, pressure-compensated accelerometers, force-sensing methods, and acceleration-sensing methods
US6435000B1 (en) Method for calibrating sensitivity of acceleration sensor
JP2707032B2 (en) Mounting stand for calibration of acceleration pickup
JPH07139994A (en) Vibration measuring device
JPH06221806A (en) Touch signal probe
CN106771366B (en) MEMS accelerometer health state monitoring device and monitoring method
CN116519012B (en) Method and test device for trimming unbalanced mass of vibrating gyroscope
CN109238452B (en) Single-sensor pickup device based on impact echo acoustic frequency detection
JP2004506883A (en) Micromechanical rotational speed sensor and method of manufacturing the same
JPH0735646A (en) Apparatus for measuring characteristic of leaf spring
JPH06160166A (en) Vibration meter
JP2000338128A (en) Sensitivity evaluation method of acceleration sensor element
JP2867103B2 (en) Vibration meter
US5396801A (en) Vibrometer
JP3308043B2 (en) Multi-axis acceleration detector
JPH05119057A (en) Semiconductor acceleration sensor
JPH0526754A (en) Sensor utilizing change in electrostatic capacitance
Ivarsson et al. Design, theory and validation of a low mass 6-dof transducer
Kumme et al. Dynamic properties and investigations of piezoelectric force measuring devices
JPH0128332B2 (en)