JPH01270035A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH01270035A
JPH01270035A JP10111188A JP10111188A JPH01270035A JP H01270035 A JPH01270035 A JP H01270035A JP 10111188 A JP10111188 A JP 10111188A JP 10111188 A JP10111188 A JP 10111188A JP H01270035 A JPH01270035 A JP H01270035A
Authority
JP
Japan
Prior art keywords
layer
emitter
quantum well
waveguide
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111188A
Other languages
Japanese (ja)
Inventor
Shigemitsu Maruno
丸野 茂光
Yoshitaka Morishita
森下 義隆
Mitsunobu Gotoda
光伸 後藤田
Yoshitoku Nomura
野村 良徳
Hitoshi Ogata
尾形 仁士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10111188A priority Critical patent/JPH01270035A/en
Publication of JPH01270035A publication Critical patent/JPH01270035A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
    • G02F1/3138Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions the optical waveguides being made of semiconducting materials

Abstract

PURPOSE:To modulate the intensity of the guided light propagating in waveguides by injecting carrier layers into the intersected part of a main waveguide layer which consists of a multiple quantum well structure and is sandwiched by a specified emitter layer and collector layer, thereby changing the refractive index. CONSTITUTION:Multilayered semiconductor layers constituting a light guide layer 1 intersected to an X shape are provided on an n-GaAs substrate 7. A transistor is constituted of the multiple quantum well 1, an n-AlxGa1-xAs emitter layer constituted of the clad layer 2, a base region consisting of the multiple quantum well and a collector layer 8. The conduction band bottom of the emitter layer is set at the value equal to or slightly smaller than n=1 quantum level formed in the multiple quantum well layer 10. The conductor bottom of the emitter layer shifts to the energy position larger than the n=1 quantum level when a bias voltage is impressed between the base and emitter in such a manner. The high-speed modulation to the guided light from a light incident port 3 is thus executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光通信、光情報処理分野において用いられ
る光信号の変調装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical signal modulation device used in the fields of optical communication and optical information processing.

〔従来の技術〕[Conventional technology]

第4図は例えばエレクトロニクス レターズ。 Figure 4 is an example of Electronics Letters.

20巻、 (1984) 、22B頁(Electro
nics Letters Vol、20、 (198
4) 、 p、228)に示された従来の光変調装置を
示す上面図、第5図は第4図のA−A断面図である。こ
れら図において、3は光入射口、7はGaAs基板、1
4はn−Al、Ga、−XAsクラッド層、15はn−
GaAs光ガイド層、16はp−A lXGa、−XA
sクラッド層、17は電極である。
Volume 20, (1984), page 22B (Electro
nics Letters Vol, 20, (198
4), p, 228) are top views showing the conventional optical modulation device, and FIG. 5 is a sectional view taken along line AA in FIG. In these figures, 3 is a light entrance, 7 is a GaAs substrate, 1
4 is n-Al, Ga, -XAs cladding layer, 15 is n-
GaAs light guide layer, 16 is p-A lXGa, -XA
s cladding layer, 17 is an electrode.

図に示すように、光ガイドN15には角度2θでX字状
に交叉しているりフジ形導波路15 が形成されている
。またその交叉部においてはクラッド層14.光ガイド
層15.クラッド1i16によりn  A 1 x G
 a + −X A s / n  G a A s 
/ pA IX Gap−XAsダブルへテロ構造が形
成されており、光ガイド層15の部分の屈折率は等制約
にそれ以外の部分よりも高くなる。入射光はボート3か
ら素子内に入り、ボート3′、または3から出射する。
As shown in the figure, the optical guide N15 is formed with a Fuji-shaped waveguide 15 that intersects in an X-shape at an angle of 2θ. Moreover, at the intersection part, the cladding layer 14. Light guide layer 15. n A 1 x G by cladding 1i16
a + −X A s / n G a A s
/pA IX Gap-XAs double heterostructure is formed, and the refractive index of the light guide layer 15 portion is higher than that of the other portions under equal constraints. The incident light enters the element from the boat 3 and exits from the boat 3' or 3.

キャリアが電極17からpn接合を介して光ガイド層1
5に注入されると、キャリアが注入された部分の屈折率
はプラズマ効果により低下する。
Carriers are transferred from the electrode 17 to the light guide layer 1 via the pn junction.
5, the refractive index of the portion into which carriers are injected decreases due to the plasma effect.

たとえば入射光の波長が0.9μm、注入されたキャリ
ア密度ΔNがl XIO”C11−”のとき、屈折率変
化Δnはおよそ5X10−3である。
For example, when the wavelength of the incident light is 0.9 μm and the injected carrier density ΔN is lXIO"C11-", the refractive index change Δn is approximately 5X10-3.

今、レーザビームがボート3から入射したとする。交叉
角2θが2〜3°よりも小さいとき、ガイド層15の交
叉領域へのl xlQlacflI−3程度のキャリア
注入により入射光を全反射させてボート3″から出射さ
せることが可能となる。一方、キャリアを注入しないと
きは、レーザ光はボート3′ から出射する。このよう
にガイド層15の交叉領域へのキャリア注入量を制御す
ることにより、入射光のスイッチングを行なうことがで
きる。
Assume now that a laser beam is incident from boat 3. When the intersection angle 2θ is smaller than 2 to 3 degrees, by injecting carriers of about lxlQlacflI-3 into the intersection region of the guide layer 15, it becomes possible to totally reflect the incident light and emit it from the boat 3''. When carriers are not injected, the laser beam is emitted from the boat 3'. By controlling the amount of carriers injected into the intersection region of the guide layer 15 in this way, the incident light can be switched.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光変調装置は以上のように構成されており、この
ようなダブルへテロ構造では電流注入を停止した後もキ
ャリア再結合によって電子が消費されるまでは電子が導
波路に存在するため、スイッチング速度は、pn接合部
の注入キャリアの寿命、即ちキャリア再結合時間(これ
は通常数ナノセ、りのオーダである)で制限され、1 
fJz以下となるため、高速変調ができないという問題
点があった。
Conventional optical modulators are configured as described above, and in such a double heterostructure, electrons remain in the waveguide even after current injection is stopped until they are consumed by carrier recombination. The switching speed is limited by the lifetime of the injected carriers at the p-n junction, i.e. the carrier recombination time (which is typically on the order of a few nanoseconds);
fJz or less, there was a problem that high-speed modulation was not possible.

この発明は上記のような問題点を解消するためになされ
たもので、屈折率可変領域へキャリアを高速に注入した
り、高速で取り去ったりすることができる光変調装置を
得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain an optical modulation device that can rapidly inject carriers into a variable refractive index region and remove them at high speed. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る光変調装置は、光ガイド層の屈折率可変
領域を多重量子井戸構造により形成し、これをベース層
とし、該ベース層を挟んで形成された、該ベース層の量
子井戸に形成される電子のn=1の量子準位と等しいか
あるいはやや小さいエネルギー位置に伝導帯底が一致す
る第1のクラフト層及び第2のクラッド層をそれぞれエ
ミッタ及びコレクタ層とするトランジスタ構造にしたも
のである。
In the optical modulator according to the present invention, the refractive index variable region of the light guide layer is formed with a multiple quantum well structure, this is used as a base layer, and the quantum wells of the base layer are formed with the base layer sandwiched therebetween. A transistor structure in which the first craft layer and the second cladding layer, whose conduction band bottoms coincide with an energy position equal to or slightly lower than the n=1 quantum level of electrons, are used as emitter and collector layers, respectively. It is.

〔作用〕[Effect]

この発明においては、上述の構成として、屈折率可変領
域へのキャリアの注入は共鳴トンネリング現象を利用し
て制御するようにしたから、屈折率可変領域へキャリア
を高速に注入したり、高速で取り去ったりすることがで
きる。
In this invention, as described above, since the injection of carriers into the variable refractive index region is controlled using the resonant tunneling phenomenon, carriers can be injected into the variable refractive index region at high speed and removed at high speed. You can

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による光変調装置を示す上面
図であり、図において、1はX字形のnA l * G
 a +−w A s光ガイド層、2はn−Al。
FIG. 1 is a top view showing an optical modulation device according to an embodiment of the present invention, and in the figure, 1 is an X-shaped nA l * G
a + -w As light guide layer, 2 is n-Al.

Gap−、Asクラッド層、3は光入射口、4はエミッ
タ電極、5はベース電極である。
Gap-, As clad layer, 3 is a light entrance, 4 is an emitter electrode, and 5 is a base electrode.

第2図は第1図のA−A断面図であり、図において、6
はコレクタ電極、7はn−GaAs基板、8はn  A
11l Gap−xAsコレクタ層、9は多重量子井戸
のp−AI、Gap−、Asバリア層、10は多重量子
井戸のp−GaAsウェル層、11はベース電極5とオ
ーミック接合をとるためのp型ドーパント拡散層である
FIG. 2 is a sectional view taken along line A-A in FIG.
is the collector electrode, 7 is the n-GaAs substrate, and 8 is the nA
11l Gap-xAs collector layer; 9 is a multi-quantum well p-AI, Gap-, As barrier layer; 10 is a multi-quantum well p-GaAs well layer; 11 is a p-type for making an ohmic contact with the base electrode 5; This is a dopant diffusion layer.

また、第3図は光ガイド層1とクラッド層2により構成
されたn−AlxGa、−XAsエミッタ層12と、多
重量子井戸よりなるベース領域、及びコレクタ層8から
なるトランジスタ構造において、電子がベース領域に注
入されているときのバンドダイアグラムを表す図であり
、図において、13はウェル層10内に形成されるn=
1電子量子準位である。
FIG. 3 also shows that in a transistor structure consisting of an n-AlxGa, -XAs emitter layer 12 constituted by an optical guide layer 1 and a cladding layer 2, a base region consisting of a multiple quantum well, and a collector layer 8, electrons are 13 is a diagram showing a band diagram when implanted into a region, and in the diagram, 13 is formed in the well layer 10 where n=
It is a one-electron quantum level.

エミッタ層12の伝導帯底は多重量子井戸ウェル層10
に形成されるn−1量子率位13に等しいかあるいはや
や小さい値に設定されている。例えば、バリア層9の組
成がy==lとすると量子準位13のエネルギーは、ウ
ェル層10の伝導帯底からはかって0.08eVとなる
。このときのエミッタ7112とコレクタ層8の組成は
x =0.85とすればよい、第3図(a)に示したキ
ャリア注入時はこのような条件が満たされているので、
エミッタ層12の電子は量子準位13に共鳴トンネリン
グすることができる。同様に、量子準位13とコレクタ
層8の間にも共鳴トンネリング条件が満たされているの
で、ベース層に注入された電子はコレクタ層8に流れ込
む。一方、電子の注入を停止させるには、エミッタ・ベ
ース間の順方向バイアス電圧を調節して、第3図(bl
に示すようにエミッタ層12の伝導帯底が量子準位13
よりもエネルギー的に高くなるようにすればよい、この
ときはトンネル条件が満たされないため、電子はウェル
層10に注入されなくなる。一方、ベース・コレクタ間
には逆バイアスを印加しているので、共鳴トンネリング
条件は保持され、ベース層内の電子は速やかに光ガイド
領域から取り除かれる。このため電子が注入されな(な
ってから屈折率可変領域より電子が存在しなくなるまで
の時間は、キャリア再結合による電子消費による場合に
比して大幅に短縮され、光の高速変調が可能となる。
The conduction band bottom of the emitter layer 12 is the multi-quantum well well layer 10.
It is set to a value equal to or slightly smaller than the n-1 quantum rate 13 formed in . For example, if the composition of the barrier layer 9 is y==l, the energy of the quantum level 13 will be 0.08 eV from the bottom of the conduction band of the well layer 10. At this time, the composition of the emitter 7112 and the collector layer 8 should be x = 0.85. Since these conditions are satisfied when carriers are injected as shown in FIG. 3(a),
Electrons in the emitter layer 12 can resonantly tunnel to the quantum level 13. Similarly, since the resonant tunneling condition is also satisfied between the quantum level 13 and the collector layer 8, the electrons injected into the base layer flow into the collector layer 8. On the other hand, to stop electron injection, adjust the forward bias voltage between the emitter and base as shown in Figure 3 (bl
As shown in , the conduction band bottom of the emitter layer 12 is at the quantum level 13.
In this case, since the tunneling condition is not satisfied, electrons are no longer injected into the well layer 10. On the other hand, since a reverse bias is applied between the base and the collector, resonant tunneling conditions are maintained and electrons in the base layer are quickly removed from the light guide region. Therefore, the time from when electrons are not injected until they no longer exist in the variable refractive index region is significantly shorter than when electrons are consumed by carrier recombination, making it possible to modulate light at high speed. Become.

なお、上記実施例では、ベース層となるバリア層9とウ
ェル層10をともにp型としたが、バリア層9のみ、あ
るいはウェルN10のみをp型としてもよい。
In the above embodiment, both the barrier layer 9 serving as the base layer and the well layer 10 are p-type, but only the barrier layer 9 or only the well N10 may be p-type.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、屈折率可変領域を多
重量子井戸構造により構成しこれをベース層とし、該ベ
ース層を挟んで形成された、該ベース層の量子井戸に形
成される電子のn=1の量子準位と等しいかあるいはや
や小さいエネルギー位置に伝導帯底が一致する第1のク
ラッド層及び第2のクラッド層をそれぞれエミッタ及び
コレクタ層とするトランジスタ構造とし、共鳴トンネリ
ングにより上記屈折率可変領域に電子を注入するように
構成したので、光信号の高速変調が達成できる効果があ
る。
As described above, according to the present invention, the refractive index variable region is configured with a multiple quantum well structure, which is used as a base layer, and the electrons formed in the quantum wells of the base layer are formed with the base layer sandwiched therebetween. A transistor structure is used in which the first cladding layer and the second cladding layer, whose conduction band bottoms coincide with an energy position equal to or slightly lower than the n=1 quantum level of Since the configuration is such that electrons are injected into the variable refractive index region, there is an effect that high-speed modulation of optical signals can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光変調装置を示す上
面図、第2図は第1図のA−A断面図、第3図(a)は
屈折率可変領域へのキャリア注入時のバンドダイヤグラ
ムを示す図、第3図(b)はキャリア注入停止時のバン
ドダイヤグラムを示す図、第4図は従来の光変調装置を
示す上面図、第5図は第4図のA−A断面図である。 1はrl  A l x G a I−X A 3光ガ
イド層、2はn  A I X G a l−X A 
sクラッド層、3は光入射口、4はエミッタ電極、5は
ベース電極、6はコレクタ電極、7はn−GaAs基板
、8はn−AlXGa、−、lAsコレクタ層、9はp
−AI、Gat−、Asバリア層、IOはp −G a
 A 5ウ工ル層、11はp型ドーパント拡散層、12
はn−Al、IGa、−X、Asエミッタ層、13はn
=1電子量子準位。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a top view showing an optical modulation device according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIG. A diagram showing a band diagram, FIG. 3(b) is a diagram showing a band diagram when carrier injection is stopped, FIG. 4 is a top view showing a conventional optical modulation device, and FIG. 5 is a cross section taken along the line AA in FIG. 4. It is a diagram. 1 is rl A l x G a I-X A 3 light guide layer, 2 is n A I X G a l-X A
s cladding layer, 3 is a light entrance, 4 is an emitter electrode, 5 is a base electrode, 6 is a collector electrode, 7 is an n-GaAs substrate, 8 is an n-AlXGa, -, lAs collector layer, 9 is a p
-AI, Gat-, As barrier layer, IO is p -Ga
A 5 aluminum layer, 11 p-type dopant diffusion layer, 12
is n-Al, IGa, -X, As emitter layer, 13 is n
= 1 electron quantum level. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)X字状に交叉する導波路を構成する多層半導体層
を有し、該導波路の交叉部にキャリアを注入することに
よって屈折率を変化させ、上記導波路を伝搬する導波光
の強度を変化させるようにした光変調装置において、 上記導波路はp型多重量子井戸構造からなる主導波層と
、該主導波層を挟むように形成された、第2のクラッド
層および上記主導波路を構成する量子井戸よりもバンド
ギャップが大きくかつこの量子井戸に形成される電子の
n=1量子準位と等しいか或いはやや小さいエネルギ位
置に伝導帯底が一致する第1のクラッド層とを備え、 上記主導波層をベース層、第1クラッド層をエミッタ層
、第2クラッド層をコレクタ層としてベース・エミッタ
間にバイアス電圧を印加したときエミッタ層の伝導帯底
は上記n=1量子準位より大きいエネルギ位置にシフト
するものであることを特徴とする光変調装置。
(1) It has multi-layered semiconductor layers constituting a waveguide that intersects in an X-shape, and the refractive index is changed by injecting carriers into the intersection of the waveguide, and the intensity of the guided light propagating through the waveguide is In the optical modulator, the waveguide includes a main wave layer having a p-type multiple quantum well structure, a second cladding layer formed to sandwich the main wave layer, and the main waveguide. a first cladding layer having a larger band gap than the constituent quantum wells and whose conduction band bottom coincides with an energy position equal to or slightly smaller than the n=1 quantum level of electrons formed in the quantum well; When a bias voltage is applied between the base and emitter with the above-mentioned main wave layer as the base layer, the first cladding layer as the emitter layer, and the second cladding layer as the collector layer, the conduction band bottom of the emitter layer is lower than the above n=1 quantum level. 1. A light modulation device that shifts to a high energy position.
JP10111188A 1988-04-22 1988-04-22 Optical modulator Pending JPH01270035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10111188A JPH01270035A (en) 1988-04-22 1988-04-22 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111188A JPH01270035A (en) 1988-04-22 1988-04-22 Optical modulator

Publications (1)

Publication Number Publication Date
JPH01270035A true JPH01270035A (en) 1989-10-27

Family

ID=14291964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111188A Pending JPH01270035A (en) 1988-04-22 1988-04-22 Optical modulator

Country Status (1)

Country Link
JP (1) JPH01270035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663161A1 (en) * 1990-06-08 1991-12-13 Thomson Csf Optical waveguide with integrated transistor structure and applications to the production of laser modulators and optical couplers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663161A1 (en) * 1990-06-08 1991-12-13 Thomson Csf Optical waveguide with integrated transistor structure and applications to the production of laser modulators and optical couplers

Similar Documents

Publication Publication Date Title
US4840446A (en) Photo semiconductor device having a multi-quantum well structure
JPS62174728A (en) Optical switch
JPH04291304A (en) Optical waveguide and control method for light signal
US4977561A (en) Oscillation mode switching laser devices
JPH01270035A (en) Optical modulator
JP3001365B2 (en) Optical semiconductor element and optical communication device
US6891986B2 (en) Optical switch
JP2735623B2 (en) Light modulation element
JPS6018988A (en) Semiconductor laser
JPS63269594A (en) Surface emission type bistable semiconductor laser
JP2841860B2 (en) Optical semiconductor device
JPS61118732A (en) Optical bistable semiconductor element
JPS6185885A (en) Photo semiconductor
JPS60102787A (en) Semiconductor laser
JPH07325328A (en) Semiconductor optical modulator
JPH03235915A (en) Optical function element
JPS63211785A (en) Multiple quantum well type optical bistable semiconductor laser
JP2003222827A (en) Optical modulator
JPH0548889B2 (en)
JPS59184585A (en) Semiconductor laser of single axial mode
JPH0366189A (en) Semiconductor laser device
JPH03192787A (en) Integrated optical modulator
JPS62176184A (en) Semiconductor light emitting device having modulator
JPS6381305A (en) Optical integrated circuit
JPH07202321A (en) Light semiconductor device