JPH01280227A - Black body furnace - Google Patents

Black body furnace

Info

Publication number
JPH01280227A
JPH01280227A JP63109647A JP10964788A JPH01280227A JP H01280227 A JPH01280227 A JP H01280227A JP 63109647 A JP63109647 A JP 63109647A JP 10964788 A JP10964788 A JP 10964788A JP H01280227 A JPH01280227 A JP H01280227A
Authority
JP
Japan
Prior art keywords
spherical
small window
heating body
temperature
radiation thermometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109647A
Other languages
Japanese (ja)
Inventor
Seiichi Okuhara
奥原 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63109647A priority Critical patent/JPH01280227A/en
Publication of JPH01280227A publication Critical patent/JPH01280227A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies

Abstract

PURPOSE:To accurately indicate temperature on a radiation thermometer by making the opening area of a small window much smaller than the internal surface area of a heating body. CONSTITUTION:A coating 2 of an electric insulating material is formed on the surface of a spherical body 1 with the small window 5, a heating wire 3 is wound around the surface of the coating 2, and then a coating 4 of an electric insulating material is formed to form the heating body 12. This spherical heating body 12 is put in a box 7 which has a small window 8 and an air intake 9 and an insulator 6 is filled in the gap between the heating body 12 and box 7. Then the opening area of the small window 8 is made much smaller than the internal surface area of the heating body 12 to hold the temperature distribution of the internal surface of the heating body 12 uniform. In the visual field of the radiation thermometer to be calibrated which is inserted from the small window 8, indicated temperature becomes constant in any direction of the internal surface of the heating body 12 to eliminate an error in temperature indication caused according to the insertion position and direction of the radiation thermometer.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、色温度計、輝度温度計のような輻射温度計
を校正する際に、温度の標準として利用する黒体炉に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a blackbody furnace used as a temperature standard when calibrating radiation thermometers such as color thermometers and brightness thermometers.

(従来の技術) 色温度計、輝度温度計などの輻射温度計を校正する従来
の温度標準は、第2図に示すように、セラミック・パイ
プ21の内部に円板状の加熱物22を挿入し、セラミッ
ク・パイプ21の外周に電熱線23を巻付け、円板状の
加熱物22に温度測定用の熱電対24を設けたものであ
る。
(Prior Art) A conventional temperature standard for calibrating radiation thermometers such as color thermometers and brightness thermometers uses a disc-shaped heated object 22 inserted inside a ceramic pipe 21, as shown in FIG. A heating wire 23 is wound around the outer periphery of a ceramic pipe 21, and a thermocouple 24 for temperature measurement is provided on a disc-shaped heated object 22.

このような従来の温度標準によると、加熱体が電熱線2
3であって、円板状の加熱物22はセラミック・パイプ
21を介して間接的に加熱されることになるからセラミ
ック・パイプ21の内部および加熱物22の温度分布は
均一ではなく、特に、加熱物22の実際の温度は、セラ
ミック番バイブ21の温度よりも低くなり、温度むらを
生じる。
According to such conventional temperature standards, the heating element is the heating wire 2
3, since the disk-shaped heating object 22 is indirectly heated through the ceramic pipe 21, the temperature distribution inside the ceramic pipe 21 and the heating object 22 is not uniform, and in particular, The actual temperature of the heated object 22 is lower than the temperature of the ceramic vibrator 21, resulting in temperature unevenness.

熱電対24によって測定される温度は、加熱物22自体
の温度であるのにも拘らず、加熱物22はセラミツクー
パイブ21の内表面から輻射されるエネルギーの反射体
にもなるので、校正すべき輻射温度計の視野を加熱物2
2に合わると、輻射温度計に入射するエネルギーは、加
熱物22の表面から輻射される本来のエネルギーのほか
に、高温度のセラミック会パイプ21の内表面から輻射
されて加熱物22の表面で反射されたエネルギーも加わ
るので、輻射温度計は、熱電対24で測定した加熱物2
2の実際の温度よりも高い温度で校正されたことになる
Although the temperature measured by the thermocouple 24 is the temperature of the heated object 22 itself, the heated object 22 also serves as a reflector of the energy radiated from the inner surface of the ceramic coupe 21, so calibration is not necessary. The field of view of the radiation thermometer should be heated object 2.
2, the energy incident on the radiation thermometer is not only the original energy radiated from the surface of the heated object 22, but also the energy radiated from the inner surface of the high-temperature ceramic pipe 21 to the surface of the heated object 22. Since the energy reflected by the radiation thermometer is also added, the radiation thermometer is
This means that the calibration was performed at a higher temperature than the actual temperature of No.2.

また、校正すべき輻射温度計の視野が、加熱物22の中
心から外れて、視野の一部に高温度のセラミック・バイ
ブ21の内表面が入ると、輻射温度計に入射するエネル
ギーの強度が増すので1校正に際して、輻射温度計の視
野の中心と加熱物22の中心とを正確に一致させなけれ
ば、温度指示に誤差を生じる。
Additionally, if the field of view of the radiation thermometer to be calibrated deviates from the center of the heated object 22 and the inner surface of the high-temperature ceramic vibe 21 enters a part of the field of view, the intensity of the energy incident on the radiation thermometer will increase. Therefore, if the center of the field of view of the radiation thermometer and the center of the heated object 22 are not accurately aligned during one calibration, an error will occur in the temperature indication.

(発明が解決しようとする課題) このような従来の黒体炉においては、温度分布の不均一
性および校正すべき輻射温度計に入射するエネルギー強
度と加熱物の実際の温度とが正確に対応しないという問
題があった。
(Problems to be Solved by the Invention) In such a conventional blackbody furnace, the non-uniformity of the temperature distribution and the fact that the energy intensity incident on the radiation thermometer to be calibrated accurately corresponds to the actual temperature of the heated object. The problem was that it didn't.

(課題を解決するための手段) そこで、この発明は、このような問題点を解決するため
に、加熱物を球状に形成し、この球状の加熱物の内表面
積に比して、エネルギーを取り出す小窓の開口面積を著
しく小さくするとともに、球状の加熱物を全体にわたっ
て均一に加熱するように、加熱ヒータを配置したもので
ある。
(Means for Solving the Problems) Therefore, in order to solve such problems, the present invention forms a heated object into a spherical shape, and extracts energy relative to the inner surface area of this spherical heated object. The opening area of the small window is significantly reduced, and heaters are arranged so as to uniformly heat the entire spherical heating object.

(実施例) 第1図の断面図に示すように、炭化硅素のような黒色で
放射率がよく、そして熱伝導性のよい材料によって、厚
みが均一でポーラスな小窓5を有する球体lを作り、こ
の球体lの表面に、アルミナのような電気的絶縁材料で
ポーラスな被覆2を形成し、この被覆2の表面に加熱用
のモリブデン線またはタングステン線のような高温度の
発熱が可能な電熱線3を巻き付けたのち、この電熱kQ
3を覆うように、アルミナのような電気的絶縁材料でポ
ーラスな被覆4を施して球状の加熱物12を形成する。
(Example) As shown in the cross-sectional view of FIG. 1, a sphere l having a uniform thickness and porous small windows 5 is made of a black material such as silicon carbide, which has good emissivity and good thermal conductivity. A porous coating 2 is formed on the surface of this sphere l using an electrically insulating material such as alumina, and a high-temperature heat generating material such as molybdenum wire or tungsten wire for heating is formed on the surface of this coating 2. After wrapping heating wire 3, this electric heating kQ
A spherical heating element 12 is formed by applying a porous coating 4 of an electrically insulating material such as alumina to cover the heating element 3 .

さらに、球体1の実際の温度を測定するための熱電対1
4が、球体lの内表面に設けられている。
Furthermore, a thermocouple 1 for measuring the actual temperature of the sphere 1
4 is provided on the inner surface of the sphere l.

この球状の加熱物12を、小窓8および給気孔9を有す
る箱7に収納し、球状の加熱物12と箱7との隙間にア
ルミナの粉、ロック・ウールなどの断熱材6を充填する
This spherical heating object 12 is stored in a box 7 having a small window 8 and an air supply hole 9, and the gap between the spherical heating object 12 and the box 7 is filled with a heat insulating material 6 such as alumina powder or rock wool. .

そして1箱7の小窓8は、不使用時にキャップ10によ
って密閉される。
The small window 8 of each box 7 is sealed with a cap 10 when not in use.

(作用) 小窓8のキャップ10を外し、箱7の給気孔9よリアル
ボン・ガスのような不活性ガスを供給しながら電熱線3
に通電すると、球状の加熱物12が加熱されて、加熱物
12の温度が上昇する。
(Function) Remove the cap 10 of the small window 8 and connect the heating wire 3 while supplying an inert gas such as realbon gas through the air supply hole 9 of the box 7.
When energized, the spherical heating object 12 is heated and the temperature of the heating object 12 increases.

このとき、給気孔9より供給された不活性ガスは、断熱
材6およびポーラスな球状の加熱物12の壁面を経て加
熱物12の中に入り、そして、小窓5および8より外部
へ放出され、空気中の酸素による電熱線3の焼損を防ぐ
At this time, the inert gas supplied from the air supply hole 9 enters the heating object 12 through the insulation material 6 and the wall surface of the porous spherical heating object 12, and is then released to the outside through the small windows 5 and 8. , to prevent burning of the heating wire 3 due to oxygen in the air.

校正すべき輻射温度計の視野を小窓8を経て、球状の加
熱物12の内表面に指向させると、球状の加熱物12の
内表面から輻射されたエネルギーを輻射温度計の受光部
に入射させることができる。
When the field of view of the radiation thermometer to be calibrated is directed to the inner surface of the spherical heated object 12 through the small window 8, the energy radiated from the inner surface of the spherical heated object 12 is incident on the light receiving part of the radiation thermometer. can be done.

(効果) 球状の加熱物12の内表面積に比べて、小窓8の開口面
積を著しく小さくしておくと、球状の加熱物12の内表
面の温度を可及的に均一に保っておく限り、校正すべき
輻射温度計の視野が、球状の加熱物12の内表面のどこ
を向いても、指示する温度は一定である。
(Effect) If the opening area of the small window 8 is made significantly smaller than the inner surface area of the spherical heated object 12, as long as the temperature of the inner surface of the spherical heated object 12 is kept as uniform as possible. No matter where on the inner surface of the spherical heated object 12 the field of view of the radiation thermometer to be calibrated is directed, the indicated temperature is constant.

すなわち、校正すべき輻射温度計の視野内の加熱物12
の内表面からは、視野内の内表面で輻射される本来のエ
ネルギーのほかに、視野外の他の内表面から輻射され、
視野内の内表面で反射されたエネルギーも加わるが、こ
の反射されたエネルギーも、同じ温度の他の内表面から
輻射されたものであるから、校正すべき輻射温度計に入
射するエネルギーは同じであって、指示温度に全く影響
しない。
That is, the heated object 12 within the field of view of the radiation thermometer to be calibrated
In addition to the original energy radiated from the inner surface within the field of view, energy is radiated from the inner surface of the
The energy reflected from the inner surface within the field of view is also added, but since this reflected energy is also radiated from other inner surfaces at the same temperature, the energy incident on the radiation thermometer to be calibrated is the same. Therefore, it does not affect the indicated temperature at all.

また、小窓8にガラス板を設けると、加熱時に各種の物
質から発生した蒸気が、ガラス板の表面に凝縮し、輻射
されたエネルギーのうちの一部のエネルギーを吸収する
ので、加熱物12の内表面の温度に対応した輻射エネル
ギーを取り出すことができない。
Furthermore, if a glass plate is provided in the small window 8, steam generated from various substances during heating will condense on the surface of the glass plate and absorb some of the radiated energy. It is not possible to extract radiant energy corresponding to the temperature of the inner surface of the

しかし、この発明の黒体炉においては、校正動作中、小
窓8を完全に開き、フィルタ作用をするガラスのような
物質を介在させていないので、熱電対14で測定した加
熱物12の内表面の温度に対応した輻射エネルギーを取
り出すことができる。
However, in the blackbody furnace of the present invention, during the calibration operation, the small window 8 is completely opened and there is no substance such as glass that acts as a filter. Radiant energy corresponding to the surface temperature can be extracted.

なお、小窓8は、不使用時にキャップ10によって密閉
され、箱7内に空気が流入するのを防止する。
Note that the small window 8 is sealed with a cap 10 when not in use to prevent air from flowing into the box 7.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の黒体炉の一実施例を示す断面図、
第2図は、従来の黒体炉の一例を示す断面図である。 3・・・電熱線 5.8・・・小窓 6・・・断熱材 7・・・箱 9・・・給気孔 12・・・球状の加熱物 14・・・熱電対
FIG. 1 is a sectional view showing an embodiment of a blackbody furnace of the present invention;
FIG. 2 is a sectional view showing an example of a conventional blackbody furnace. 3... Heating wire 5.8... Small window 6... Insulating material 7... Box 9... Air supply hole 12... Spherical heating object 14... Thermocouple

Claims (3)

【特許請求の範囲】[Claims] (1)内表面が比較的黒い球状の加熱物と、該球状の加
熱物を全体にわたって可及的に均一に加熱する加熱ヒー
タと、上記球状の加熱物の内表面積に比して、開口面積
が小さく、上記球状の加熱物の内表面から輻射されるエ
ネルギーを取り出す上記球状の加熱物に設けられた小窓
とを具備することを特徴とする黒体炉。
(1) A spherical heated object with a relatively black inner surface, a heater that heats the spherical heated object as uniformly as possible over the entire surface, and an opening area that is larger than the inner surface area of the spherical heated object. 1. A blackbody furnace comprising: a small window provided in the spherical heating object for extracting energy radiated from the inner surface of the spherical heating object.
(2)球状の加熱物の壁面が、通気性であることを特徴
とする特許請求の範囲第1項に記載の黒体炉。
(2) The blackbody furnace according to claim 1, wherein the wall surface of the spherical heated object is breathable.
(3)球状の加熱物を収納し、給気孔を有する箱を具備
し、上記給気孔より供給された不活性ガスを上記球状の
加熱物の壁面を経て小窓より外部に放出させるように構
成したことを特徴とする特許請求の範囲第2項に記載の
黒体炉。
(3) A box containing a spherical heating object and having an air supply hole is configured, and the inert gas supplied from the air supply hole is discharged to the outside through a small window through the wall of the spherical heating object. A blackbody furnace according to claim 2, characterized in that:
JP63109647A 1988-05-06 1988-05-06 Black body furnace Pending JPH01280227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109647A JPH01280227A (en) 1988-05-06 1988-05-06 Black body furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109647A JPH01280227A (en) 1988-05-06 1988-05-06 Black body furnace

Publications (1)

Publication Number Publication Date
JPH01280227A true JPH01280227A (en) 1989-11-10

Family

ID=14515589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109647A Pending JPH01280227A (en) 1988-05-06 1988-05-06 Black body furnace

Country Status (1)

Country Link
JP (1) JPH01280227A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271578A (en) * 2006-03-31 2007-10-18 Seiko Npc Corp Infrared sensor measurement device
JP2010112862A (en) * 2008-11-07 2010-05-20 Seiko Npc Corp Blackbody furnace
US7866882B2 (en) * 2007-02-13 2011-01-11 Industrial Technology Research Institute Standard radiation source
JP2011215155A (en) * 2011-06-15 2011-10-27 Seiko Npc Corp Infrared sensor measuring device
CN114858289A (en) * 2022-07-07 2022-08-05 深圳市兆兴博拓科技股份有限公司 Infrared sensing testing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271578A (en) * 2006-03-31 2007-10-18 Seiko Npc Corp Infrared sensor measurement device
US7866882B2 (en) * 2007-02-13 2011-01-11 Industrial Technology Research Institute Standard radiation source
JP2010112862A (en) * 2008-11-07 2010-05-20 Seiko Npc Corp Blackbody furnace
JP2011215155A (en) * 2011-06-15 2011-10-27 Seiko Npc Corp Infrared sensor measuring device
CN114858289A (en) * 2022-07-07 2022-08-05 深圳市兆兴博拓科技股份有限公司 Infrared sensing testing device
CN114858289B (en) * 2022-07-07 2022-10-04 深圳市兆兴博拓科技股份有限公司 Infrared sensing testing device

Similar Documents

Publication Publication Date Title
US5391408A (en) Method for firing enamel on a metal article
JPH08210919A (en) Temperature measuring instrument
JPH01280227A (en) Black body furnace
JPS6037116A (en) Optical irradiating furnace
US4214117A (en) Furnace heated by radiation
JPS63292591A (en) Infrared heater
JPH10144618A (en) Heater for manufacturing semiconductor device
JPH10170343A (en) Temperature measuring apparatus
JPS6015148Y2 (en) blackbody furnace
JPS5910590Y2 (en) Constant heat flow generator
JPH0458569B2 (en)
JPH0336919Y2 (en)
JP3360560B2 (en) Infrared thickness gauge infrared light source
Kreider et al. RTP calibration wafer using thin-film thermocouples
Elich et al. Temperature effects influencing the spectral and total emissivity of refractories
JPS60211947A (en) Annealing device by indirect heating
JP2002170528A (en) Tubular bulb and tubular bulb lighter
JPS589914B2 (en) spherical furnace
CN108508264A (en) Power sensor
JPS62231148A (en) Thermal analysis instrument
JPH08261844A (en) In-furnace temperature measuring device for high-temperature furnace
JPS62502774A (en) Self-heated sensor package
Mendeleev et al. Method of measuring the radiation power of a material and the corresponding blackbody model to determine its normal emissivity
JP2000306855A (en) Heating device
JPH0640091B2 (en) Industrial gas concentration measuring device