JPH01270571A - Production of carbon material for sliding and current collection - Google Patents

Production of carbon material for sliding and current collection

Info

Publication number
JPH01270571A
JPH01270571A JP9453288A JP9453288A JPH01270571A JP H01270571 A JPH01270571 A JP H01270571A JP 9453288 A JP9453288 A JP 9453288A JP 9453288 A JP9453288 A JP 9453288A JP H01270571 A JPH01270571 A JP H01270571A
Authority
JP
Japan
Prior art keywords
sliding
metal
pore
wire mesh
carbonaceous powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9453288A
Other languages
Japanese (ja)
Inventor
Kenichiro Fujimoto
健一郎 藤本
Koichiro Mukai
向井 幸一郎
Kenichi Fujimoto
研一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP9453288A priority Critical patent/JPH01270571A/en
Publication of JPH01270571A publication Critical patent/JPH01270571A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon material for sliding and current collection having low electric resistance and excellent impact resistance, by arranging a wire net in a carbonaceous powder dispersing a pore forming agent, molding the carbonaceous powder under pressure, burning the resultant moldings and impregnating a metal into the resultant pore. CONSTITUTION:A method charging a definite amount of carbonaceous powder 1 dispersing a pore-forming agent (e.g., fine particle wax) into a mold 3, putting a wire net 2 made of copper thereon and further charging the carbonaceous powder 1 thereon is repeated. Then the charged materials are molded under pressure and burned under an inert gas atmosphere to afford a laminate alternately laminating porous carbon matrix 4 and wire net 2. Then a metal (e.g., Cu-Sn alloy) having lower melting point than a metal used to the wire net is impregnated into the porous carbon matrix 4 to provide the carbon material for sliding and current collection. The resultant sliding and current-collecting material has excellent self-lubricating properties and small sliding noise and is preferably used for a pantograph sliding plate, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素系摺動集電材料の製造方法に関するもので
ある。更に詳しくいえはパンタフラフ摺板、電動機用集
電月料などに適用可能な炭素系槽動集電材料の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a carbon-based sliding current collector material. More specifically, the present invention relates to a method for manufacturing a carbon-based cell dynamic current collector material that can be applied to pantograph sliding plates, current collectors for electric motors, and the like.

〔従来の技術〕[Conventional technology]

現在摺動集電用材料には、大きく分類して鋳造合金、焼
結合金等の金属系材料と炭素系材料の二つがある。
Currently, materials for sliding current collectors are broadly classified into two types: metallic materials such as cast alloys and sintered alloys, and carbon-based materials.

金属系摺動集電材料は電気抵抗が極めて低く高強度を有
するが、アーク発生量が炭素系摺動集電材料と比較して
多く、高強度故に相手材の摩耗量を増加させてしまうと
いう欠点を有している。現在これら金属系摺動集電材料
は、特に高強度が要求される電車、電気機関車の集電用
パンタグラフ摺板等に利用されている。
Metal-based sliding current collector materials have extremely low electrical resistance and high strength, but the amount of arc generated is greater than that of carbon-based sliding current collector materials, and their high strength increases the amount of wear on the mating material. It has drawbacks. Currently, these metal-based sliding current collector materials are used for current collecting pantograph sliding plates for electric trains and electric locomotives that require particularly high strength.

従来集電用パンタグラフ摺板材料には主に、銅、カーボ
ン、銅−鉄合金または銅−錫−亜鉛系合金なとの鋳造合
金、及び銅系又は鉄系の焼結合金などが用いられている
。しがし集電容量の増大、車両運行速度の増大により集
電用パンタフラフ摺板の使用環境は近年−段と過酷にな
ってきている。
Traditionally, current collector pantograph sliding plate materials have mainly been cast alloys such as copper, carbon, copper-iron alloys or copper-tin-zinc alloys, and copper-based or iron-based sintered alloys. There is. In recent years, the environment in which current collecting pantograph sliding plates are used has become increasingly harsh due to increases in current collecting capacity and vehicle speeds.

最近は、車両の高速化にともない離線率が増加し、機械
的摩耗量及びアーク摩耗量が増大してきているほか、寒
冷地に於ける1〜ロリー線の氷結かもならず異常摩耗な
との問題や、摺動音か大きく騒音公害等の問題も発生し
ている。これらの摩耗に対しては摺板自身な4−1でな
く1−ロリー線、起電レール等の相手利料の摩耗をも少
なくする摺動特性のよい集電材料か望まれている。また
アーク発生はアーク摩耗のみならず電波障害も引き起こ
すため問題視されている。
Recently, as the speed of rolling stock has increased, the wire loss rate has increased, and the amount of mechanical wear and arc wear has also increased.In addition, there is a problem that 1~Rolly wires may freeze in cold regions, causing abnormal wear. Problems such as loud sliding noise and noise pollution are also occurring. To prevent such abrasion, a current collecting material with good sliding properties is desired, which reduces the abrasion not only of the sliding plate itself but also of the other components such as the 1-rolly wire and the electromotive rail. Further, arc generation is viewed as a problem because it causes not only arc wear but also radio interference.

これら金属系摺動材料の欠点を補うことが可能であると
期待されているものに炭素系材料かある。
Carbon-based materials are expected to be able to compensate for the drawbacks of these metal-based sliding materials.

炭素系摺動集電材料は良好な自己潤滑性と比較的低い電
気抵抗を有し、剛アーク性に優れ、軽量てありまた摺動
音も小さいという特徴を併せ持ち、上記金属系摺動集電
材料の欠点をカバーすることかてきる。しかし合属系材
料と比較すると電気抵抗かかなり高く、強度も極端に低
いという欠点を有することから、大きな力か直接かかる
箇所にζ」使えない。現在、これらはモーターフラジ等
に広く利用されている。炭素系摺動集電材料を利用して
いる分野でも使用条件か厳しくなってきている現在では
、その耐摩耗性向上、電気抵抗低下が更に求められてい
る。
Carbon-based sliding current collector materials have good self-lubricating properties, relatively low electrical resistance, excellent rigid arc properties, light weight, and low sliding noise, and are superior to the metal-based sliding current collectors mentioned above. It can be used to cover up the shortcomings of the material. However, compared to composite materials, it has the drawbacks of considerably higher electrical resistance and extremely low strength, so it cannot be used in areas where large forces are directly applied. Currently, these are widely used in motor flages and the like. Nowadays, even in fields where carbon-based sliding current collector materials are used, the usage conditions are becoming stricter, and there is a growing demand for improved wear resistance and lower electrical resistance.

また炭素材料はその脆性がら折傷し易く、折損し7か場
合には集電材料か飛散し危険であると同時に最悪の場合
には集電か不用能となる恐れもある。
Furthermore, carbon materials are brittle and easily break, and if they break, the current collecting material may scatter, which is dangerous, and in the worst case, the current collecting material may become unusable.

これらの欠点を解決ずへく各方面て検訃1が進められて
おり、現在では、炭素系摺動集電材料に金属を含浸した
り、炭素材料の原料粉末に金属粉を添加することにより
電気抵抗を下(すると共に強度の向−」−を計るという
方法が採られている (特公昭52−822号公報、特
開昭60−238402号公報)。しが17ながら前述
の方法は強度向上、電気抵抗の低下にはある程度の効果
は期待てきるものの脆性破壊の防止に対する効果はあま
り期待てきない。
In order to solve these shortcomings, examinations are being carried out in various fields, and currently, carbon-based sliding current collector materials are impregnated with metals, and metal powders are added to raw material powders of carbon materials. A method has been adopted in which the electrical resistance is decreased (and the direction of the strength is measured) (Japanese Patent Publication No. 52-822, Japanese Unexamined Patent Publication No. 60-238402). Although it is expected to be effective to some extent in improving electrical resistance and reducing electrical resistance, it is not expected to be very effective in preventing brittle fracture.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

本発明は、従来の炭素材料と比較して低電気抵抗を有し
、かつ脆性破壊に対し゛C抵抗を有する高強度の炭素系
摺動集電材料の製造方法を提供するものである。
The present invention provides a method for manufacturing a high-strength carbon-based sliding current collector material that has lower electrical resistance than conventional carbon materials and has a C resistance to brittle fracture.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、気孔形成剤を分散さぜな炭素質粉末中に、金
網を配設し、加圧成型した後力゛と成し、その後焼成し
ノこ際に生じる孔に金属を含浸することを特徴とする摺
動集電用炭素材料の製造方法である。本発明の摺動集電
用炭素材料の製造方法は多孔質炭素7トリツクス中に金
網あるいは金網と金属粉末を含有させたちのにさらに金
属を含浸することを特徴とする。
The present invention involves disposing a wire mesh in a carbonaceous powder in which a pore-forming agent is dispersed, forming a pressure-molded material, and then impregnating the pores formed during firing with metal. A method for producing a carbon material for sliding current collector, characterized by: The method for producing a carbon material for sliding current collection according to the present invention is characterized by containing a wire mesh or a wire mesh and a metal powder in porous carbon 7 trix, and further impregnating it with a metal.

原料に用いる炭素質粉末としては自己焼結性を有する生
コークスを始めか類コークスとハインダービッヂの混合
物等が用いられる。その平均粒子径は3〜5071m程
度か良いか、製品の均質化による炭素質7トリツクスの
強化、焼成時の割れ防止を考えると、5〜15μm0程
度のものが好ましい。また炭素質粉末には銅、銅合金、
ニッケル、ニッケル合金等の金属粉末を5〜501%、
好ましくは2O−40u+t%混合添加し、でもよい。
As the carbonaceous powder used as a raw material, raw coke having self-sintering properties, a mixture of coke and binder, etc. are used. The average particle diameter is preferably about 3 to 5,071 m, and preferably about 5 to 15 μm, considering strengthening of the carbonaceous 7-trix by homogenizing the product and prevention of cracking during firing. Carbonaceous powders include copper, copper alloys,
5-501% metal powder such as nickel and nickel alloy,
Preferably, a mixture of 2O-40u+t% may be added.

炭素質原料に金属粉末を添加することにより電気抵抗の
低下、金属線、含浸金属と炭素質基材との接合改善等か
期待てきる。
By adding metal powder to the carbonaceous raw material, it is expected that the electrical resistance will be lowered and the bond between the metal wire or impregnated metal and the carbonaceous base material will be improved.

炭素質71〜リツクスを多孔質化するためには、アソシ
カルポンアミド、シニ)へロソベンタメヂレンテl−ラ
ミン、ポリエチレン、ポリスチレン、フェノール樹脂、
アクリル樹脂、ワックス、各種でんぷん等の粉状の気孔
形成剤や、ナイロン、テ1−I7ン、アクリル、ポリエ
チレン、塩化ヒニル等の揮散(;1繊維、揮散性網等の
繊維状の気孔形成剤を炭素質原N’:l中に分散させ、
加圧成型した後に焼成すればよい。気孔形成剤の添加量
は炭素質粉末に列して内削゛ζ3−6’O+ul;%程
度がよいが、強度の高い多孔質炭素71〜リツクスを得
るためには5〜301111%か好ましい。気孔形成剤
に粉状の物を用いるより繊維、1にの物を用いる方が連
続気孔率の高い多孔質炭素材料を得ることができる。気
孔形成の目的て添加する揮散性繊組は線径0.005〜
3mm、長さ0.05−20 m l11程度でよいが
、気孔の均一で良好な分散状態、高強度の多孔質炭素マ
i・ワックスを得るため好ましくは線径0.01〜0 
、5mm、長さ01〜5m、m程度かよい。
In order to make the carbonaceous material 71~lyx porous, asocycloamide, helosobentamedylamine, polyethylene, polystyrene, phenolic resin,
Powder-like pore-forming agents such as acrylic resins, waxes, and various starches, and fibrous pore-forming agents such as nylon, 1-I7, acrylic, polyethylene, and hinyl chloride (;1 fibers, volatile networks, etc.) is dispersed in carbonaceous raw material N':l,
It may be fired after pressure molding. The amount of the pore-forming agent to be added is preferably about 1% by internal cutting in line with the carbonaceous powder, but 5 to 301111% is preferable in order to obtain porous carbon 71 to 11% with high strength. It is possible to obtain a porous carbon material with a higher continuous porosity by using fibers as the pore-forming agent than by using a powdered material. Volatile fibers added for the purpose of pore formation have a wire diameter of 0.005~
A wire diameter of 3 mm and a length of 0.05-20 ml is sufficient, but in order to obtain a porous carbon fiber with a uniform and good dispersion of pores and a high strength, the wire diameter is preferably 0.01-0.
, 5mm, length 01-5m, about m is good.

本発明の摺動集電用炭素材料は、多孔質炭素71−リッ
クス中に網状の金属が含有されている。金網は平板、状
の連続した物が製作の容易さ、あるいは強度の均一性を
与えるため好ましいが、細断したチップ状のもの、円筒
状、角柱状なと立体的なものてあっても差し支えない。
The sliding current collector carbon material of the present invention contains a mesh of metal in porous carbon 71-lix. It is preferable to use a continuous wire mesh in the form of a flat plate or a shape because it is easy to manufacture or provides uniform strength, but it is also possible to use a three-dimensional wire mesh such as a shredded chip shape, a cylinder, or a prismatic shape. do not have.

平板状の金網を用いる場合は、これを複数用いると共に
、平行に配列することか均一性を保つため有利である。
When using flat plate-like wire meshes, it is advantageous to use a plurality of them and to arrange them in parallel to maintain uniformity.

この場合、金網の間隔は0.5〜50mmf’il−度
とし、且つ平行に配列した金網間をところどころ導線で
接続するようにずれは、抵抗かより低下する。また摺動
集電用炭素材料の端面てあって、摺動面及び集電面には
金網か露出することが望ましい。また金網を斜めに配設
しても良いし、一つの金網に対し直角方向に配設しても
良い。金網を本発明て用いる金網の金属は、銅、銅合金
、ステンレス鋼、ブロンス、燐青銅、真鋳、ニッケルメ
ッキを施した鉄等でよいか、高強度か要求される場合に
はステンレス鋼か、低電気抵抗が要求される場合には銅
、銅合金が好ましい。
In this case, the distance between the wire meshes is set to 0.5 to 50 mmf'il-degrees, and the wire meshes arranged in parallel are connected here and there with conductive wires, so that the resistance is further reduced. Further, it is desirable that the end face of the carbon material for sliding current collection has a wire mesh exposed on the sliding surface and the current collecting surface. Further, the wire mesh may be arranged diagonally or perpendicularly to one wire mesh. The metal of the wire mesh used in the present invention may be copper, copper alloy, stainless steel, bronze, phosphor bronze, brass, nickel-plated iron, etc., or stainless steel if high strength is required. , copper and copper alloys are preferred when low electrical resistance is required.

金網を多孔質炭素71〜リツクス中に分散させる方法の
一例について説明する。第1図に示す如く、気孔形成剤
を分散さぜた炭素質粉末1の一定量を金型3に装入後、
金網2を敷き、更にその上に前記炭素質粉末を装入する
という方法を繰り返す。
An example of a method for dispersing wire mesh into porous carbon 71 will be described. As shown in FIG. 1, after charging a certain amount of carbonaceous powder 1 in which a pore-forming agent is dispersed into a mold 3,
The method of laying the wire mesh 2 and charging the carbonaceous powder thereon is repeated.

金網の装入量は多いほと電気抵抗を下げ、強度をあける
ことかできるが、極端に装入量を多くすると製品の強度
が低下してしまう。このため金網の装入量は上記炭素質
粉末100gにつき金網0.5〜15g、好ましくは2
〜10g程度かよい。
The larger the amount of wire mesh charged, the lower the electrical resistance and the greater the strength, but if the amount charged is extremely large, the strength of the product will decrease. Therefore, the amount of wire mesh to be charged is 0.5 to 15 g, preferably 2 g, per 100 g of the above carbonaceous powder.
It's about ~10g.

その後加圧成型し、アルコン、窒素等の不活性カス雰囲
気下で800〜1600℃程度て焼成することにより、
例えば第2図に示すような多孔質炭素71〜リツクス4
と金網2を交互に積層した摺動集電用炭素材料を得るこ
とかできる。この金網を含有した多孔質炭素7トリツク
スに金属を含浸することにより更に電気抵抗の低い高強
度摺動集電用炭素材料か得られる。含浸する金属は金網
に用いた金属よりも融点か低いものてあればどのような
ものてもよい。
After that, it is pressure molded and fired at about 800 to 1600°C in an inert gas atmosphere such as alcon or nitrogen.
For example, porous carbon 71 to lithics 4 as shown in FIG.
It is possible to obtain a sliding current collector carbon material in which wire meshes 2 and 2 are alternately laminated. By impregnating the porous carbon 7 trix containing this wire mesh with metal, a high-strength sliding current collector carbon material with even lower electrical resistance can be obtained. The metal to be impregnated may be any metal as long as it has a melting point lower than that of the metal used for the wire mesh.

本発明の方法により作製された摺動集電材料は、従来の
炭素材料と比較して極端に電気抵抗が低く、自己潤滑性
に富み摺動させる際相手材の摩耗量を低減し、摺動音か
小さく、高強度の金属強化炭素系材料となる。連続した
金網を用いることにより摺動集電材料の端面に露出して
いる金属線は他の端面に露出している金属線と同一の金
網である限り必ず導通しており、電気抵抗の低下が確実
に期待できる。本発明の摺動集電材料は金網をはさむ多
孔質炭素マI〜リックスの層は一体化されていることが
必要である。この部分の結合か弱いと摺動集電材料の全
体の強度か極端に低下してしまう。
The sliding current collector material produced by the method of the present invention has extremely low electrical resistance compared to conventional carbon materials, has excellent self-lubricating properties, reduces the amount of wear on the mating material during sliding, and It is a low-noise, high-strength metal-reinforced carbon-based material. By using a continuous wire mesh, the metal wire exposed on the end face of the sliding current collector material is always conductive as long as it is the same wire mesh as the metal wire exposed on the other end face, and the electrical resistance decreases. You can definitely expect it. In the sliding current collecting material of the present invention, the layers of porous carbon matrix sandwiching the wire mesh must be integrated. If the bond in this part is weak, the overall strength of the sliding current collector material will be extremely reduced.

すなわち金網の目の荒さが細かすきなり線径が太いと、
焼成時に金網の」1下にある炭素質材料層と炭素質材料
層とか、金属と炭素材料との熱収縮率、熱膨張率の差に
よって金網のところで亀裂を生じ、炭素−炭素層の層間
剥離を起こすという現象か観察された。そのため本発明
に用いる金網としては、金網を構成している線材の直径
か0.01〜3.0mm、開口間隔は線材の直径の5倍
以上の金網を用いることか望ましい。なお、本発明でい
う金網の開口間隔とは、金網を構成する線材の中心線の
間隔をいう。開口間隔の上限は無いと考えてよいが、開
口間隔を余り大きくとると導入できる金網の量か減少し
てしまう。このため余り開口間隔を大きくとると金網を
導入するメリッ1〜かなくなってしすうので、開口間隔
を変化させ導入する金属の量をコントロールし、電気抵
抗を所望の値に調整するようにずれはよい。
In other words, if the coarseness of the wire mesh is fine and the wire diameter is thick,
During firing, cracks occur in the wire mesh due to the difference in thermal contraction and thermal expansion coefficients between the carbonaceous material layer underneath the wire mesh and the metal and carbon material, resulting in delamination of the carbon-carbon layer. It was observed that this phenomenon occurred. Therefore, it is preferable that the wire mesh used in the present invention has a diameter of 0.01 to 3.0 mm and an opening interval of at least 5 times the diameter of the wire rod. In addition, the opening interval of the wire mesh as used in the present invention refers to the interval between the center lines of the wires that constitute the wire mesh. Although there is no upper limit to the gap between the openings, if the gap between the openings is too large, the amount of wire mesh that can be introduced will be reduced. For this reason, if the gap between the openings is made too large, the advantage of introducing a wire mesh will be lost. Therefore, the gap between the openings can be changed to control the amount of metal introduced and adjust the electrical resistance to the desired value. good.

本発明における摺動集電用炭素材料は、炭素質マトリッ
クスに金属が含浸されている上、金網を含有しているた
めに電気抵抗は黒鉛を下回っており、必ずしも多孔質炭
素7トリツクスを黒鉛化して電気抵抗を下げる必要はな
く、焼成温度は900〜1400℃程度でも所望の電気
抵抗値とすることが出来る。しかし焼成温度を導入する
金属の融点よりも余り高くし過きると、焼成中に金網か
溶融し内部て断線を生することかある。この様な状態が
進むと挟み込んな金属の電気伝導性か極端に低下するた
めに、電気抵抗を低下させるという初期の目的を達成す
ることはてきず、好ましくない。そのなめ、金網の素層
の融点を若干下回る温度以下で焼成すると良い。
The carbon material for sliding current collection in the present invention has a carbonaceous matrix impregnated with metal and also contains a wire mesh, so the electrical resistance is lower than graphite, and it is not necessary to graphitize the porous carbon 7 trix. There is no need to lower the electrical resistance by heating, and a desired electrical resistance value can be obtained even when the firing temperature is about 900 to 1400°C. However, if the firing temperature is set too high above the melting point of the metal introduced, the wire gauze may melt during firing, causing internal wire breakage. If such a state progresses, the electrical conductivity of the sandwiched metal will drop drastically, making it impossible to achieve the initial objective of lowering the electrical resistance, which is not preferable. Therefore, it is best to fire at a temperature slightly lower than the melting point of the wire mesh base layer.

本発明による摺動集電炭素材料は、第2図に示すように
金1112J層と直角方向の多孔質炭素71〜リツクス
4中に金m2か存在するへ面を摺動面に、反対側の8面
を端子に接続することによって、その比抵抗値を極端に
下けることが出来る。また摺動する際の摺動面の方向は
摺動面と集電端子接続面とか金網の平面に垂直な方向と
なるようにずれは問題はないが、摺動面」二に出現する
線材の数を絶えず一定に保つ必要があれは、金網を構成
している線材か摺動面に対して平行となるような方向は
避G−jか方かよい。金網の装入量を多くし電気抵抗を
下げ強度を高めるためには金属線材に屈曲をす。
As shown in FIG. 2, the sliding current collector carbon material according to the present invention has a surface where gold m2 is present in porous carbon 71 to lithium 4 in the direction perpendicular to the gold 1112J layer, and a sliding surface on the opposite side. By connecting the 8 sides to the terminals, the specific resistance value can be extremely lowered. In addition, the direction of the sliding surface when sliding is perpendicular to the sliding surface and the current collector terminal connection surface or the plane of the wire mesh, so there is no problem with misalignment, but the wire rod that appears on the sliding surface. If it is necessary to keep the number constant, it is better to avoid the direction G-j that is parallel to the sliding surface of the wire making up the wire mesh. In order to increase the amount of wire mesh charged, lower the electrical resistance, and increase the strength, the metal wire is bent.

えておきこれで金網を作るか、金網全体を屈曲させてお
くことも有効である。
It is also effective to make a wire mesh using this material in advance, or to bend the entire wire mesh.

本発明による摺動集電用炭素材料は従来の焼結金属と比
較すると、炭素材料の持つ良好な自己潤滑性を有するた
め特に相手摺動材「1にお(づろ摩耗を改善する特性に
優れ、摺動音も極めて低く、軽量であるという特徴を有
している。また本発明による摺動集電用炭素材料(J従
来の炭素系摺動集電材料と比較すると、低電気抵抗の金
網、含浸金属を用いることによりその電気抵抗を極端に
低下さぜることがてきる、断面部分ては金属か微細かつ
均一に71へリックス中に点在しているため耐アーク性
に優れる、等の利点を持つ。加えて挟み込んな金属によ
り脆性破壊に対して強く、折損しても金属部分てつなが
るため飛散することの少ない安全な摺動集電材料といえ
る。
Compared to conventional sintered metals, the carbon material for sliding current collectors according to the present invention has excellent self-lubricating properties of carbon materials, so it has a characteristic that improves the wear of the mating sliding material. The carbon material for sliding current collectors according to the present invention (J) has the characteristics of low electrical resistance and extremely low sliding noise when compared with conventional carbon-based sliding current collector materials. By using wire mesh or impregnated metal, the electrical resistance can be extremely reduced, and the cross section has excellent arc resistance because the metal is finely and uniformly scattered throughout the 71 helix. In addition, the sandwiched metal makes it resistant to brittle fracture, and even if it breaks, the metal parts are connected, so it can be said to be a safe sliding current collector material that is less likely to scatter.

本発明による摺動集電用炭素材料はパンククラフ摺板以
外にも集電材料として電動機用集電フラジ算法・く応用
か期待てきる。
The carbon material for sliding current collectors according to the present invention is expected to be applied as a current collecting material in addition to Punkclough sliding plates, such as the current collecting flage algorithm for electric motors.

〔実施例〕〔Example〕

以下に、本発明の実施例を示す。 Examples of the present invention are shown below.

実施例1 平均粒径]]μmに粉砕した自己焼結性生コークスに気
孔形成剤として3F均粒径30μmのワックスを1.5
iut%添加し、線径0.28mm、開口間隔5.0m
mの銅製の金網を生コークス1.00gに套1き銅網5
 、5 gの割合で挟み込み]、200kg/cm2て
加圧成型した後、]OOO’Cで焼成した。ひきつつき
O,]、Torr下、800°Cて溶融させf、、: 
Cu−3n@金(50: 50)に前述の焼成体を浸し
30kg/c+n2まて窒素カスて加圧し金属含浸を行
い摺動集電材料を作製した。
Example 1 Average particle size]] 1.5 μm of 3F wax with an average particle size of 30 μm was added as a pore-forming agent to self-sintering raw coke crushed to μm.
iut% added, wire diameter 0.28mm, opening interval 5.0m
Copper wire mesh 5 m with 1.00 g of raw coke
, 5 g] and pressure molded at 200 kg/cm 2 , and then fired at ]OOO'C. twitching O,], melted at 800°C under Torr, f,:
The above-mentioned fired body was immersed in Cu-3n@gold (50:50) and pressurized with nitrogen gas at 30 kg/c+n2 to impregnate metal, thereby producing a sliding current collector material.

実施例2 実施例1て用いた気孔形成剤を添加した原料生コークス
の代わりに、気孔形成剤を添加した原料生コークスと平
均粒径30μmの銅粉7;3 (重量比)の割合で混合
したものをマトリックスに用いる以外は実施例1と同様
の方法て摺動集電材料を作製した。
Example 2 Instead of the raw raw coke added with a pore forming agent used in Example 1, raw raw coke added with a pore forming agent was mixed with copper powder having an average particle size of 30 μm at a ratio of 7:3 (weight ratio). A sliding current collector material was produced in the same manner as in Example 1, except that the obtained material was used as a matrix.

実施例3 実施例1て用いた銅製金網の代わりに、線径、開口間隔
が同一のステンレス製金網を用いる以外は実施例1と同
様の方法で摺動集電材料を作製した。
Example 3 A sliding current collector material was produced in the same manner as in Example 1, except that a stainless steel wire mesh having the same wire diameter and opening interval was used instead of the copper wire mesh used in Example 1.

実施例4 実施例1て用いた気孔形成剤の代わりに、アクリル樹脂
粉末を用いる以外は実施例1と同様の方法て摺動集電材
料を作製した。
Example 4 A sliding current collector material was produced in the same manner as in Example 1 except that acrylic resin powder was used instead of the pore forming agent used in Example 1.

実施例5 実施例1て用いた銅製金網の代わりに、線径0.53m
m、開口間隔10.0mmの銅製金網を用いる以外は実
施例]と同様の方法て摺動集電材料を作製した。
Example 5 Instead of the copper wire mesh used in Example 1, a wire diameter of 0.53 m was used.
A sliding current collector material was produced in the same manner as in Example] except that a copper wire mesh with an opening interval of 10.0 mm was used.

比較例1 平均粒径1171+nに粉砕した自己焼結性生コークス
を1200kg/ cm2で加圧成型した後、1000
 ’Cて焼成し摺動集電材料を作製しな。
Comparative Example 1 Self-sintering raw coke pulverized to an average particle size of 1171+n was pressure-molded at 1200 kg/cm2, and then
The sliding current collector material is produced by firing at 'C.

比較例2 平均粒径1]μmに粉砕した自己焼結性生コークスと平
均粒径30μ川の銅粉を73(重量比)の割合て混合し
比較例1と同様の方法で成型、焼成し摺動集電材料を得
た。
Comparative Example 2 Self-sintering raw coke pulverized to an average particle size of 1 μm and copper powder with an average particle size of 30 μm were mixed at a ratio of 73 (weight ratio), and molded and fired in the same manner as Comparative Example 1. A sliding current collecting material was obtained.

比較例3 平均粒径30μmのワックスを気孔形成剤として]、5
u+L%添加した平均粒径11μmに粉砕した自己焼結
性生コークスを1200kg/cm2で加圧成型した後
、1100℃で焼成した。ひきつづき0.ITorr下
、800℃で溶融させたCu−8n合金(50: 50
)に前述の焼成体を浸し30kg7cm2まで窒素カス
で加圧し金属含浸を行い摺動集電材料を作製した。
Comparative Example 3 Wax with an average particle size of 30 μm as a pore forming agent], 5
Self-sintering raw coke pulverized to an average particle size of 11 μm and added with u+L% was press-molded at 1200 kg/cm 2 and then fired at 1100°C. Continued 0. Cu-8n alloy (50:50
) and pressurized with nitrogen gas to 30 kg and 7 cm 2 to impregnate metal, thereby producing a sliding current collector material.

前述の実施例、比較例で準備した摺動集電用炭素材料の
シ・ヤルピー衝撃値と電気比抵抗値を測定した結果をま
とめて下表に示した。表から明らかなように本発明の方
法によって得られた摺動集電用炭素材料は従来の炭素材
料に比べて低電気抵抗を有し耐衝撃性も高いことがわか
る。
The results of measuring the Syalpy impact value and electrical specific resistance value of the carbon materials for sliding current collectors prepared in the above-mentioned Examples and Comparative Examples are summarized in the table below. As is clear from the table, the sliding current collector carbon material obtained by the method of the present invention has lower electrical resistance and higher impact resistance than conventional carbon materials.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軽量、良潤滑性、良好な耐アーク性等
の炭素系摺動集電材料の特徴を継承し、かつ低電気抵抗
を有し耐衝撃性も良好なきわめて有用な摺動集電用炭素
材料を得ることができ、極めて有用である。
According to the present invention, an extremely useful sliding material that inherits the characteristics of carbon-based sliding current collector materials such as light weight, good lubricity, and good arc resistance, and also has low electrical resistance and good impact resistance. It is possible to obtain a carbon material for current collection, which is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形時の工程を、第2図は本発明の方法によっ
て製造された摺動集電用炭素材料を示す。 1・・炭素質粉末、  2・金網、 3・金型、 4・・・多孔質炭素71−ワックス。 (N   \j
FIG. 1 shows the process during molding, and FIG. 2 shows the carbon material for sliding current collector manufactured by the method of the present invention. 1. Carbonaceous powder, 2. Wire mesh, 3. Mold, 4. Porous carbon 71-wax. (N \j

Claims (3)

【特許請求の範囲】[Claims] (1)気孔形成剤を分散させた炭素質粉末中に、金網を
配設し、加圧成型した後焼成し、その後焼成した際に生
する孔に金属を含浸することを特徴とする摺動集電用炭
素材料の製造方法。
(1) A sliding device characterized by disposing a wire mesh in carbonaceous powder in which a pore-forming agent is dispersed, press-molding and firing, and then impregnating metal into the pores created during firing. A method for producing a carbon material for current collection.
(2)気孔形成剤を分散させた炭素質粉末と金網を交互
に積層し加圧成型した後焼成し、その後焼成した際に生
する孔に金属を含浸することを特徴とする摺動集電用炭
素材料の製造方法。
(2) A sliding current collector characterized by alternately laminating carbonaceous powder in which a pore-forming agent is dispersed and wire mesh, press-molding and firing, and then impregnating metal into the pores created during firing. Method for manufacturing carbon materials for use.
(3)気孔形成剤とともに金属粉末を混合した炭素質粉
末を用いる請求項1または2記載の摺動集電用炭素材料
の製造方法。
(3) The method for producing a carbon material for a sliding current collector according to claim 1 or 2, wherein carbonaceous powder is used which is a mixture of metal powder and a pore-forming agent.
JP9453288A 1988-04-19 1988-04-19 Production of carbon material for sliding and current collection Pending JPH01270571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9453288A JPH01270571A (en) 1988-04-19 1988-04-19 Production of carbon material for sliding and current collection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9453288A JPH01270571A (en) 1988-04-19 1988-04-19 Production of carbon material for sliding and current collection

Publications (1)

Publication Number Publication Date
JPH01270571A true JPH01270571A (en) 1989-10-27

Family

ID=14112942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9453288A Pending JPH01270571A (en) 1988-04-19 1988-04-19 Production of carbon material for sliding and current collection

Country Status (1)

Country Link
JP (1) JPH01270571A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183667B1 (en) * 1999-03-30 2001-02-06 Railway Technical Research Institute Titanium-and copper-containing carbon composite material and process for the production thereof
WO2005047051A1 (en) * 2003-11-11 2005-05-26 Morganite Electrical Carbon Limited Composite collectors
DE102004006589B4 (en) * 2004-02-10 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous production of carbon abrasive strips with a small amount of thin metallic conductors
US20190337860A1 (en) * 2018-05-03 2019-11-07 Doosan Fuel Cell America, Inc. Method of making a porous fuel cell component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183667B1 (en) * 1999-03-30 2001-02-06 Railway Technical Research Institute Titanium-and copper-containing carbon composite material and process for the production thereof
WO2005047051A1 (en) * 2003-11-11 2005-05-26 Morganite Electrical Carbon Limited Composite collectors
DE102004006589B4 (en) * 2004-02-10 2006-09-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Continuous production of carbon abrasive strips with a small amount of thin metallic conductors
US20190337860A1 (en) * 2018-05-03 2019-11-07 Doosan Fuel Cell America, Inc. Method of making a porous fuel cell component
US10689301B2 (en) * 2018-05-03 2020-06-23 Doosan Fuel Cell America, Inc. Method of making a porous fuel cell component

Similar Documents

Publication Publication Date Title
CN101492015B (en) Reticular lamination carbon-copper composite material pantograph pan and manufacturing method
CN101480927B (en) Netted sintered carbon-copper composite material pantograph pan and method for producing the same
CN104926347B (en) High-speed railway EMUs pantograph slide composite material and preparation method thereof
CN1326152C (en) Pantograph sliding plate of assorted fibre reinforced composite material and preparing method thereof
JP2001122677A (en) Method for manufacturing separator for fuel battery
US5362580A (en) Lightweight battery electrode and method of making it
JPH01270571A (en) Production of carbon material for sliding and current collection
JP2007511197A (en) Combined current collector
KR930009894B1 (en) Carbon/metal composite
CN1281431C (en) Pantograph slide plate and method for making same
JPH01157464A (en) Carbon material for sliding current collection and production thereof
JPS5831729A (en) Manufacture of composite material and composite material obtained through said method
JPH01270572A (en) Production of carbon fiber for sliding and current collection
RU2207962C1 (en) Method of manufacture of electric vehicle current collector contact slipper
KR100290315B1 (en) Composition for current collector friction plate and method of manufacturing friction plate using same
JPH03252357A (en) Production of carbon material for sliding current collection
CN1061960C (en) Carbon-carbon composition material for electric collection
RU2088682C1 (en) Caked composite copper-graphite material and method of preparation thereof
JPH04207902A (en) Production of carbon material for sliding current collection
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
JPH053202B2 (en)
KR102033910B1 (en) A friction material for trolley wire in electric rail car, and its manufacturing method
JPH04207904A (en) Production of carbon material for sliding current collection
JPH04207903A (en) Production of carbon material for sliding current collection
JPS61245957A (en) Production of current collecting material