JPH01277159A - Multi-chamber airconditioner - Google Patents

Multi-chamber airconditioner

Info

Publication number
JPH01277159A
JPH01277159A JP63106504A JP10650488A JPH01277159A JP H01277159 A JPH01277159 A JP H01277159A JP 63106504 A JP63106504 A JP 63106504A JP 10650488 A JP10650488 A JP 10650488A JP H01277159 A JPH01277159 A JP H01277159A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
indoor
outlet
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63106504A
Other languages
Japanese (ja)
Other versions
JPH0670515B2 (en
Inventor
Akio Fukushima
章雄 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63106504A priority Critical patent/JPH0670515B2/en
Publication of JPH01277159A publication Critical patent/JPH01277159A/en
Publication of JPH0670515B2 publication Critical patent/JPH0670515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To divide the pressure of refrigerant of a plurality of indoor equipment properly and eliminate the need for a refrigerant collection circuit, by entering signals transmitted from temperature detectors installed to a heating operation outlet of an indoor heat exchanger, and a cooling operation outlet of an outdoor heat exchanger, and a detector to detect a high pressure state on the outside of a compressor, and controlling an expansion valve. CONSTITUTION:A high pressure refrigerant output from a compressor 1 during cooling operation, is liquefied by an outdoor heat exchanger 3, further cooled by a heat exchanger 5 of an accumulator 4, introduced to each indoor equipment 9a-9c, pressure- reduced by expansion valves 8a-8c, and vaporized by an indoor heat exchanger 7a-7c. The vaporized refrigerant returns to outdoor equipment 6, then to the compressor 1 by way of the accumulator 4, thereby forming a cycle. With a pressure sensor 14 and a thermistor 15 at the outlet of the outdoor heat exchanger 3 which are designed to fix the subcooling of the outlet of the outdoor heat exchanger 3, a control device 18 controls expansion valves 8a-8c, depending on the size of each indoor equipment 9a-9c registered by capacity setting switches 17a-17c simultaneously with the unified subcooling so that the opening degree of the whole expansion valves 8a-8c may be properly divided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1台の室外機に複数台の室内機を接続させた多
至用空気調和機に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-purpose air conditioner in which a plurality of indoor units are connected to one outdoor unit.

[従来の技術] 従来のこの種の多至用空気調和機として、例えば、実公
昭55−28993号公報に記載された多室用空気調和
機を挙げることができる。
[Prior Art] An example of a conventional multi-room air conditioner of this type is the multi-room air conditioner described in Japanese Utility Model Publication No. 55-28993.

第11図は上記公報で公知になった従来の多室用空気調
和機の全体構成図である。
FIG. 11 is an overall configuration diagram of a conventional multi-room air conditioner known from the above-mentioned publication.

図において、(1)は圧縮機、(2)は前記圧縮機(1
)に接続されて、冷房または暖房のサイクルの切換えを
行なう切換弁である四方切換弁、(3)は一方をこの四
方切換弁(2)に接続させ、他方に膨張弁(23)及び
レシーバ(25)を直列に接続させた室外熱交換器、(
4)は前記圧縮機(1)と四方切換弁(2)との間に接
続させたアキュムレータ、(24)は前記膨張弁(23
)に並列に接続させた逆止弁であって、これらにより空
気調和機の主回路部を構成している。
In the figure, (1) is a compressor, and (2) is the compressor (1).
), the four-way switching valve (3) is a switching valve that switches between cooling or heating cycles; 25) are connected in series, an outdoor heat exchanger (
4) is an accumulator connected between the compressor (1) and the four-way switching valve (2), and (24) is the expansion valve (23).
) are connected in parallel to each other, and these constitute the main circuit section of the air conditioner.

また、(7a)、(7b)は前記主回路から並列分岐さ
れて、その四方切換弁(2)とレシーバ(25)との間
に、それぞれにガス側電磁弁(26a>、(26b)及
び法例電磁弁(27a)。
Further, (7a) and (7b) are branched in parallel from the main circuit, and gas side solenoid valves (26a>, (26b) and Legal solenoid valve (27a).

(27b)を介して接続された複数台の室内熱交換器で
必って、これらの各熱交換器(7a)。
In a plurality of indoor heat exchangers connected via (27b), each of these heat exchangers (7a).

(7b)についてもその各法例電磁弁(27a>。Regarding (7b), each legal example solenoid valve (27a>).

(27b)との間に、膨張弁(29a>、(29b)と
逆止弁(28a>、(28b)との並列回路をそれぞれ
直列に接続させておる。
(27b), parallel circuits of expansion valves (29a>, (29b) and check valves (28a>, (28b)) are connected in series, respectively.

そして、この従来例による多至用空気調和機は、四方切
換弁(2)の切換え操作により、冷房運転は実線矢印、
暖房運転は点線矢印のように冷媒を循環作用させるよう
にしている。
In this conventional multi-purpose air conditioner, cooling operation is performed by switching the four-way switching valve (2) as shown by the solid line arrow.
During heating operation, the refrigerant is circulated as shown by the dotted arrow.

この種の従来の多室用空気調和機は、第11図に示すよ
うに、各室内熱交換器(7a>、(7b)、即ら、複数
の室内機に冷房用の膨張弁(29a)、(29b)が設
けられているが、これは冷房運転時には複数の室内機の
負荷のアンバランス、或いは各室内機の据付けられた位
置関係が相対的に適正な冷媒量を供給することをその主
目的としているのである。しかし、暖房運転時には複数
の室内機に適正な冷媒量を分配する手段がなく、多至用
空気調和機として必ずしも十分な回路構成でなかった。
As shown in FIG. 11, this type of conventional multi-room air conditioner has an expansion valve (29a) for cooling each indoor heat exchanger (7a>, (7b), that is, a plurality of indoor units). , (29b) is provided, but this is due to unbalanced loads of multiple indoor units during cooling operation, or the installation positional relationship of each indoor unit to ensure that a relatively appropriate amount of refrigerant is supplied. However, there was no means to distribute the appropriate amount of refrigerant to multiple indoor units during heating operation, and the circuit configuration was not necessarily sufficient for a multipurpose air conditioner.

また、冷房運転時には、膨張弁(29a)。Also, during cooling operation, an expansion valve (29a).

(29b)により各室内機への冷媒量の分配を行なって
いるが、他の室内機の影響を補正する手段がないため、
お互いに他の室内機の影響を受けあって、冷媒量の分配
にハンチング現象を起しやすく、また、膨張弁(29a
>、(29b)は室内熱交換器出口の過熱度(以下、ス
ーパーヒートと記す)が、一定値になるように制御され
、スーパーヒートがつき過ぎると、室内熱交換器の効率
が低下し、冷房能力が低下し易い。
(29b) distributes the amount of refrigerant to each indoor unit, but since there is no means to compensate for the influence of other indoor units,
Each indoor unit is influenced by other indoor units, which tends to cause a hunting phenomenon in the distribution of refrigerant, and the expansion valve (29a
>, (29b) is controlled so that the degree of superheating (hereinafter referred to as superheat) at the outlet of the indoor heat exchanger is a constant value, and when the superheat is too high, the efficiency of the indoor heat exchanger decreases, Cooling capacity tends to decrease.

即ち、これは、第12図の熱交換器出口の冷媒状態と平
均熱伝達率の関係を示す特性図かられかるように、熱交
換器出口がスーパーヒート領域に入ると急激に性能が低
下するためでおり、例えば、第13図の一般的な室内機
の熱交換器の構成図に示すような複数のパスを持つ室内
熱交換器の場合には、全体のスーパーヒートは適正でお
っても、各パスごとのスーパーヒートがばらつくとスー
パーヒートが大きいパスは性能が低下するため、更に、
冷房能力の低下を助長する結果となる。
That is, as can be seen from the characteristic diagram shown in Fig. 12, which shows the relationship between the refrigerant state at the heat exchanger outlet and the average heat transfer coefficient, when the heat exchanger outlet enters the superheat region, the performance decreases rapidly. For example, in the case of an indoor heat exchanger with multiple passes as shown in the configuration diagram of a general indoor unit heat exchanger in Figure 13, the overall superheat may be adequate. , If the superheat of each pass varies, the performance of the path with large superheat will deteriorate, so furthermore,
This results in a further decline in cooling capacity.

なお、第13図において、(35)は分配器、(36a
) 〜(36c)は分配管、(37a)〜(37C)は
蒸発器のパス、(38)はヘッダーである。
In addition, in FIG. 13, (35) is a distributor, (36a
) to (36c) are distribution pipes, (37a) to (37C) are evaporator paths, and (38) is a header.

また、従来の多室用空気調和機は、冷暖房運転時に膨張
弁(29a>、(29b)によるスーパーヒート制御の
ため、運転条件の変化による余剰冷媒を溜めるレシーバ
(25)が必要となり、過渡状態で圧縮機(1)への液
戻りを防ぐためのアキュムレータ(4)と、2つの冷媒
吸収容器を必要としている。
In addition, conventional multi-room air conditioners require a receiver (25) to store excess refrigerant due to changes in operating conditions due to superheat control using expansion valves (29a>, (29b) during cooling/heating operation, and transient conditions An accumulator (4) to prevent liquid from returning to the compressor (1) and two refrigerant absorption containers are required.

更に、従来の多室用空気調和機では、暖房運転時の法例
分岐回路の合流点が高圧の液冷媒となっており、室内機
のうち1台でも停止している場合、この停止回路内の冷
媒を回収するために逆止弁、毛細管を介して圧縮機の低
圧回路に接続する冷媒回収回路が必要となり、このため
冷媒回路が複雑なものとなる。なお、第11図では冷媒
回収回路を省略している。
Furthermore, in conventional multi-room air conditioners, high-pressure liquid refrigerant is used at the junction of legal branch circuits during heating operation, and if even one of the indoor units is stopped, the refrigerant in this stop circuit is In order to recover the refrigerant, a refrigerant recovery circuit that is connected to the low pressure circuit of the compressor via a check valve and a capillary tube is required, which makes the refrigerant circuit complicated. Note that the refrigerant recovery circuit is omitted in FIG. 11.

一方、ビル空調の分野では室外機の設置スペースの制約
から多室用空気調和機が昔及しているが、第11図に示
す従来例による多室用空気調和機では、一般に室外機を
設置する屋上から室内機を設置するフロア−まで、室内
機の台数分だけ冷媒配管を施工する必要があり、工事コ
ス1〜が割高となるとともに、ビルのパイプシャフトの
占有面積が大きくなる。
On the other hand, in the field of building air conditioning, multi-room air conditioners have long been popular due to constraints on installation space for outdoor units, but conventional multi-room air conditioners shown in Figure 11 generally have outdoor units installed. It is necessary to construct refrigerant piping for the number of indoor units from the rooftop where the indoor units are installed to the floor where the indoor units are installed, which increases the construction cost and increases the area occupied by the pipe shaft of the building.

そのため、ビル用の多室用空気調和機としては第14図
の他の従来の多室用空気調和機の冷媒回路図に示すよう
に、室外機から室内機を設置するフロア−までを1対の
配管で施工できる空調機が特開昭62−10204−6
号公報で提案されている。
Therefore, as shown in the refrigerant circuit diagram of another conventional multi-room air conditioner in Figure 14, for multi-room air conditioners for buildings, one pair is used from the outdoor unit to the floor where the indoor unit is installed. An air conditioner that can be constructed with piping is published in Japanese Patent Application Laid-Open No. 62-10204-6.
It is proposed in the publication.

なお、第14図において、第11図と同−符号及び記号
は第一実施例の構成部分と同一または相当する構成部分
を示すものであり、その説明を省略する。
Note that in FIG. 14, the same reference numerals and symbols as in FIG. 11 indicate the same or corresponding components as those in the first embodiment, and the explanation thereof will be omitted.

第14図にiJ3いて、(30a>、(aob>は第1
1図の法例電磁弁(27a>、(27b)と膨張弁(2
9a>、(29b)の殿能を果す電動式膨張弁、(31
)は電動式膨張弁(30a>。
In Figure 14, there is iJ3, (30a>, (aob>) are the first
Figure 1 shows the example solenoid valves (27a>, (27b) and expansion valves (27b)
9a>, (29b) electric expansion valve, (31
) is an electric expansion valve (30a>).

(30b)とガス側電磁弁(26a)、(26b)を納
めた?/L/チユニット、(32a>、(32b)は毛
細管である。
(30b) and gas side solenoid valves (26a) and (26b)? /L/unit, (32a>, (32b) are capillaries.

この従来例による多室用空気調和機は、四方切換弁(2
)の切換操作により、冷房運転時は実線矢印、暖房運転
時は点線矢印のように冷媒を循環作用させるようにした
ものである。
This conventional multi-room air conditioner has four-way switching valves (two
), the refrigerant is circulated as shown by the solid line arrow during cooling operation and as shown by the dotted line arrow during heating operation.

ここで、冷房運転時は電動式膨張弁(30a)。Here, during cooling operation, an electric expansion valve (30a) is used.

(30b)により、室内機への冷房の分配を行ない、暖
房運転時は電動式膨張弁が全開となり、毛細管(32a
)、(32b)により室内機への冷媒の分配を補正し、
減圧は膨張弁(23)により行なうものである。
(30b) distributes cooling to the indoor units, and during heating operation, the electric expansion valve is fully opened and the capillary tube (32a
), (32b) to correct the distribution of refrigerant to the indoor unit,
The pressure is reduced by an expansion valve (23).

[発明が解決しようとする課題] しかし、この種の従来の多室用空気調和機の場合、暖房
運転時の分配手段に関しては、第11図の従来例に比べ
改善されているがスーパーヒート制御のため、冷房運転
時の分配性能に関しては第11図の従来例と同様の性能
を合せ持ち、レシーバ(25)も冷房回収回路も必要と
なる。
[Problems to be Solved by the Invention] However, in the case of this type of conventional multi-room air conditioner, the distribution means during heating operation is improved compared to the conventional example shown in Fig. 11, but superheat control is not possible. Therefore, regarding distribution performance during cooling operation, it has the same performance as the conventional example shown in FIG. 11, and requires both a receiver (25) and a cooling recovery circuit.

更に、この従来例においては、室外機と室内機の他にマ
ルチユニット(31)を室内ユニット近傍に設置する必
要があり、マルチユニット(31〉の設置スペースの問
題や工事が複雑となり、マルチユニット(31)のアフ
ターサービスやマルチユニット(31)内の結露等を考
慮すると、据付上の制約がでて据付しずらくなる。
Furthermore, in this conventional example, in addition to the outdoor unit and the indoor unit, it is necessary to install the multi-unit (31) near the indoor unit, which complicates the installation space and construction work for the multi-unit (31). Considering the after-sales service of (31) and dew condensation inside the multi-unit (31), installation restrictions arise and installation becomes difficult.

また、前者の従来例及び後者の従来例とともに暖房運転
時、停止室内機ではガス側電磁弁(26a)、(26a
)にて冷媒を遮断しているため、追加運転したときに高
圧ガス冷媒が室内熱交換器(7a>、(7b)に流れ込
み、室内機側で冷媒音が発生することがある。
In addition, in both the former conventional example and the latter conventional example, when the indoor unit is stopped during heating operation, the gas side solenoid valves (26a), (26a
), the high-pressure gas refrigerant may flow into the indoor heat exchanger (7a>, (7b)) during additional operation, causing refrigerant noise on the indoor unit side.

そこで、本発明は、簡単な冷媒回路で複数の室内機の冷
媒分圧を適正に行ない、かつ、冷媒回収回路が不要で、
アキュムレータだけで冷媒量の調整を可能とし、室内機
の追加運転においても冷媒音の発生を防止でき、更に、
室外機から1対の冷媒配管で途中まで施工でき、空白機
側で自由に分岐できる据付自由度の高い多室用空気調和
機の提供を課題とするものでおる。
Therefore, the present invention appropriately controls refrigerant partial pressure in multiple indoor units using a simple refrigerant circuit, and eliminates the need for a refrigerant recovery circuit.
The amount of refrigerant can be adjusted using only the accumulator, preventing refrigerant noise even when additionally operating the indoor unit, and
It is an object of the present invention to provide a multi-room air conditioner that can be installed halfway from an outdoor unit with a pair of refrigerant piping, and can be freely branched on the empty unit side, with a high degree of installation freedom.

[課題を解決するための手段] 第一の発明にかかる多室用空気調和機は、室外熱交換器
と液管接続口との間にアキュムレータ内の冷媒と熱交換
可能な熱交換器を設けるとともに、室内機に電気信号で
駆動する膨張弁を配置して、冷媒回路を構成し、室内熱
交換器の暖房運転時出口及び室外熱交換器の冷房運転時
出口に配設した温度検出器、圧縮機の出力の高圧圧力状
態を検出する圧力検出器または圧縮機の出力の高圧圧力
状態の飽和温度を検出する検出器から1qられた温度及
び圧縮機の出力状態によって前記膨張弁を制御するもの
である。
[Means for Solving the Problems] A multi-room air conditioner according to the first invention is provided with a heat exchanger capable of exchanging heat with the refrigerant in the accumulator between the outdoor heat exchanger and the liquid pipe connection port. In addition, an expansion valve driven by an electric signal is arranged in the indoor unit to form a refrigerant circuit, and temperature detectors are arranged at the outlet of the indoor heat exchanger during heating operation and the outlet of the outdoor heat exchanger during cooling operation, A pressure detector that detects the high pressure state of the output of the compressor or a detector that detects the saturation temperature of the high pressure state of the output of the compressor, and controls the expansion valve according to the temperature obtained by 1q and the output state of the compressor. It is.

また、第二の発明にかかる多室用空気調和機は、室外熱
交換器と液管接続口との間に7キユムレータ内の冷媒と
熱交換可能な熱交換器を設けるとともに、室内機に電気
信号で駆動する膨張弁を配置して、冷媒回路を構成し、
室内熱交換器の暖房運転時出口及び室外熱交換器の冷房
運転時出口に配設した温度検出器、圧縮機の出力の高圧
圧力状態を検出する圧力検出器または圧縮機の出力の高
圧圧力状態の飽和温度を検出する検出器、複数の室内機
の能力を設定可能な能力設定スイッチから得られた温度
及び圧縮機の出力状態と前記能力設定スイッチの入力信
号によって前記膨張弁を制御するものである。
Moreover, the multi-room air conditioner according to the second invention includes a heat exchanger capable of exchanging heat with the refrigerant in the 7-cumulator between the outdoor heat exchanger and the liquid pipe connection port, and an electric power supply to the indoor unit. A refrigerant circuit is constructed by arranging an expansion valve driven by a signal.
A temperature sensor installed at the outlet of the indoor heat exchanger during heating operation and the outlet of the outdoor heat exchanger during cooling operation, a pressure detector that detects the high pressure state of the output of the compressor, or the high pressure state of the output of the compressor. The expansion valve is controlled by a detector that detects the saturation temperature of the indoor unit, a temperature obtained from a capacity setting switch that can set the capacity of a plurality of indoor units, an output state of the compressor, and an input signal of the capacity setting switch. be.

[作用] 第一の発明においては、室内熱交換器の暖房運転時出口
及び室外熱交換器の冷房運転時出口に配設した温度検出
器、圧縮機の出力の高圧圧力状態を検出する圧力検出器
または圧縮機の出力の高圧圧力状態の飽和部・度を検出
する検出器から1qられた温度及び圧縮機の出力状態に
よって、室内機に設けた電気信号により駆動する膨張弁
を制御し、冷房及び暖房運転時とも複数の室内機への冷
媒供給のバランスをとりながら過冷却度を制御するよう
にしたものである。
[Function] In the first invention, there are temperature detectors disposed at the outlet of the indoor heat exchanger during heating operation and the outlet of the outdoor heat exchanger during cooling operation, and a pressure detector for detecting the high pressure state of the output of the compressor. Based on the temperature obtained from the detector that detects the saturation part/degree of the high pressure state of the output of the air conditioner or compressor and the output state of the compressor, the expansion valve driven by the electric signal provided in the indoor unit is controlled, and the air conditioner is cooled. Also during heating operation, the degree of subcooling is controlled while balancing the refrigerant supply to the plurality of indoor units.

また、第二の発明においては、室内熱交換器の暖房運転
時出口及び室外熱交換器の冷房運転時出口に配設した温
度検出器、圧縮機の出力の高圧圧力状態を検出する圧力
検出器または圧縮機の出力の高圧圧力状態の飽和温度を
検出する検出器、複数の室内機の能力を設定可能な能力
設定スイッチから1qられた温度及び圧縮機の出力状態
と前記能力設定スイッチの信号によって、室内機に設け
た電気信号により駆動する膨張弁を制御し、冷房及び暖
房運転時とも複数の室内機への冷媒供給のバランスをと
りながら過冷却度を制御するようにしたものである。
Further, in the second invention, a temperature detector disposed at the outlet of the indoor heat exchanger during heating operation and an outlet of the outdoor heat exchanger during cooling operation, and a pressure detector for detecting the high pressure state of the output of the compressor. Or a detector that detects the saturation temperature of the high pressure state of the output of the compressor, the temperature obtained by 1q from a capacity setting switch that can set the capacity of multiple indoor units, the output state of the compressor, and the signal of the capacity setting switch. , an expansion valve driven by an electric signal provided in the indoor unit is controlled, and the degree of subcooling is controlled while balancing refrigerant supply to a plurality of indoor units during cooling and heating operations.

[実施例] 以下、本発明の実施例を図を用いて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例による多室用空気調和機の
冷媒回路図、また、第2図は本発明の第一実施例による
多室用空気調和機の制御装置のブロック図である。
FIG. 1 is a refrigerant circuit diagram of a multi-room air conditioner according to a first embodiment of the present invention, and FIG. 2 is a block diagram of a control device for a multi-room air conditioner according to a first embodiment of the present invention. be.

第1図において、(1)は圧縮機、(2)は四方切換弁
、(3)は室外熱交換器、(4)はアキュムレータ、(
5)はアキュムレータ内の熱交換器で、液管接続口と室
外熱交換器(3)の間の配管をアキュムレータ内冷媒と
熱交換するようにしており、上記構成部分を順次接続す
ることにより、室外機6の冷媒回路を構成している。
In Figure 1, (1) is a compressor, (2) is a four-way switching valve, (3) is an outdoor heat exchanger, (4) is an accumulator, (
5) is a heat exchanger inside the accumulator, and the piping between the liquid pipe connection port and the outdoor heat exchanger (3) exchanges heat with the refrigerant inside the accumulator, and by sequentially connecting the above components, It constitutes a refrigerant circuit for the outdoor unit 6.

また、(7a)〜(7C)は室内熱交換器、(8a)〜
(8C)は電気信号により駆動する可逆式の膨張弁でお
り、室内熱交換機の冷房運転時入口側に膨張弁(8a〉
〜(8C)を配設して、室内機(9a)〜(9c)の冷
媒回路を構成している。
In addition, (7a) to (7C) are indoor heat exchangers, (8a) to
(8C) is a reversible expansion valve driven by an electric signal, and the expansion valve (8a) is placed on the inlet side during cooling operation of the indoor heat exchanger.
- (8C) are arranged to constitute a refrigerant circuit for indoor units (9a) - (9c).

そして、(10)は室外機(6)のガス管接続口に接続
されたガス側主管でおり、他端はガス側分岐管(12a
)〜(12c)に分岐し、各々室内a(9a)〜(9C
)のガス管接続口に接続されている。(11)は室外機
(6〉の液接続口に接続された法例主管でおり、他端は
散開分岐管(13a) 〜(13c)に分岐し、各々室
内機(9a)〜(9C)の液管接続口に接続されている
(10) is the gas side main pipe connected to the gas pipe connection port of the outdoor unit (6), and the other end is the gas side branch pipe (12a).
) to (12c), each indoors a(9a) to (9C
) is connected to the gas pipe connection port. (11) is the legal main pipe connected to the liquid connection port of the outdoor unit (6>), and the other end branches into divergent branch pipes (13a) to (13c), which are connected to the indoor units (9a) to (9C), respectively. Connected to the liquid pipe connection port.

(14)は圧縮機(1)の吐出圧力を検出する圧力検出
手段である圧力センサ、(15)は室外熱交換器(3)
の冷房運転時に出口温度を検出する温度検出器であるサ
ーミスタ、(16a)〜(16G>は室内熱交換器(7
a)〜(7C)の暖房運転時に出口配管の温度を検出す
る温度検出器であるサーミスタ、(17a) 〜(17
c)は室内機(9a)〜(9C)の能力を設定する能力
設定スイッチ、(18)は前記温度及び圧力信号と前記
スイッチ入力を取り込んで、前記可逆式の膨張弁(8a
)〜(8C)を制御する制御装置である。
(14) is a pressure sensor that is a pressure detection means for detecting the discharge pressure of the compressor (1), and (15) is the outdoor heat exchanger (3).
Thermistors (16a) to (16G> are temperature detectors that detect the outlet temperature during cooling operation of the indoor heat exchanger (7)
a) - (7C) Thermistor which is a temperature detector that detects the temperature of the outlet piping during heating operation, (17a) - (17
c) is a capacity setting switch that sets the capacity of the indoor units (9a) to (9C), and (18) is a capacity setting switch that takes in the temperature and pressure signals and the switch input, and operates the reversible expansion valve (8a).
) to (8C).

第2図は前記制御装置(18)のブロック図で、基本的
には、アナログ/デジタル(A/D)変換器(51)、
入力回路(52)、中央演El理装置(CPU:53)
、メモリ(54)、出力回路(55)、出力バッファ(
56)及び抵抗(57)より構成される。なお、入出力
部は一例のみ表示したもので必る。
FIG. 2 is a block diagram of the control device (18), which basically consists of an analog/digital (A/D) converter (51),
Input circuit (52), central processing unit (CPU: 53)
, memory (54), output circuit (55), output buffer (
56) and a resistor (57). Note that only one example of the input/output section is shown.

また、能力設定スイッチ(17a>〜(17C)は各々
3ビツトのスイッチで構成され、各々室内機(9a)〜
(9C)の能力に合Uて、8通りの設定が可能となって
いる。
In addition, the capacity setting switches (17a> to (17C) each consist of a 3-bit switch, and each of the indoor units (9a) to
Eight settings are possible depending on the ability of (9C).

次に、上記構成を有する本実施例の多室用空気調和機の
動作について説明する。
Next, the operation of the multi-room air conditioner of this embodiment having the above configuration will be explained.

冷房運転時に圧縮機(1)より吐出された高圧ガス冷媒
は、四方切換弁(2)を通り室外熱交換器(3)により
液化され、アキュムレータ(4)の熱交換器(5)で、
史に、冷却され、サブクールを大きくとり、散開主管(
11)及び散開分岐管(13a) 〜(13c)を通り
、各室内機(9a)〜(9C〉に導かれる。更に、各学
内ハ(9a)〜(9G)に設けた膨張弁(8a)〜(8
C)により、減圧されて至内熱交換機(7a)〜(7C
)に入り、ここで蒸発する。蒸発した冷媒はガス側分岐
管(12a)〜(12c)を通り、ガス側主管(10)
で合流し、室外R(6)へ戻り、四方切換弁(2)、ア
キュムレータ(4)を経て、圧縮機(1)に戻るサイク
ルが構成される。
The high-pressure gas refrigerant discharged from the compressor (1) during cooling operation passes through the four-way switching valve (2), is liquefied by the outdoor heat exchanger (3), and is liquefied by the heat exchanger (5) of the accumulator (4).
Historically, it is cooled, the subcool is large, and the main pipe is expanded (
11) and expanded branch pipes (13a) to (13c), and are guided to the indoor units (9a) to (9C>).Furthermore, the expansion valves (8a) provided in each campus c (9a) to (9G) ~(8
C), the pressure is reduced and the internal heat exchangers (7a) to (7C
), where it evaporates. The evaporated refrigerant passes through the gas side branch pipes (12a) to (12c), and then passes through the gas side main pipe (10).
A cycle is constructed in which the air flows back to the outdoor R (6), passes through the four-way switching valve (2), the accumulator (4), and returns to the compressor (1).

このとき、圧力センサ(14)と室外熱交換器(3)の
出口のサーミスタ(15)により、室外熱交換器(3)
の出口のサブクールを一定にすると同口4に、能力設定
スイッチ(17a)〜(17C)により登録された各室
内機(9a)〜(9G)の大きざにより、全体の膨張弁
開度を分配するように制御装@(18)により膨張弁(
8a)〜(8C)を制御する。
At this time, the pressure sensor (14) and the thermistor (15) at the outlet of the outdoor heat exchanger (3)
When the subcooling at the outlet of the outlet 4 is kept constant, the overall expansion valve opening degree is distributed according to the size of each indoor unit (9a) to (9G) registered by the capacity setting switches (17a) to (17C). The expansion valve (
8a) to (8C) are controlled.

第3図は本実施例の制御装置(18)による冷房運転時
の膨張弁(8a)〜(8C)の制御の一例を説明するた
めのフローチャートである。
FIG. 3 is a flow chart for explaining an example of control of the expansion valves (8a) to (8C) during cooling operation by the control device (18) of this embodiment.

まず、制御が開始されると、ステップS1で高圧圧力が
圧力センサ(14)によって検出され、圧力から変換さ
れた飽和温度(tl)が入力され、ステップS2で室外
熱交換器(3)の出力側に設けたサーミスタ(15)に
よって、室外熱交換器(3)の出口温度(t2)が検出
され、この出口温1!(t2)が入力される。ステップ
S3でこれらの温度差としてのサブクールSCが 5C=t1−t2 で計算される。ステップS4でサブクールの目標値SC
Oとの差の絶対値 13cm5COl  が3°C以下
であるかどうかが判断され、3℃以下ならば、合計開度
 ΣNj  を変更せず、ステップS6に移る。また、
サブクールの設定値としての入力されたサブクールの目
標値SCOとのずれl5c−3COl  が3℃を越え
たと判断したが計詐式 を用いて計算される。
First, when control is started, high pressure is detected by the pressure sensor (14) in step S1, the saturation temperature (tl) converted from the pressure is input, and in step S2 the output of the outdoor heat exchanger (3) is input. The outlet temperature (t2) of the outdoor heat exchanger (3) is detected by the thermistor (15) provided on the side, and this outlet temperature 1! (t2) is input. In step S3, the subcool SC as the temperature difference between these temperatures is calculated as 5C=t1-t2. In step S4, subcool target value SC
It is determined whether the absolute value 13cm5COl of the difference from O is less than 3°C, and if it is less than 3°C, the total opening degree ΣNj is not changed and the process moves to step S6. Also,
Although it was determined that the deviation 15c-3COl from the input subcool target value SCO as the subcool setting value exceeded 3°C, it was calculated using the calculation formula.

ここに Nj :各膨張弁開度 NJ:変更前の各膨張弁の開度 A :実験により決まる正の定数 で、サブクールが太き目のときは膨張弁(8a)〜(8
C)の全体の開度を開放へ、小さ目のときは開方向へ調
整してステップS6に移る。
Here, Nj: Opening degree of each expansion valve NJ: Opening degree of each expansion valve before change A: A positive constant determined by experiment, when the subcool is thick, the expansion valves (8a) to (8
C), adjust the overall opening degree to open, or if it is small, adjust it to the open direction, and proceed to step S6.

ステップS6では運転中の各室内機(9a)〜(9C)
の能力コードQj  (=01〜Q3 )を能力設定ス
イッチ(17a)〜(17c)から読みをQjの大きざ
により分配し、ステップS8で各膨張弁(8a)〜(8
G)の新開度Njを出力し、このフローを終了する。な
お、このフローチャートによればサブクールの調整と各
室内機(9a)〜(9C)への冷媒の分配を適正にする
ように制律Vされる。
In step S6, each indoor unit (9a) to (9C) in operation
The readings of the capacity codes Qj (=01 to Q3) from the capacity setting switches (17a) to (17c) are distributed according to the size of Qj, and in step S8 each expansion valve (8a) to (8
The new opening degree Nj of G) is output, and this flow ends. In addition, according to this flowchart, the regulation V is performed so that the adjustment of the subcooling and the distribution of the refrigerant to each of the indoor units (9a) to (9C) are made appropriate.

即ち、前述した第12図の熱交換器出口の冷媒状態と平
均熱伝達率の関係を示す特性図かられかるように、出口
がスーパーヒート領域に入ると、急激に性能が劣化する
ため、出口を湿り状態(乾き度X=0.9前後)で使用
することが性能を向上する上で重要なことがわかる。前
記の制御はこれを利用したものでサブクールをアキュム
レータ(4)の熱交換器(5)により積極的に大きくと
リ、室外熱交換器(3〉の出口を湿り状態にしていると
同時に、出口の乾き度がおのおのの回路で少々変化がお
っても、安定した能力を得るようにしたもので、複数の
室内14(9a)〜(9C)に冷媒を分配する上で、室
内熱交換器(7a)〜(7C)の出口の冷媒状態により
各々の室内機(9a)〜(9C〉への分配を調整するよ
うにフィードバックをかけることをせず、−4的に室内
機(9a)〜(9C)の能力比で、合計開度を分配する
だけでも、十分に実使用条件では分配性能が確保でき、
制御性がよいものとなる。同時に、室外熱交換器(3〉
で適正なサブクールをとっていることから室外熱交換器
(3)も有効に使用できる。当然のことながら、室内機
(9a)〜(9C)を全て運転したときにも室外熱交換
器(3)の出口が湿り状態となるように冷媒格を充填し
ておく。また、アキュムレータ(4)の熱交換器(5)
は室外機(6)と室内R(9a) 〜(9c)の高低差
等により延長配管部での圧力損失が発生し、膨張弁(8
a)〜(8C)の前の冷媒がフラッシュして膨張弁(8
a)〜(8C)の流量特性が変化してしまうということ
を防止する19目も果すことができる。更に、室内機(
9a)〜(9C)の運転台数が減少した場合には、停止
した室内機(9a)〜(9C)の膨張弁(8a) 〜(
8c)を全閉にすることにより冷媒供給を停止すると同
時に、余剰冷媒はアキュムレータ(4)内に溜めること
ができるという機能も有する。
That is, as can be seen from the characteristic diagram showing the relationship between the refrigerant state at the heat exchanger outlet and the average heat transfer coefficient in FIG. It can be seen that using it in a wet state (dryness X = around 0.9) is important for improving performance. The above-mentioned control utilizes this and actively increases the subcool level by the heat exchanger (5) of the accumulator (4), keeping the outlet of the outdoor heat exchanger (3) in a moist state, and at the same time Even if the dryness of the indoor heat exchanger ( Without applying feedback to adjust the distribution to each indoor unit (9a) to (9C) according to the refrigerant state at the outlet of 7a) to (7C), the indoor units (9a) to (7C) are Just distributing the total opening with the capacity ratio of 9C) is sufficient to ensure distribution performance under actual usage conditions.
Controllability becomes better. At the same time, the outdoor heat exchanger (3)
The outdoor heat exchanger (3) can also be used effectively since appropriate subcooling is achieved. Naturally, the refrigerant is filled so that the outlet of the outdoor heat exchanger (3) remains wet even when all the indoor units (9a) to (9C) are operated. Also, the heat exchanger (5) of the accumulator (4)
Due to the height difference between the outdoor unit (6) and the indoor R (9a) to (9c), pressure loss occurs in the extension piping, and the expansion valve (8)
The refrigerant in front of a) to (8C) flashes and the expansion valve (8C)
It is also possible to achieve the 19th measure to prevent the flow characteristics of a) to (8C) from changing. Furthermore, the indoor unit (
When the number of operating units 9a) to (9C) decreases, the expansion valves (8a) to (8a) of the stopped indoor units (9a) to (9C)
It also has the function of stopping the refrigerant supply by fully closing the refrigerant 8c) and at the same time allowing excess refrigerant to be stored in the accumulator (4).

また、暖房運転時は、圧縮機(1)より吐出された高温
高圧のガス冷媒は点線のように流路を切換えた四方切換
弁(2)を通り、ガス側主管(10)及びガス側分岐管
(12a) 〜(12c)を介して室内熱交換器(7a
)〜(7C)に導かれる。室内熱交換器(7a)〜(7
C)で液化した冷媒は、室内機(9a)〜(9C〉に設
けた膨張弁(8a)〜(8C)により減圧され、二相冷
媒となり散開分岐管(13a)〜(13G>及び散開主
管(1つ)を通って室外機(6)に戻り、室外熱交換器
(3)で蒸発し、四方切換弁(2)、アキュムレータ(
4)を介して圧縮機(1)へ戻るサイクルを構成する。
In addition, during heating operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way switching valve (2) whose flow path is switched as shown by the dotted line, and passes through the gas side main pipe (10) and the gas side branch. The indoor heat exchanger (7a) is connected to the indoor heat exchanger (7a) via the pipes (12a) to (12c).
) to (7C). Indoor heat exchanger (7a) to (7
The refrigerant liquefied in C) is depressurized by the expansion valves (8a) to (8C) provided in the indoor units (9a) to (9C>), and becomes a two-phase refrigerant to the expanded branch pipes (13a) to (13G>) and the expanded main pipe. (1), returns to the outdoor unit (6), evaporates in the outdoor heat exchanger (3), passes through the four-way switching valve (2), and the accumulator (
4) to form a cycle returning to the compressor (1).

このとき、圧力センサ(14)と室内熱交換器(7a)
〜(7C)の出力配管に設けたサーミスタ(16a)〜
(16c)により、室内熱交換器(7a)〜(7C)の
出口のサブクールを一定にするように制御装置(18)
により膨張弁(8a)〜(8C)を制御する。
At this time, the pressure sensor (14) and the indoor heat exchanger (7a)
Thermistor (16a) installed in the output pipe of ~(7C)~
(16c), the control device (18) keeps the subcool at the outlet of the indoor heat exchangers (7a) to (7C) constant.
to control the expansion valves (8a) to (8C).

第4図は本実施例の制御装置(18〉による暖房運転時
の膨張弁(8a)〜(8G)の制御の一例を説明するフ
ローチャー1−である。
FIG. 4 is a flowchart 1- for explaining an example of control of the expansion valves (8a) to (8G) during heating operation by the control device (18>) of this embodiment.

まず、制御が開始されると、ステップ311で高圧圧力
が圧力センサ(14)によって検出され、圧力から変換
された飽和温度(T1)が入力され、ステップ312で
各室内熱交換器(7a)〜(7C)の出口温度(T1)
〜(T3)が検出され、この出口温度(T1)〜(T3
)が入力され、゛ステップ313でこれらの温度差とし
ての各サブクールSCI〜SC3が計算式 %式% で剖算される。ステップ314で各サブクールの平均値
5CAvが計痺式 %式% でh1算される。ステップS15でサブクールの平均値
5CAVとサブクールの目標値SCOとの差の絶対値 
I SCAM−3COl  が3°C1X下であるか判
断され、3℃以下ならばステップ317へ移る。サブク
ールの設定値として入力された目標サブクールSCOと
のずれ l5CAV−3COIが3℃を越えると判断し
たとき、ステップS16で各膨張弁(8a)〜(8C〉
の開度の合計が計算式 を用いてバ1算される。
First, when control is started, high pressure is detected by the pressure sensor (14) in step 311, and the saturation temperature (T1) converted from the pressure is input, and in step 312, each indoor heat exchanger (7a) to (7C) outlet temperature (T1)
~(T3) is detected, and this outlet temperature (T1) ~(T3) is detected.
) is input, and in step 313, each of the subcools SCI to SC3 as these temperature differences is calculated using the calculation formula %. In step 314, the average value 5CAv of each subcool is calculated by h1 using the paralysis type % formula %. In step S15, the absolute value of the difference between the subcool average value 5CAV and the subcool target value SCO
It is determined whether I SCAM-3COl is below 3°C1X, and if it is below 3°C, the process moves to step 317. When it is determined that the deviation from the target subcool SCO input as the subcool setting value 15CAV-3COI exceeds 3°C, each expansion valve (8a) to (8C>
The total opening degree is calculated using a calculation formula.

ここに Nj :各膨張弁開度 NJ:変更前の各膨張弁の開度 C:実験により決まる正の定数 各膨張弁(8a〉〜(8C)の開度の合h1:l   
 。
Here, Nj: Opening degree of each expansion valve NJ: Opening degree of each expansion valve before change C: Positive constant determined by experiment Sum of opening degrees of each expansion valve (8a> to (8C)) h1:l
.

ΣNJ  がitsされて、平均サブクールが大きj;
1 目のときは膨張弁(8a)〜(8C)全体の開度を同方
向へ、小さ目のとぎは閉方向へ調整し、ステップ317
へ移る。
ΣNJ is its, and the average subcool is large j;
In the first case, the opening degrees of all expansion valves (8a) to (8C) are adjusted in the same direction, and the smaller ones are adjusted in the closing direction, and step 317
Move to.

ステップ317で各サブクールのずれ l SCj −3CAVI が2℃以下であるかどうか判断する。ずれが2℃以下の
場合は、ステップ318で変数りをゼロとしてステップ
320に移る。ずれが2℃を越える場合はステップ31
9で、変数りには予め定められた定数Doがセットされ
、ステップ320に移る。
In step 317, it is determined whether the deviation l SCj -3CAVI of each subcool is 2° C. or less. If the deviation is 2° C. or less, the variable is set to zero in step 318 and the process moves to step 320. If the deviation exceeds 2℃, step 31
At step 9, a predetermined constant Do is set in the variable, and the process moves to step 320.

そして、ステップ320で各膨張開度Njが訓算式 %式%) を用いてh1算され、ステップ321で各膨張弁(8a
)〜(8C)の新開度Njが出力されてこのルーチンを
終了する。なお、ステップ320の各膨張弁(8a)〜
(8C)の祈開度計算中のDは実験により決まる正の定
数であり、この計算式によれば、各室内熱交換器(7a
)〜(7C)の出口のサブタールは、サブクールが高目
の室内機(9a)〜(9C)については弁開度を大きく
し、サブクールが低目の室内機(9a)〜(9C)につ
いては弁開度を小さくすることによって一定の目標値に
調整される。
Then, in step 320, each expansion opening degree Nj is calculated by h1 using the calculation formula (% formula %), and in step 321, each expansion valve (8a
) to (8C) new opening degrees Nj are output, and this routine ends. In addition, each expansion valve (8a) in step 320
D in the calculation of the opening degree of (8C) is a positive constant determined by experiment, and according to this calculation formula, each indoor heat exchanger (7a
) to (7C), increase the valve opening for indoor units (9a) to (9C) with high subcooling, and increase the valve opening degree for indoor units (9a) to (9C) with low subcooling. It is adjusted to a constant target value by reducing the valve opening.

このフローチャートによれば、平均サブクールににる全
体の動きによる補正と、個々のサブクールのずれによる
補正を行なっているため、他の室内機(9a)〜(9G
)の運転状況による影響を加味して、冷媒量の分配が行
なわれ、制御性が非常に良いものとなっている。
According to this flowchart, since correction is performed based on the overall movement of the average subcool and correction based on the deviation of each individual subcool, other indoor units (9a) to (9G
) The amount of refrigerant is distributed taking into account the influence of the operating conditions, resulting in very good controllability.

室内機(9a)〜(9C)の運転台数が減少した場合に
は、停止した室内機(9a)〜(9C)の膨張弁(8a
)〜(8C)を仝閉とすることにより、冷媒の流れを停
止する。余剰冷媒は冷房動作時と同様に、アキュムレー
タ(4)内に溜めることができる。
When the number of operating indoor units (9a) to (9C) decreases, the expansion valves (8a) of the indoor units (9a) to (9C) that have stopped are
) to (8C) are closed to stop the flow of refrigerant. Excess refrigerant can be stored in the accumulator (4) in the same way as during cooling operation.

停止した室内1m(9a)〜(9C)の市内熱交換器(
7a)〜(7G)には、徐々に冷媒が凝縮するが法例分
岐管(13a)〜(13G>側が低圧側となっているた
め、必要に応じて膨張弁(8a)〜(8C)を一定時間
開けば、冷媒の回収が可能となる。更に、室内熱交換器
(7a)〜(7C)は常に高圧回路に接続されているた
め、室内機(9a)〜(9C)が追加運転されても冷媒
音の発生は全くない。
The indoor 1m (9a) to (9C) indoor heat exchanger (
7a) to (7G), the refrigerant gradually condenses, but the legal branch pipes (13a) to (13G> side are the low pressure side, so if necessary, keep the expansion valves (8a) to (8C) constant. If the time is allowed, the refrigerant can be recovered.Furthermore, since the indoor heat exchangers (7a) to (7C) are always connected to the high pressure circuit, the indoor units (9a) to (9C) are additionally operated. There is no refrigerant noise at all.

また、冷房暖房ともに室内機(9a)〜(9C)の膨張
弁(8a)〜(8C)により、絞り機能と各室内Ia(
9a)〜(9C)への冷媒量の分配機能を持たせている
ため、分岐管の長さの違いや室内機(9a)〜(9C)
の高低差による流量の差も制御装置(18〉によって自
動的に補正され、いかなる状態においても適正流量が確
保でき、更には、室外機(6)から1対の配管で施工し
、途中から自由に分岐する方式の配管施工が可能となる
。特に、第1図においては、複数の分岐管が分岐する位
置は1ケ所となっているが、複数の箇所から分岐する方
式でも上記特性を発揮できることは言うまでもない。
In addition, for both cooling and heating, the expansion valves (8a) to (8C) of the indoor units (9a) to (9C) provide a throttling function and each indoor unit Ia (
Since it has the function of distributing the amount of refrigerant to 9a) to (9C), it is possible to avoid differences in the length of branch pipes and indoor units (9a) to (9C).
The control device (18) automatically corrects the difference in flow rate due to the height difference between In particular, in Figure 1, multiple branch pipes branch out at one location, but the above characteristics can also be achieved with a system where the pipes branch out from multiple locations. Needless to say.

この発明の第一実施例の多室用空気調和機では、膨張弁
はマイクロコンピュータにより制御されるので、圧縮機
をインバータにより周波数制御を使用とする場合にも都
合が良い。
In the multi-room air conditioner according to the first embodiment of the present invention, the expansion valve is controlled by a microcomputer, which is convenient when the compressor is frequency controlled by an inverter.

第5図は本発明の第二実施例による多室用空気調和機の
冷媒回路図でおる。図中、第一実施例と同−符号及び記
号は第一実施例の構成部分と同一または相当する構成部
分を示すものであり、ここでは重複する説明を省略し、
相違点のみ説明する。
FIG. 5 is a refrigerant circuit diagram of a multi-room air conditioner according to a second embodiment of the present invention. In the drawings, the same reference numerals and symbols as in the first embodiment indicate constituent parts that are the same as or correspond to those in the first embodiment, and redundant explanations will be omitted here.
Only the differences will be explained.

本実施例は第一実施例の圧力センサ(14)の代りに、
飽和温度の検出回路(19)を使用したもので、圧力の
代りに直接飽和温度を検出する飽和温度検出手段でおる
温度センサ(20)で温度を検出している。この検出回
路(19)は熱交換器(22)と毛細管(21)及び温
度センサ(20)で構成され、圧縮機(1)の出口の冷
媒は熱交換器(22)により冷却され、二相媒体となり
毛細管(21)で圧縮機(1)の吸入圧力まで減圧され
、低温の二相冷媒となり熱交換器(22)で熱交換する
ことにより、圧縮機出口の冷媒のエンタルピーの低圧冷
媒となり、サイクルを完了する。
In this embodiment, instead of the pressure sensor (14) of the first embodiment,
A saturation temperature detection circuit (19) is used, and the temperature is detected by a temperature sensor (20) which is a saturation temperature detection means that directly detects the saturation temperature instead of pressure. This detection circuit (19) is composed of a heat exchanger (22), a capillary tube (21), and a temperature sensor (20), and the refrigerant at the outlet of the compressor (1) is cooled by the heat exchanger (22) and two-phase It becomes a medium and is depressurized to the suction pressure of the compressor (1) in the capillary (21), becomes a low-temperature two-phase refrigerant, and exchanges heat with the heat exchanger (22), becoming a low-pressure refrigerant with the enthalpy of the refrigerant at the outlet of the compressor. Complete the cycle.

第6図は前記第5図の実施例による多室用空気調和機の
飽和温度検出回路内の冷媒の状態を示すモリエル線図で
、実線がこの検出回路(19)内の冷媒の状態、破線(
A)、(B)、(C)。
FIG. 6 is a Mollier diagram showing the state of the refrigerant in the saturation temperature detection circuit of the multi-room air conditioner according to the embodiment of FIG. (
A), (B), (C).

(D>が通常の冷凍サイクル上の冷媒の状態を表わして
いる。また、(E>は、毛細管(21)の入口状態を示
し、この場所に温度レンυ(20)を取付けることによ
り圧力センサを使用することなく高圧圧力飽和温度を検
出することが可能となる。
(D> represents the state of the refrigerant in a normal refrigeration cycle. Also, (E> represents the inlet state of the capillary tube (21), and by attaching a temperature lens υ (20) at this location, the pressure sensor It becomes possible to detect high pressure saturation temperature without using.

なお、この実施例では、第一実施例のフローチャートの
ステップS1及びステップ311においては直接飽和温
度(tl)を検出することとなる。
In this embodiment, the saturation temperature (tl) is directly detected in step S1 and step 311 of the flowchart of the first embodiment.

また、図示していないが学内外の熱交換器の中央付近の
配管の温度を検出すれば、やはり冷暖房運転時の高圧圧
力飽和温度を検出できることはいうまでもない。
Although not shown, it goes without saying that by detecting the temperature of the piping near the center of the heat exchanger inside and outside the university, the high pressure saturation temperature during heating and cooling operation can be detected.

このように、この発明の実施例の多室用空気調和機によ
れば、室内Ia(9a)〜(9G)に設けた電気信号に
より駆動する膨張弁(8a)〜(8C)を制御装置(1
8)によって、冷房運転時にはサブクールを一定にしな
がら、かつ、各室内機(9a)〜(9G)の能力により
冷媒を適正に分配するように制御し、暖房運転時は複数
の室内熱交換器(7a)〜(7C)出口のサブクールを
各々一定に保つように制御できるので、従来例のように
レシーバ(25)が不要で、冷媒回収回路も不要となり
、また、室外機(6)から1対の配管で途中まで施工で
きるから、配管が簡単となり、また、分配性能が良くな
る。そして、室内熱交換器(7a)〜(7C)は常に高
圧回路側となっているから、冷媒音が発生することがな
い。また、アキュムレータ(4)に熱交換器(5)を設
(プたので冷房運転時には、多少冷媒の分配にずれがあ
ったり、負荷が少々変化しても、安定した能力が得られ
る。
As described above, according to the multi-room air conditioner according to the embodiment of the present invention, the expansion valves (8a) to (8C), which are driven by electric signals provided in the indoor rooms Ia (9a) to (9G), are controlled by the control device ( 1
8), during cooling operation, subcooling is kept constant and refrigerant is controlled appropriately depending on the capacity of each indoor unit (9a) to (9G), and during heating operation, multiple indoor heat exchangers ( Since the subcools at the outlets 7a) to (7C) can be controlled to be kept constant, there is no need for a receiver (25) or a refrigerant recovery circuit as in the conventional example. Since the pipe can be constructed halfway, the piping becomes easier and the distribution performance is improved. Since the indoor heat exchangers (7a) to (7C) are always on the high-pressure circuit side, no refrigerant noise is generated. In addition, since the heat exchanger (5) is installed in the accumulator (4), stable performance can be obtained during cooling operation even if there is a slight deviation in the refrigerant distribution or the load changes slightly.

上記発明の実施例では、運転中の各室内機(9a)〜(
9G)の能力を能力設定スイッチ(17a)〜(17c
)を用いて、能力コードQj  (=Q1〜Q3 )と
して制御装置(18)に入力していた。しかし、この能
力設定スイッチ(17a)〜(17C)を省略すること
ができる。
In the embodiment of the invention described above, each indoor unit (9a) to (
9G) using the ability setting switches (17a) to (17c).
) was used to input into the control device (18) as the ability code Qj (=Q1 to Q3). However, these capacity setting switches (17a) to (17C) can be omitted.

第7図は第二の発明の第一実施例による多室用空気調和
機の冷媒回路図、第8図は第二の発明の第一実施例によ
る多室用空気調和機の制御装置のブロック図でおる。
FIG. 7 is a refrigerant circuit diagram of a multi-room air conditioner according to the first embodiment of the second invention, and FIG. 8 is a block diagram of a control device for a multi-room air conditioner according to the first embodiment of the second invention. Illustrated.

なお、この第二の発明の第一実施例は、基本的には第一
の発明の第一実施例と同じであるが、その相違点は、能
力設定スイッチ(17a)〜(17G)を用いておらず
、室内熱交換器(7a)〜(7C)の冷房運転時に出口
配管の温度を検出する温度検出器でおるサーミスタ(1
60a)〜(160C)を配設している点にある。
The first embodiment of the second invention is basically the same as the first embodiment of the first invention, but the difference is that the capacity setting switches (17a) to (17G) are used. The thermistor (1) is a temperature detector that detects the temperature of the outlet piping during cooling operation of the indoor heat exchangers (7a) to (7C).
60a) to (160C) are arranged.

前記室内熱交換器(7a)〜(7c)の冷房運転時に出
口配管の温度を検出するサーミスタ(160a) 〜(
160c)の出力は、制御装置(18)に入力され、各
室内熱交換器(7a)〜(7C)の冷房運転時の出口配
管の温度を均一にするように、膨張弁(8a)〜(8c
)を制御するものである。
Thermistors (160a) to (160a) for detecting the temperature of the outlet piping during cooling operation of the indoor heat exchangers (7a) to (7c)
The output of 160c) is input to the control device (18), which controls the expansion valves (8a) to (7C) so as to equalize the temperature of the outlet piping of each indoor heat exchanger (7a) to (7C) during cooling operation. 8c
).

第9図は第二の発明の第一実施例の制御装置    ゛
(18)による冷房運転時の膨張弁(8a)〜(8C)
の制御の一例を説明するためのフローチャートである。
FIG. 9 shows the expansion valves (8a) to (8C) during cooling operation using the control device according to the first embodiment of the second invention (18).
3 is a flowchart for explaining an example of control.

なお、このフローチャートは第3図の第一の発明の第一
実施例の制御装置(18)による冷房運転時の膨張弁(
8a)〜(8C)の制御と共通するものであり、同一ス
テップの番号は同一内容を示すものである。
Note that this flowchart shows the expansion valve (
This control is common to 8a) to (8C), and the same step numbers indicate the same contents.

まず、制御が開始されると、ステップS1で高圧圧力が
圧力センサ(14)によって検出され、圧力から変換さ
れた飽和温度(tl)が入力され、ステップS2で室外
熱交換器(3)の出力側に設けたサーミスタ(15)に
よって、室外熱交換器(3)の出口温度(t2)が検出
され、この出口温度(t2)が入力される。ステップS
3でこれらの温度差としてのサブクールSCが 5C=t1−t2 で割算される。ステップS4でサブクールの目標値SC
Oとの差の絶対値 l5O−3COl  が3°C以下
でおるかどうかが判断され、3°C以下ならば、合計開
度 ΣNj  を変更せず、ステン1=1 プ326に移る。また、サブクールの設定値としての入
力されたサブクールの目標値SCOとのずれ l5c−
3GO+  が3℃を越えたと判断したとき、ステップ
S5で各膨張開度の合計を用いて計算される。
First, when control is started, high pressure is detected by the pressure sensor (14) in step S1, the saturation temperature (tl) converted from the pressure is input, and in step S2 the output of the outdoor heat exchanger (3) is input. A thermistor (15) provided on the side detects the outlet temperature (t2) of the outdoor heat exchanger (3), and this outlet temperature (t2) is input. Step S
3, the subcool SC as these temperature differences is divided by 5C=t1-t2. In step S4, subcool target value SC
It is determined whether the absolute value l5O-3COl of the difference from O is below 3°C. If it is below 3°C, the total opening degree ΣNj is not changed and the process moves to Step 326. Also, the deviation from the input subcool target value SCO as the subcool setting value l5c-
When it is determined that 3GO+ exceeds 3°C, calculation is performed using the sum of each expansion/opening degree in step S5.

ここに Nj:、各膨張弁開度 NJ:変更前の各膨張弁の開度 A :実験により決まる正の定数 各膨張弁の開度の合計 二Nj が訓算され1:1 で、サブクールが太き目のときは膨張弁(8a)〜(8
C)の全体の開度を開放へ、小ざ目のときは閉方向へ調
整してステップ326に移る。
Here, Nj: Opening degree of each expansion valve NJ: Opening degree of each expansion valve before change A: Positive constant determined by experiment The sum of the opening degrees of each expansion valve 2Nj is calculated and the subcooling ratio is 1:1. When it is thick, use the expansion valves (8a) to (8
The overall opening degree of step C) is adjusted to the open direction, and when the opening degree is adjusted to the closed direction when the opening is small, and the process moves to step 326.

ステップS26ではサーミスタ(160a)〜(160
c)により室内熱交換器(7a)〜(7C)の出口温度
の検出値(T1)〜(T3)が入力され、ステップS2
7で検出値(T1)〜(T3)の平均値(TAV)が計
算され、ステップS28でずれ I Tj −TAVI
  が2℃以下であるか判断される。ずれが2℃以下の
場合には、ステップ329で変数(B)をゼロとしてス
テップS31へ移る。ずれが2°Cを越える場合には、
ステップ330で変数(B)には予め定められた定数(
80)がセットされステップ331へ移る。そして、ス
テップ331で各膨張弁(8a)〜(8C)の開度Nj
が計算式を Nj =NJ XΣNj/ΣNJ 1: i        J= + +BX (Tj −TAV> を用いて計算され、ステップS32で各膨張弁(8a)
〜(8C)の新開度Njが出力されてこのルーチンを終
了する。即ち、ステップ831の各膨張弁(8a)〜(
8C)の新開度耐算式中の(B)は実験によって決まる
正の定数であり、この計算式によれば、各室内熱交換器
(7a)〜(7C)の出口温度は、温度が高目の室内機
(9a)〜(9C)については各膨張弁(8a)〜(8
C)の開度を大ぎくし、温度が低目の室内機(9a) 
〜(9c)については、各膨張弁(8a)〜(8C)の
開度を小さくすることによって温度を調整する。
In step S26, the thermistors (160a) to (160
c), the detected values (T1) to (T3) of the outlet temperatures of the indoor heat exchangers (7a) to (7C) are input, and step S2
The average value (TAV) of the detected values (T1) to (T3) is calculated in step S28, and the deviation I Tj -TAVI is calculated in step S28.
It is determined whether the temperature is below 2°C. If the deviation is 2° C. or less, the variable (B) is set to zero in step 329 and the process moves to step S31. If the deviation exceeds 2°C,
In step 330, the variable (B) is set to a predetermined constant (
80) is set and the process moves to step 331. Then, in step 331, the opening degree Nj of each expansion valve (8a) to (8C) is determined.
is calculated using the formula Nj = NJ XΣNj/ΣNJ 1: i J= + +BX (Tj −TAV>
The new opening degree Nj of ~(8C) is output and this routine ends. That is, each expansion valve (8a) to (
(B) in the new opening calculation formula of 8C) is a positive constant determined by experiment, and according to this calculation formula, the outlet temperature of each indoor heat exchanger (7a) to (7C) is high. For indoor units (9a) to (9C), each expansion valve (8a) to (8
The indoor unit (9a) whose temperature is low by widening the opening of C)
- (9c), the temperature is adjusted by reducing the opening degree of each expansion valve (8a) - (8C).

なお、この実施例の制御装置(18)による暖房運転時
の膨張弁(8a)〜(8C)の制御の一例を説明するた
めのフローチャートは、第4図の第一の発明の第一実施
例の制御装置(18)による冷房運転時の膨張弁(8a
)〜(8C)の制御と同一であるので、その説明を省略
する。
Note that a flowchart for explaining an example of control of the expansion valves (8a) to (8C) during heating operation by the control device (18) of this embodiment is based on the first embodiment of the first invention shown in FIG. The expansion valve (8a) during cooling operation by the control device (18) of
) to (8C), so the explanation thereof will be omitted.

このように、本実施例のフローチャートによれば、サブ
クールの調整と各室内熱交換器の出口温度を一致させる
ように制御される。
In this manner, according to the flowchart of the present embodiment, control is performed so that the subcooling adjustment and the outlet temperature of each indoor heat exchanger match.

この実施例も第一の発明の第二実施例のように変更する
ことができる。
This embodiment can also be modified like the second embodiment of the first invention.

第10図は第二の発明の第二実施例による多室用空気調
和はの冷媒回路図である。なお、回路構成及びその動作
は、第一の発明の第二実施例及び第二の発明の第一実施
例に共通するものであるから、その説明を省略する。
FIG. 10 is a refrigerant circuit diagram of a multi-room air conditioner according to a second embodiment of the second invention. Note that the circuit configuration and its operation are common to the second embodiment of the first invention and the first embodiment of the second invention, so the explanation thereof will be omitted.

[発明の効果] 以上のように、第一の発明の多室用空気調和機は、圧縮
機、四方切換弁、室外熱交換器、アキュムレータを順次
接続し、前記室外熱交換器の冷房運転時の出口側に配設
した前記アキュムレータ内の冷媒と熱交換可能な熱交換
器を設けて冷媒回路を形成した冷暖切換可能な室外機と
、その室外機と1対の主管で接続し、前記主管から分岐
した分岐管に室内熱交換器と電気信号で駆動する膨張弁
を直列に接続して冷媒回路を形成した複数の室内機とを
具漏し、制御装置で前記室内熱交換器の暖房運転時出口
及び室外熱交換器の冷房運転時出口に配設した温度検出
器及び圧縮機の出力側の高圧圧力状態を検出する検出器
からの信号を入力して、前記膨張弁を制御するものでお
る。
[Effects of the Invention] As described above, the multi-room air conditioner of the first invention sequentially connects a compressor, a four-way switching valve, an outdoor heat exchanger, and an accumulator, and during cooling operation of the outdoor heat exchanger. An outdoor unit capable of switching between cooling and heating is provided with a heat exchanger that can exchange heat with the refrigerant in the accumulator disposed on the outlet side of the accumulator to form a refrigerant circuit, and the outdoor unit is connected to the outdoor unit by a pair of main pipes, and the main pipe A plurality of indoor units each having a refrigerant circuit formed by connecting an indoor heat exchanger and an expansion valve driven by an electric signal in series are connected to a branch pipe branched from the pipe, and a control device controls the heating operation of the indoor heat exchanger. The expansion valve is controlled by inputting signals from a temperature detector disposed at the outlet during cooling operation of the outdoor heat exchanger and a detector for detecting the high pressure state on the output side of the compressor. is.

したがって、室内機に設けた電気信号により駆動する膨
張弁を、冷房運転時にはサブクールを一定にしながら、
各室内機の能力により冷媒を適正に分配するように制御
し、暖房運転時は複数の室内熱交換器出口のサブクール
を各々一定に保つように制御できるのでレシーバが不要
となり、また、冷媒回収回路も不要となり、更に、室外
機から1対の配管で途中まで施工でき、簡単な冷媒配管
ですむから分配性能が良くなる。また、室内熱交換器は
常に高圧回路側となっているから、冷媒音が発生するこ
とがない。そして、アキュムレータに熱交換器を設けた
ので冷房運転時には、多少冷媒の分配にずれがあったり
、負荷が少々変化しても、安定した能力が得られるとい
う効果がある。
Therefore, during cooling operation, the expansion valve, which is driven by an electric signal provided in the indoor unit, is operated while keeping the subcool constant.
The refrigerant is controlled to be distributed appropriately according to the capacity of each indoor unit, and during heating operation, the subcooling level at the outlet of multiple indoor heat exchangers can be controlled to be kept constant, eliminating the need for a receiver. Furthermore, the distribution performance is improved because the refrigerant piping can be completed halfway from the outdoor unit with a pair of piping, and only a simple refrigerant piping is required. Furthermore, since the indoor heat exchanger is always on the high-pressure circuit side, no refrigerant noise is generated. Furthermore, since a heat exchanger is provided in the accumulator, there is an effect that stable performance can be obtained during cooling operation even if there is a slight deviation in the refrigerant distribution or the load changes slightly.

第二の発明の多室用空気調和機は、圧縮機、四方切換弁
、室外熱交換器、アキュムレータを順次接続し、前記室
外熱交換器の冷房運転時の出口側に配設した前記アキュ
ムレータ内の冷媒と熱交換可能な熱交換器を設けて冷媒
回路を形成した冷暖切換可能な室外機と、その室外機と
1対の主管で接続し、前記主管から分岐した分岐管に室
内熱交換器と電気信号で駆動する膨張弁を直列に接続し
て冷媒回路を形成した複数の室内機とを具備し、制御装
置で室内熱交換器の暖房運転時出口及び室外熱交換器の
冷房運転時出口に配設した温度検出器及び圧縮機の出力
側の高圧圧力状態を検出する検出器及び前記複数の室内
機の能力を設定可能な能力設定スイッチからの信号を入
力して、前記膨張弁を制御するものである。
The multi-room air conditioner of the second invention has a compressor, a four-way switching valve, an outdoor heat exchanger, and an accumulator connected in sequence, and the accumulator is disposed on the outlet side of the outdoor heat exchanger during cooling operation. An outdoor unit capable of switching between cooling and heating is provided with a heat exchanger capable of exchanging heat with a refrigerant to form a refrigerant circuit, and an indoor heat exchanger is connected to the outdoor unit through a pair of main pipes, and an indoor heat exchanger is connected to a branch pipe branched from the main pipe. and a plurality of indoor units in which expansion valves driven by electrical signals are connected in series to form a refrigerant circuit, and a control device controls the exit of the indoor heat exchanger during heating operation and the exit of the outdoor heat exchanger during cooling operation. The expansion valve is controlled by inputting signals from a temperature detector disposed at the compressor, a detector for detecting a high pressure state on the output side of the compressor, and a capacity setting switch capable of setting the capacity of the plurality of indoor units. It is something to do.

この発明においても、上記第一の発明と同様な効果を得
ることができ、更に、本発明ではサブクールの調整と各
室内熱交換器の出口温度を一致させるように制御される
から、各室内機の能力に合致させるように制御すること
ができ、譬え、冷媒回路に経時変化があっても適正な冷
媒の分配を行なうことができる。
In this invention, it is possible to obtain the same effect as in the first invention, and furthermore, in the present invention, since the subcooling adjustment and the outlet temperature of each indoor heat exchanger are controlled to match, each indoor unit Even if the refrigerant circuit changes over time, the refrigerant can be distributed appropriately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第一の発明の第一実施例による多室用空気調和
機の冷媒回路図、第2図は第一の発明の第一実施例によ
る多室用空気調和機の制御装置のブロック図、第3図は
上記第一実施例の制御装置による冷房運転時の膨張弁の
制御の第−例を説明するフローチャート、第4図は上記
第一実施例の制御装置による暖房運転時の膨張弁の制御
の一例を説明するフローチャート、第5図は第一の発明
の第二実施例による多室用空気調和機の冷媒回路図、第
6図は第5図の実施例による多室用空気調和機の飽和温
度検出回路内の冷媒の状態を示すモリエル線図、第7図
は第二の発明の第一実施例による多室用空気調和機の冷
媒回路図、第8図は第二の発明の第一実施例による多室
用空気調和機の制御装置のブロック図、第9図は第二の
発明の第一実施例の制御装置による冷房運転時の膨張弁
の制御の第−例を説明するフローチャート、第10図は
第二の発明の第二実施例による多室用空気調和機の冷媒
回路図、第11図は従来の多室用空気調和機の冷媒回路
図、第12図は熱交換器出口の冷媒状態と平均熱伝達率
の関係を示す特性図、第13図は一般的な熱交換器の冷
媒回路の接続状態を示す構成図、第14図は他の従来の
多室用空気調和機の冷媒回路図である。 図において、 1:圧縮機、      2:四方切換弁、3:室外熱
交換器、   4:アキュムレータ、5:アキュムレー
タに内蔵された熱交換器、6:室外機、 7a、7b、7c:室内熱交換器、 8a、8b、3c :膨’!弁、 9a、9b、9C:lIl、 14:圧力センサ、 15.16a、16b、16c。 160a、160b、160c:サーミスタ、17a、
17b、17c:能力設定スイッチ、18:制御装置、 である。 なお、図中、同−符号及び同一記号は同一または相当部
分を示すものである。 代理人 弁理士 大官 増雄 外2名 土日      △U 手続補正書(自発) 21発明の名称 多室用空気調和機 3、補正をする者 代表者志岐守哉 4、代理人 5、補正の対象 (1) 明細1の発明の詳細な説明の欄(2) 図面 6、補正の内容 (1) 明細書の第4真下第2行目の 「適正な」を 「均等でないときで必っでも、適正な」と補正する。 (2) 明細書の第19頁上第1行目、及び第19真下
第6行目の 「窄外熱交@器(3)」を 「室内熱交換器(7a)〜(7C)Jと補正する。 (3) 明細書の第21真上第3行目の「出力」を 「出口」と補正する。 (4) 明細書の第33真上第7行目の「冷房」を 「暖房」と補正する。 (5) 明細書の第35真上第3行目の「分配」を 「工事」と補正する。 (6) 図面の第12図を別紙のとあり補正する。 ム0薪さ/l 山口スーハ0−ヒート
FIG. 1 is a refrigerant circuit diagram of a multi-room air conditioner according to a first embodiment of the first invention, and FIG. 2 is a block diagram of a control device for a multi-room air conditioner according to a first embodiment of the first invention. 3 is a flowchart explaining a first example of control of the expansion valve during cooling operation by the control device of the first embodiment, and FIG. 4 is a flowchart illustrating expansion during heating operation by the control device of the first embodiment. A flowchart explaining an example of valve control, FIG. 5 is a refrigerant circuit diagram of a multi-room air conditioner according to the second embodiment of the first invention, and FIG. 6 is a refrigerant circuit diagram of a multi-room air conditioner according to the embodiment of FIG. A Mollier diagram showing the state of the refrigerant in the saturation temperature detection circuit of the conditioner, FIG. 7 is a refrigerant circuit diagram of the multi-room air conditioner according to the first embodiment of the second invention, and FIG. FIG. 9 is a block diagram of a control device for a multi-room air conditioner according to the first embodiment of the invention, and FIG. 9 shows a first example of control of an expansion valve during cooling operation by the control device of the first embodiment of the second invention. 10 is a refrigerant circuit diagram of a multi-room air conditioner according to the second embodiment of the second invention, FIG. 11 is a refrigerant circuit diagram of a conventional multi-room air conditioner, and FIG. 12 is a flowchart to be explained. A characteristic diagram showing the relationship between the refrigerant state at the outlet of the heat exchanger and the average heat transfer coefficient. Figure 13 is a configuration diagram showing the connection state of the refrigerant circuit of a general heat exchanger. Figure 14 is a diagram showing the relationship between the refrigerant state at the outlet of the heat exchanger and the average heat transfer coefficient. FIG. 2 is a refrigerant circuit diagram of a commercial air conditioner. In the figure, 1: Compressor, 2: Four-way switching valve, 3: Outdoor heat exchanger, 4: Accumulator, 5: Heat exchanger built into the accumulator, 6: Outdoor unit, 7a, 7b, 7c: Indoor heat exchanger Vessel, 8a, 8b, 3c: Expansion'! Valve, 9a, 9b, 9C: lIl, 14: Pressure sensor, 15.16a, 16b, 16c. 160a, 160b, 160c: thermistor, 17a,
17b, 17c: capacity setting switch; 18: control device. In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts. Agent Patent attorney Daikan Masuo and 2 others Saturday and Sunday △U Procedural amendment (voluntary) 21 Name of invention Multi-room air conditioner 3 Person making the amendment Representative Moriya Shiki 4 Agent 5 Subject of amendment ( 1) Column for detailed explanation of the invention in Specification 1 (2) Drawing 6, contents of amendment (1) Change the word “appropriate” in the second line directly below the fourth part of the specification to “proper” even if it is not equivalent. "Na," I corrected myself. (2) "External heat exchanger (3)" in the first line at the top of page 19 and the sixth line directly below page 19 of the specification is replaced with "indoor heat exchanger (7a) to (7C) J." (3) Correct "output" in the 3rd line directly above the 21st line of the specification to "exit". (4) "Cooling" in the 7th line directly above No. 33 of the specification is corrected to "heating." (5) "Distribution" in the third line directly above No. 35 of the specification is amended to read "construction." (6) Figure 12 of the drawings is corrected by the attached sheet. Mu0 firewood/l Yamaguchi Suha0-heat

Claims (1)

【特許請求の範囲】[Claims] (1) 圧縮機、四方切換弁、室外熱交換器、アキュム
レータを順次接続し、前記室外熱交換器の冷房運転時の
出口側に配設した前記アキュムレータ内の冷媒と熱交換
可能な熱交換器を設けて冷媒回路を形成した冷暖切換可
能な室外機と、 前記室外機と1対の主管で接続し、前記主管から分岐し
た分岐管に室内熱交換器と電気信号で駆動する膨張弁を
直列に接続して冷媒回路を形成した複数の室内機と、 前記室内熱交換器の暖房運転時出口及び室外熱交換器の
冷房運転時出口に配設した温度検出器及び圧縮機の出力
側の高圧圧力状態を検出する検出器からの信号を入力し
て、前記膨張弁を制御する制御装置と、 を具備することを特徴とする多室用空気調和機。(2)
 圧縮機、四方切換弁、室外熱交換器、アキュムレータ
を順次接続し、前記室外熱交換器の冷房運転時の出口側
に配設した前記アキュムレータ内の冷媒と熱交換可能な
熱交換器を設けて冷媒回路を形成した冷暖切換可能な室
外機と、 前記室外機と1対の主管で接続し、前記主管から分岐し
た分岐管に室内熱交換器と電気信号で駆動する膨張弁を
直列に接続して冷媒回路を形成した複数の室内機と、 前記室内熱交換器の暖房運転時出口及び室外熱交換器の
冷房運転時出口に配設した温度検出器及び圧縮機の出力
側の高圧圧力状態を検出する検出器及び前記複数の室内
機の能力を設定可能な能力設定スイツチからの信号を入
力して、前記膨張弁を制御する制御装置と、 を具備することを特徴とする多室用空気調和機。
(1) A heat exchanger that connects a compressor, a four-way switching valve, an outdoor heat exchanger, and an accumulator in sequence and is capable of exchanging heat with the refrigerant in the accumulator, which is disposed on the outlet side of the outdoor heat exchanger during cooling operation. An outdoor unit capable of switching between cooling and heating is provided to form a refrigerant circuit, and is connected to the outdoor unit through a pair of main pipes, and an indoor heat exchanger and an expansion valve driven by an electric signal are connected in series to a branch pipe branching from the main pipe. a plurality of indoor units connected to each other to form a refrigerant circuit, a temperature detector disposed at the outlet of the indoor heat exchanger during heating operation and the outlet of the outdoor heat exchanger during cooling operation, and a high pressure on the output side of the compressor. A multi-room air conditioner comprising: a control device that controls the expansion valve by inputting a signal from a detector that detects a pressure state. (2)
A compressor, a four-way switching valve, an outdoor heat exchanger, and an accumulator are connected in sequence, and a heat exchanger capable of exchanging heat with the refrigerant in the accumulator disposed on the outlet side of the outdoor heat exchanger during cooling operation is provided. An outdoor unit capable of switching between cooling and heating forming a refrigerant circuit is connected to the outdoor unit through a pair of main pipes, and an indoor heat exchanger and an expansion valve driven by an electric signal are connected in series to a branch pipe branching from the main pipe. a plurality of indoor units forming a refrigerant circuit, a temperature detector disposed at the outlet of the indoor heat exchanger during heating operation and the outlet of the outdoor heat exchanger during cooling operation, and a high pressure state on the output side of the compressor. A controller for controlling the expansion valve by inputting signals from a detection detector and a capacity setting switch capable of setting the capacity of the plurality of indoor units. Machine.
JP63106504A 1988-04-28 1988-04-28 Multi-room air conditioner Expired - Lifetime JPH0670515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106504A JPH0670515B2 (en) 1988-04-28 1988-04-28 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106504A JPH0670515B2 (en) 1988-04-28 1988-04-28 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH01277159A true JPH01277159A (en) 1989-11-07
JPH0670515B2 JPH0670515B2 (en) 1994-09-07

Family

ID=14435260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106504A Expired - Lifetime JPH0670515B2 (en) 1988-04-28 1988-04-28 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JPH0670515B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211370A (en) * 1990-01-12 1991-09-17 Hitachi Ltd Controller for expansion valve of multiple-air conditioner
JP2009092337A (en) * 2007-10-11 2009-04-30 Panasonic Corp Air conditioner
CN114413429A (en) * 2022-01-26 2022-04-29 青岛海信日立空调***有限公司 Air conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110440406B (en) * 2019-08-05 2020-12-11 珠海格力电器股份有限公司 Fan control method, device and unit equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237978A (en) * 1985-04-13 1986-10-23 ダイキン工業株式会社 Multiple type refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237978A (en) * 1985-04-13 1986-10-23 ダイキン工業株式会社 Multiple type refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211370A (en) * 1990-01-12 1991-09-17 Hitachi Ltd Controller for expansion valve of multiple-air conditioner
JP2009092337A (en) * 2007-10-11 2009-04-30 Panasonic Corp Air conditioner
CN114413429A (en) * 2022-01-26 2022-04-29 青岛海信日立空调***有限公司 Air conditioning system
CN114413429B (en) * 2022-01-26 2023-05-30 青岛海信日立空调***有限公司 Air conditioning system

Also Published As

Publication number Publication date
JPH0670515B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
KR100437805B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
EP0676595B1 (en) Air conditioning apparatus
US20080197206A1 (en) Refrigerant System With Water Heating
CA2573896A1 (en) Heat pump system having auxiliary water heating and heat exchanger bypass
EP3236168B1 (en) Air conditioning device
JPH01277159A (en) Multi-chamber airconditioner
JP2011047622A (en) Air conditioner
JP2910260B2 (en) Air conditioner and operation controller of air conditioner
JPH0379946A (en) Multi-room air conditioner
JPH0384352A (en) Multi-room air conditioner
JP2021148424A (en) Air conditioning unit and system including the same
JP2904354B2 (en) Air conditioner
JPH02213639A (en) Air conditioner for multi rooms
JP2893844B2 (en) Air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JPS62288441A (en) Multichamber air conditioner
JPH08136078A (en) Multi-room cooling and heating device
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner
JPH0480569A (en) Air-conditioning machine
JPS63143464A (en) Air conditioner for multi-chamber
JPH02106668A (en) Air conditioner
JP2522371B2 (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JPH04359767A (en) Air conditioner
JPH0694959B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 14