JPH01266715A - Thin film growth apparatus - Google Patents

Thin film growth apparatus

Info

Publication number
JPH01266715A
JPH01266715A JP9348388A JP9348388A JPH01266715A JP H01266715 A JPH01266715 A JP H01266715A JP 9348388 A JP9348388 A JP 9348388A JP 9348388 A JP9348388 A JP 9348388A JP H01266715 A JPH01266715 A JP H01266715A
Authority
JP
Japan
Prior art keywords
gas
thin film
piping
raw material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9348388A
Other languages
Japanese (ja)
Inventor
Yuichi Ono
小野 佑一
Toshihiro Kono
河野 敏弘
Kazuhiro Ito
和弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9348388A priority Critical patent/JPH01266715A/en
Publication of JPH01266715A publication Critical patent/JPH01266715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a thin film growth apparatus to be applied to a vapor growth system for every kind of a thin film, by a method wherein the sum of gas flow rate of a gas main flow line and that of a gas discharge line is always maintained at a fixed given value. CONSTITUTION:A gas piping system is provided which comprises at least four lines with one kind of gas in which respective flow control can be performed independently. Two lines among them are treated as a gas main flow line 1 for transporting raw gas to a reaction chamber and a gas discharge line 2 for discharging the raw gas to the outside of a reaction system, respectively, while the remaining two lines are treated as a metal organic gas line 6 for transporting the raw gas together with hydrogen gas and a hydrogen gas line 5 for transporting hydrogen gas of dummy gas, respectively. Under this condition, the sum of gas flow rate of the gas main flow line 1 and that of the gas discharge line 2 is so controlled as to maintain always a fixed value. As a result, both a releasing phenomenon of reactive constituent gas and an addition reaction are prevented, which enables a thin film of good quality to grow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体の薄膜成長装置に係り。[Detailed description of the invention] [Industrial application field] The present invention relates to a compound semiconductor thin film growth apparatus.

特に元素の周期表m−v族、II−VI族化合物半導体
およびそれらの混晶半導体の薄膜成長装置に関し、さら
に詳しくは薄膜成長原料として、それぞれの薄膜の構成
元素を含む有機金属化合物または水素化物を用いる薄膜
成長装置に関する。
In particular, it relates to a thin film growth apparatus for compound semiconductors of groups M-V of the periodic table of elements, group II-VI, and mixed crystal semiconductors thereof, and more specifically, organometallic compounds or hydrides containing the constituent elements of each thin film as thin film growth raw materials. The present invention relates to a thin film growth apparatus using a thin film growth apparatus.

〔従来の技術〕[Conventional technology]

化合物半導体の薄膜成長、特に有機金属化合物の熱分解
法を用いた化合物半導体の薄膜成長において、2元系と
3元系もしくは4元系の混晶半導体の積層構造の薄膜を
形成させる場合、この多元系半導体薄膜の組成均一性と
へテロ接合界面の急峻性は、ガス種の混合具合の不良、
基板へ反応物が到達する前の付加反応、ガス配管のru
n (主流)系とvent (排出)系の切換え時のガ
ス圧不均衡などの現象により、十分に特性を満足させる
薄膜が得られないという問題があった。この問題を解決
するために、上記のガス種の混合に関しては、ジャーナ
ル オブ クリスタル グロース84 (1987)第
192頁から第194頁(J、 Crystal Gr
owth 84(1987) 191−195)におい
て論じられている。この薄膜成長方法は、複数のガス種
をサイクロンの中に通すことによってガス流に高速の回
転機構を与え1反応酸分ガスであるガス種の混合を均質
化する方法である。
In the thin film growth of compound semiconductors, especially in the thin film growth of compound semiconductors using the thermal decomposition method of organometallic compounds, when forming a thin film with a stacked structure of binary and ternary or quaternary mixed crystal semiconductors, this The uniformity of the composition of multicomponent semiconductor thin films and the steepness of the heterojunction interface are caused by poor mixing of gas species,
Addition reaction before reactants reach the substrate, ru of gas piping
There has been a problem in that a thin film that fully satisfies the characteristics cannot be obtained due to phenomena such as gas pressure imbalance when switching between the n (mainstream) system and the vent (exhaust) system. In order to solve this problem, regarding the mixing of the above gas species, see Journal of Crystal Growth 84 (1987) pp. 192-194 (J, Crystal Gr.
owth 84 (1987) 191-195). This thin film growth method is a method in which a plurality of gas species are passed through a cyclone to impart a high-speed rotation mechanism to the gas flow and to homogenize the mixture of gas species that are one reaction acid gas.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来技術によるガス種の混合方法は、単層構造
の化合物半導体の組成均一化に対してはかなり良好な結
果が得られているが、他の制御項目、つまり多層構造で
ペテロ接合が複数あるような構造の化合物半導体薄膜に
おける均一性(厚み、組成、キャリア濃度)や、界面急
峻性については言及しておらず、特に化合物半導体の材
料系によっては薄膜組成が不均一になるという問題があ
った。
The above-mentioned conventional gas species mixing method has achieved fairly good results for uniformizing the composition of compound semiconductors with a single-layer structure. There is no mention of uniformity (thickness, composition, carrier concentration) or interface steepness in a compound semiconductor thin film with a certain structure, and there is a problem that the thin film composition may become non-uniform depending on the material system of the compound semiconductor. there were.

本発明の目的は、化合物半導体などの材料系や、気相反
応装置の構造、例えば横型/縦型構造による違いや、常
圧成長/減圧成長の違いなどに左右されることなく、あ
らゆる種類の薄膜の気相成長系に適用可能な、新規で生
産性の高い化合物半導体などの薄膜成長装置を提供する
ことにある。
The purpose of the present invention is to realize all types of growth without being influenced by material systems such as compound semiconductors, the structure of the gas phase reactor, such as horizontal/vertical structures, or the difference between normal pressure growth and reduced pressure growth. It is an object of the present invention to provide a new and highly productive thin film growth apparatus for compound semiconductors, etc., which can be applied to a thin film vapor phase growth system.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的を達成するために、本発明の化合物半
導体などの薄膜成長装置においては、まず薄膜成長用の
原料ガス輸送系において、ガス種の切換え時におけるガ
ス圧の均衡をはかるために、例えば第1図(a)または
(b)に示すごとく、薄膜の構成元素を含む原料ガスで
ある有機金属化合物または水素化物を輸送する場合に、
1種の原料ガスに対して少なくとも4系統のそれぞれ独
立して流量制御が可能な1例えば水素ガスなどのキャリ
ア(輸送)ガスの配管系を設け、そのうちの2系統を、
反応室へ原料ガスを輸送するガス主流(run)系1と
原料ガスを反応系外に排出するガス排出(vent)系
2となし、残りの2系統を、ガス流量を設定の値に制御
した、原料ガスを水素ガスと共に輸送する有機金属(水
素化物)ガス系6と、ダミーガスである水素ガス系5と
なし、この有機金属(水素化物)ガス系6と水素ガス系
5を、上記ガス主流系1とガス排出系2のそれぞれに、
例えば三方向に切換え可能な空気圧式の三方弁3゜4も
しくは電磁式の三方弁3.4を、ガス主流系1とガス排
出系に並列に2式設けた集積バルブ8によって接続し、
上記集積バルブ8を構成する2式の三方弁3,4を、同
時タイミングで切換えることによって、ガス主流系1と
ガス排出系2に流れる全ガス流量を任意の値で常に一定
に制御することのできるガス圧均衡制御手段を設ける。
In order to achieve the above object of the present invention, in the thin film growth apparatus for compound semiconductors, etc. of the present invention, first, in the raw material gas transport system for thin film growth, in order to balance the gas pressure when switching the gas type, For example, as shown in FIG. 1(a) or (b), when transporting an organometallic compound or hydride, which is a raw material gas containing constituent elements of a thin film,
At least four piping systems for a carrier (transport) gas such as hydrogen gas are provided, each of which can independently control the flow rate for one type of raw material gas, and two of the systems are
A gas main flow (run) system 1 transports the raw material gas to the reaction chamber and a gas vent system 2 discharges the raw material gas outside the reaction system.The gas flow rate of the remaining two systems was controlled to a set value. , an organometallic (hydride) gas system 6 that transports the raw material gas together with hydrogen gas, and a hydrogen gas system 5 that is a dummy gas, and these organometallic (hydride) gas system 6 and hydrogen gas system 5 are connected to the main gas For each of system 1 and gas exhaust system 2,
For example, a pneumatic three-way valve 3.4 or an electromagnetic three-way valve 3.4 that can be switched in three directions is connected by an integrated valve 8 provided in parallel with the main gas system 1 and the gas exhaust system,
By switching the two three-way valves 3 and 4 that make up the integrated valve 8 at the same time, the total gas flow rate flowing into the main gas system 1 and the gas exhaust system 2 can be controlled to be constant at any value. Gas pressure balance control means is provided.

そして、上記のそれぞれ独立した少なくとも4系統から
なる配管系における各々のガス流は、ガス流量コントロ
ーラ7により精密にガス流量制御が行われる。また、三
方弁3.4は弁内部のガス溜りを極少化した構造のもの
を用いることが望ましい。
Each gas flow in the piping system consisting of at least four independent systems is precisely controlled by a gas flow controller 7. Further, it is desirable to use a three-way valve 3.4 having a structure that minimizes gas accumulation inside the valve.

次に、本発明の薄膜成長装置に設けるペテロ界面の急峻
性を良くするための手段として、例えば第2図に示すご
とく、集積バルブ8を複数個用いて同時タイミングで各
々のガス流をガス主流系1とガス排出系2に切換えるこ
と、および集積バルブ8より混合器11または反応室1
2などよりなる気相反応領域に至るまでのガスの通過時
間を極少化するために集積バルブ8以降の配管断面積を
できるだけ小さくすることが望ましい。
Next, as a means for improving the steepness of the Peter interface provided in the thin film growth apparatus of the present invention, for example, as shown in FIG. system 1 and gas exhaust system 2, and mixer 11 or reaction chamber 1 from the integrated valve 8.
It is desirable to minimize the cross-sectional area of the piping after the integrated valve 8 in order to minimize the passage time of the gas to the gas phase reaction region consisting of the valve 8 and the like.

次に、化合物半導体薄膜の混晶組成の均一化手段として
は、例えば第3図(a)、(b)、(c)に示すような
ガス混合器11を、第2図に示した集積バルブ8以降に
設けることが望ましい。すなわち、複数の集積バルブ8
からの反応成分ガス(第3図(b)中に、例えばA、B
、C,Dの破線の矢印で示す)を放射状にまとめて、か
つそれらの反応成分ガスが1箇所で衝突するような構造
を持つガス混合治具9を配置し、それらの反応成分ガス
が衝突した後、再び1箇所で衝突するように、貫通孔1
0を複数個設けた混合器11を配置する。この貫通孔1
0の孔の配置はガス混合治具9の孔の配置と少なくとも
一致させないようにすることが望ましい。
Next, as a means for homogenizing the mixed crystal composition of the compound semiconductor thin film, for example, a gas mixer 11 as shown in FIGS. 3(a), (b), and (c) and an integrated valve as shown in FIG. It is desirable to provide it after 8. That is, a plurality of integrated valves 8
(For example, A, B in FIG. 3(b))
, C, and D) are arranged in a radial manner, and the gas mixing jig 9 has a structure such that the reaction component gases collide at one point, and the reaction component gases collide. After that, open the through hole 1 so that the collision occurs again in one place.
A mixer 11 provided with a plurality of zeros is arranged. This through hole 1
It is desirable that the arrangement of the holes in the gas mixing jig 9 at least not coincide with the arrangement of the holes in the gas mixing jig 9.

次に化合物半導体の薄膜を形成させる基板へ、反応成分
ガスが到達する前に起る付加反応を防止する手段として
、反応成分ガスを各々独立して配管とすることにより、
各反応成分ガスの接触を断つこと、および反応成分ガス
が混合されてから基板に到達するまでの時間を最短化す
ること、さらに混合器11と反応室12のガス導入部の
形状を第3図(a)に示すごとく、開口角θを10度以
下とし、反応成分ガス流の剥離現象を抑制することが望
ましい。
Next, as a means of preventing addition reactions that occur before the reaction component gases reach the substrate on which the thin film of the compound semiconductor is to be formed, the reaction component gases are individually piped.
The purpose is to cut off contact between the reaction component gases, to minimize the time from when the reaction component gases are mixed until they reach the substrate, and to change the shape of the gas introduction portions of the mixer 11 and the reaction chamber 12 as shown in Fig. 3. As shown in (a), it is desirable that the opening angle θ is 10 degrees or less to suppress the separation phenomenon of the reaction component gas flow.

そして、本発明の薄膜成長装置において、薄膜成長条件
を最適化するために設ける上述した幾つかの手段のうち
、薄膜形成用の原料ガス、を供給するガス主流系とガス
排出系に流れる全ガス流量を常に一定に保つためのガス
圧力均衡制御手段を設けることは、本発明の課題を達成
するための必須の要件であり、これに反応成分ガスを二
重衝突させて混合するガス混合治具および混合器を組合
せることにより本発明の課題をいっそう効果的に達成す
ることができる。さらに本発明の薄膜成長装置において
、ガス溜りを極少化した集積バルブおよび断面積の小さ
なガス配管を用いることにより、気相反応領域までの反
応成分ガスの通過時間を著しく短縮してペテロ界面の急
峻性をさらに改善することができ、また反応成分ガス系
の独立配管、混合した反応成分ガスの基板への到達時間
の最短化および反応室のガス導入部の開口角θを小さく
することなどにより1反応成分ガスの剥1111現象を
著しく抑制することができ、基板へ反応成分ガスが到達
する前に起こる付加反応などを防止して、より組成が均
一で良質の化合物半導体などの薄膜を再現性よく形成さ
せることが可能となる。
In the thin film growth apparatus of the present invention, among the above-mentioned several means provided for optimizing the thin film growth conditions, all the gases flowing into the main gas system for supplying the raw material gas for thin film formation and the gas exhaust system are Providing a gas pressure balance control means to always keep the flow rate constant is an essential requirement for achieving the object of the present invention, and a gas mixing jig that mixes the reaction component gases by double colliding them. The objects of the present invention can be achieved even more effectively by combining a mixer and a mixer. Furthermore, in the thin film growth apparatus of the present invention, by using an integrated valve that minimizes gas accumulation and gas piping with a small cross-sectional area, the passage time of the reaction component gas to the gas phase reaction region is significantly shortened, and the steepness of the Peter interface is reduced. In addition, independent piping for the reaction component gas system, minimizing the time taken for the mixed reaction component gas to reach the substrate, and reducing the opening angle θ of the gas introduction part of the reaction chamber, etc. It is possible to significantly suppress the peeling 1111 phenomenon of reactive component gases, prevent addition reactions that occur before the reactive component gases reach the substrate, and produce thin films of compound semiconductors with a more uniform composition and high quality with good reproducibility. It becomes possible to form.

〔作用〕[Effect]

上述したごとく、従来技術である有機金属化合物の熱分
解法による薄膜成長法においては、化合物半導体などの
材料系や気相反応装置の形状などが相違するごとに、良
質の薄膜を成長させるための最適化条件をいちいち決め
る必要があったが、本発明の薄膜成長装置においては、
常に薄膜成長の条件を最適化することのできる工夫され
た新規な反応手段を用いることにより、従来技術におけ
る問題点をほとんど解消することが可能である。
As mentioned above, in the conventional thin film growth method using the thermal decomposition method of organometallic compounds, there are differences in the material system such as compound semiconductors and the shape of the gas phase reactor, and there are various methods for growing high quality thin films. It was necessary to determine optimization conditions one by one, but with the thin film growth apparatus of the present invention,
Most of the problems in the prior art can be overcome by using devised new reaction means that can constantly optimize the conditions for thin film growth.

すなわち、具体的には原料ガス供給系である主流系およ
びガス排出系の全ガス流量を任意の値で常に一定にする
ために、ガス主流系とガス排出系の2系統のそれぞれに
、流量を設定の値に一定に制御した、原料ガス供給系と
ダミーガス供給系の2系統のガス配管を、上記ガス主流
系とガス排出系に並列に少なくとも2式以上設けた三方
弁からなる集積バルブを介して接続し、少なくとも2式
以上の三方弁を同時タイミングで切換えて、ガス主流系
とガス排出系のガス流を同時に切換えることができるの
で、反応成分ガスの圧力均衡をはかることができ、反応
室へ輸送するガス成分を常に一1定に保持することがで
きる。また、ガス溜りを極少化した集積バルブ、小断面
配管を用いることによって、反応室に導入する反応成分
ガスの遅れを防止することができるのでペテロ界面の急
峻性を改善することができる。そして、反応成分ガスを
二重衝突させて混合するガス混合治具と混合器の併用に
より、化合物半導体などの薄膜の組成の均一化をはかる
ことができ、さらに反応成分ガス配管の独立化と、混合
した反応成分ガスの基板への到達時間の最短化、および
反応室の反応成分ガス導入部の開口角を小さくすること
により、反応成分ガスの剥離現象の抑制と付加反応など
を防止することができ、良質の薄膜成長が可能となる。
Specifically, in order to keep the total gas flow rate of the main gas supply system, which is the raw material gas supply system, and the gas exhaust system constant at an arbitrary value, the flow rate is set in each of the two systems, the main gas system and the gas exhaust system. Two gas piping systems, a raw material gas supply system and a dummy gas supply system, which are controlled at a constant value to a set value, are connected to the main gas system and the gas exhaust system through an integrated valve consisting of at least two three-way valves installed in parallel. By connecting at least two or more three-way valves at the same time, it is possible to switch the gas flow in the main gas system and the gas exhaust system at the same time, so it is possible to balance the pressure of the reaction component gases, and the reaction chamber The gas components transported to can be kept constant at all times. Furthermore, by using an integrated valve and small cross-section piping that minimize gas accumulation, it is possible to prevent a delay in the introduction of the reaction component gas into the reaction chamber, thereby improving the steepness of the Peter interface. By using a gas mixing jig and a mixer that mix the reactive component gases by double collision, it is possible to make the composition of thin films such as compound semiconductors uniform, and also to make the reactive component gas piping independent. By minimizing the arrival time of the mixed reaction component gas to the substrate and by reducing the opening angle of the reaction component gas introduction part of the reaction chamber, it is possible to suppress the separation phenomenon of the reaction component gas and prevent addition reactions. This makes it possible to grow high-quality thin films.

[実施例〕 以下に本発明の一実施例をあげ、図面を参照しながらさ
らに詳細に説明する。
[Example] An example of the present invention will be described below in more detail with reference to the drawings.

(実施例1) 材料として50nuaφのInP基板上にInP/In
GaAsの多層構造を作製する場合を例にとって説明す
る。
(Example 1) InP/In was formed on an InP substrate of 50 nuaφ as a material.
An example of manufacturing a GaAs multilayer structure will be explained.

半絶縁性のInP (100)基板を前処理エッチした
ウェハを反応室12にセットした後、76Torrの減
圧下において水素ガスにより十分にガス置換する。その
後、高周波誘導加熱装置により基板ホルダを加熱昇温し
、600℃に保持する。この時、基板温度が300℃以
上では、第1図(b)に示す水素化物ガス系6を作動し
、リン化水素(ホスフィン)ガスを流した状態にし、基
板表面を保護する。次にInの原料であるトリメチルイ
ンジウムを第1図(a)の有機金属ガス系6を作動させ
て、H2キャリアにより輸送、約2分間はガス排出系2
側へ流し、十分にガス流を安定させる。一方、水素ガス
(ダミーガス)系5は逆にガス主流系1に流しておく。
After a wafer on which a semi-insulating InP (100) substrate has been pre-etched is set in the reaction chamber 12, the gas is sufficiently replaced with hydrogen gas under a reduced pressure of 76 Torr. Thereafter, the temperature of the substrate holder is increased by heating using a high-frequency induction heating device, and the temperature is maintained at 600°C. At this time, if the substrate temperature is 300° C. or higher, the hydride gas system 6 shown in FIG. 1(b) is activated to flow hydrogen phosphide (phosphine) gas to protect the substrate surface. Next, trimethylindium, which is a raw material for In, is transported by the H2 carrier by operating the organometallic gas system 6 shown in FIG.
Flow to the side to stabilize the gas flow sufficiently. On the other hand, the hydrogen gas (dummy gas) system 5 is caused to flow into the main gas system 1 in reverse.

2分後、集積バルブ8の三方弁3.4を同時に作動させ
、トリメチルインジウムはガス主流系1へ、同一流量の
水素ガスはガス排出系2へ、それぞれガスの切換えを行
う。この時、ガス全流量は変動しなかった。これにより
InP基板上に約20分間で0.5.のInP層が結晶
成長した。
After 2 minutes, the three-way valves 3.4 of the integrated valve 8 are operated simultaneously to switch the gases such that trimethylindium goes to the main gas system 1 and hydrogen gas at the same flow rate goes to the gas exhaust system 2. At this time, the total gas flow rate did not change. As a result, 0.5. An InP layer was crystal-grown.

ついで、あらかじめガス排出系2に流して流量が安定し
ているヒ化水素(アルシン)ガスを、上述した操作を繰
返してガス主流系1に流し込み同時にホスフィンガスは
水素ガスに切換えて、I n、、、、 Ga、、4t 
As層を約20分間で約0.51Im結晶成長させた。
Next, hydrogen arsenide (arsine) gas, whose flow rate has been stabilized by flowing it into the gas exhaust system 2 in advance, is poured into the main gas system 1 by repeating the above-mentioned operation, and at the same time, the phosphine gas is switched to hydrogen gas, and the ,,,Ga,,4t
The crystal of the As layer was grown to a thickness of about 0.51 Im in about 20 minutes.

この結晶を反応室12より取り出し、X線回折法により
格子定数を測定して結晶組成に変換し、50w1tφの
基板上に形成された結晶薄膜のガス流に対して垂直方向
の組成分布を調べた結果を第4図に示す。図において白
丸(0印)で示したデータは従来の反応装置を用いた場
合であり、黒丸(@印)で示したデータは本発明の実施
例による装置で得られたデータであり、本発明の装置に
よる方が明らかに結晶の組成が均一化されていることが
分かる。これは格子不整合度Δa/ 3= (alnG
aAs  alnP)/a+np (a :格子定数)
で表わすとΔa/a≦±0.05%となり、種々の半導
体素子応用にとって十分なものとなっている。次に、I
nP/InGaAsのへテロ界面を透過電子顕微鏡でa
m評価したところ界面遷移領域は1〜2原子層以下であ
り1本発明の効果が十分に大きいことが示された。
This crystal was taken out from the reaction chamber 12, the lattice constant was measured by X-ray diffraction method, it was converted into a crystal composition, and the composition distribution in the direction perpendicular to the gas flow of the crystal thin film formed on the 50w1tφ substrate was investigated. The results are shown in Figure 4. In the figure, the data indicated by a white circle (0 mark) is the case when a conventional reaction apparatus was used, and the data indicated by a black circle (@ mark) is the data obtained with the apparatus according to the embodiment of the present invention. It can be seen that the composition of the crystal is clearly more uniform with the apparatus shown in FIG. This is the lattice mismatch degree Δa/3= (alnG
aAs alnP)/a+np (a: lattice constant)
Expressed as Δa/a≦±0.05%, which is sufficient for various semiconductor device applications. Next, I
Transmission electron microscopy of the nP/InGaAs heterointerface a
As a result of the evaluation, the interfacial transition region was 1 to 2 atomic layers or less, indicating that the effect of the present invention is sufficiently large.

(実施例2) 材料として50mmφのG a A s基板上に、G 
a A s /G a An A s系2次元電子ガス
電界効果トランジスタ用のエピタキシャル基板を作製す
る場合を示す。
(Example 2) As a material, on a Ga As substrate with a diameter of 50 mm,
A case will be described in which an epitaxial substrate for an a As /G a An As type two-dimensional electron gas field effect transistor is manufactured.

半絶縁性のGaAs (100)基板を前処理エッチし
たウェハを反応室12にセットした後、760Torr
の常圧下において約1012毎分の水素ガスにより十分
にガス置換した。その後昇温し、500℃になったらア
ルシン(A s H、)ガスを流し、基板表面を保護す
る。次にガリウムの原料であるトリメチルガリウムを第
1図(a)に示す有機金属ガス系6を作動させて2分後
にガス排気系2よりガス主流系1へ導入し、20分間で
約111mのアンドープGaAsを形成させた。その後
、アルミニウムの原料であるトリメチルアルミニウムを
やはり第1図(a)の有機金属ガス系6を作動させ、ガ
ス排出系2よりガス主流系1ヘガス切換えを行い、30
秒間で約5na+のアンドープA立。、3Ga、、、A
sを形成させ、ついで第1図(b)の水素化物ガス系6
を作動させて、モノシラン(SiH4)ガスをガス排出
系2よりガス主流系1に切換えてSiドープ(n= I
 XIO”am−3) MI、、、Ga、、、Asを5
分間で約50nm、ついでトリメチルアルミニウムをガ
ス排出系2へ切換え、SiH4を増量して、Siドープ
(n=5XIO”cm−”)GaAsを10分間で10
0n+*形成させた。このエピタキシャル結晶に、オー
ム性電極を4箇所に形成し、ホール測定によりシートキ
ャリア濃度と液体窒素温度移動度を求めた結果、各々8
 X 1011cm””、85,000cm” / v
、 sが得られた。この値は、2次元電子ガス電界効果
トランジスタ用の値としては十分である。また、この結
晶の断面方向の透過電子顕微鏡観察をした結果、GaA
s/Gao、、All。、3Asへテロ界面の急峻度は
1原子層以下であることが明らかとなり、本発明の効果
が十分に示された。
After setting a semi-insulating GaAs (100) substrate pre-etched wafer in the reaction chamber 12, the temperature was set at 760 Torr.
The gas was sufficiently replaced with hydrogen gas at a rate of about 1012 min under normal pressure. Thereafter, the temperature is raised, and when the temperature reaches 500° C., arsine (A s H,) gas is supplied to protect the substrate surface. Next, trimethyl gallium, which is a raw material for gallium, is introduced into the main gas system 1 from the gas exhaust system 2 after 2 minutes of operating the organometallic gas system 6 shown in FIG. GaAs was formed. After that, the organometallic gas system 6 shown in FIG. 1(a) is operated to remove trimethylaluminum, which is a raw material for aluminum, and the gas is switched from the gas exhaust system 2 to the main gas system 1.
Approximately 5na+ undoped A rises in seconds. ,3Ga,,,A
s is formed, and then the hydride gas system 6 of FIG. 1(b)
is activated, monosilane (SiH4) gas is switched from gas exhaust system 2 to main gas system 1, and Si doped (n=I
XIO”am-3) MI, , Ga, , As 5
Approximately 50 nm in 10 minutes, then switched the trimethylaluminum to gas exhaust system 2, increased the amount of SiH4, and transferred Si-doped (n=5XIO"cm-") GaAs to
On+* was formed. Ohmic electrodes were formed at four locations on this epitaxial crystal, and the sheet carrier concentration and liquid nitrogen temperature mobility were determined by Hall measurement.
X 1011cm"", 85,000cm"/v
, s was obtained. This value is sufficient for a two-dimensional electron gas field effect transistor. In addition, as a result of transmission electron microscopy observation of the cross-sectional direction of this crystal, GaA
s/Gao,, All. It was revealed that the steepness of the 3As heterointerface was one atomic layer or less, and the effects of the present invention were fully demonstrated.

本実施例ではInP/InGaAs系とG a A s
 /G a An A s系のみについて記述したが、
InP/InGaAsP、GaAs/InGaP/In
GaAIP系、GaAs/InGaAs/InAs系お
よびこれにn型、P型のドーパントとしてH,Ss、S
iHいSi、Hい(CH,)、Zn、Mg(C,H,)
、など第1図(a)、(b)に示す配管系を並列に増加
するだけで、容易に本発明の効果を損ねることな〈実施
できることは言うまでもない。また元素の周期表■−V
族のみならずII−VI族化合物半導体、あるいはペロ
ブスカイト構造からなる超電導材料のような半導体薄膜
以外の薄膜形成においても同様に実施できることを確認
している。
In this example, InP/InGaAs system and GaAs
/G a An A s system only was described, but
InP/InGaAsP, GaAs/InGaP/In
GaAIP system, GaAs/InGaAs/InAs system, and H, Ss, and S as n-type and P-type dopants.
iH Si, H (CH,), Zn, Mg (C, H,)
It goes without saying that the present invention can be easily implemented without detracting from its effects by simply increasing the piping systems shown in FIGS. 1(a) and 1(b) in parallel. Also, the periodic table of elements ■-V
It has been confirmed that the present invention can be similarly applied to the formation of thin films other than semiconductor thin films, such as not only group II-VI compound semiconductors, but also superconducting materials having a perovskite structure.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明によれば、大面積の
基板ウェハ上、あるいは気相反応装置の形状にこだわら
ず、常に均一組成の化合物半導体のエピタキシャル層あ
るいは各種薄膜を形成できるため、多数枚チャージする
量産性の高い薄膜成長装置の実現に寄与できる他、ペテ
ロ界面の急峻性が良いことや、反応成分ガスの付加反応
を抑制することができるため、再現性の良い超格子構造
や、これを用いた高性能電子素子や光素子、あるいは超
電導素子を実現させる上でその効果は大きい。
As explained in detail above, according to the present invention, epitaxial layers or various thin films of compound semiconductors with a uniform composition can always be formed on large substrate wafers or regardless of the shape of the gas phase reactor. In addition to contributing to the realization of a highly mass-producible thin film growth device that uses charging, the steepness of the Peter interface and the ability to suppress the addition reaction of the reactant gases make it possible to create a superlattice structure with good reproducibility. This has a great effect in realizing high-performance electronic devices, optical devices, or superconducting devices using .

【図面の簡単な説明】 第1図(a)は本発明の薄膜成長装置において有機金属
化合物を用いた場合のガス圧均衡制御手段の一例を示す
配管系統図、第1図(b)は本発明の薄膜成長装置にお
いて水素化物を用いた場合のガス圧均衡制御手段の一例
を示す配管系統図、第2図は本発明の薄膜成長装置にお
いて集積バルブから反応室に至る配管系統の一例を示す
模式図、第3図(a)は本発明の薄膜成長装置における
ガス混合装置および反応室の断面構造の一例を示す模式
図、第3図(b)は第3図(a)のX矢視図、第3図(
c)は第3図(a)のI−I断面図、第4図は本発明の
実施例において基板上に形成した結晶薄膜の組成分布を
示すグラフである。 1・・・ガス主流系    2・・・ガス排出系3.4
・・・三方弁 5・・・水素ガス(ダミーガス)系 6・・・有機金属(または水素化物)ガス系7・・・ガ
ス流量コントローラ 8・・・集積バルブ    9・・・ガス混合治具10
・・・貫通孔      11・・・混合器12・・・
反応室      13・・・水素ガス代理人弁理士 
中 村 純 之 助 (Q) (b) 第1図 第2図 第3図 η゛ズタ細対 し?!ヒ遣オ1%7J巨g+1(c−)
第4図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1(a) is a piping system diagram showing an example of gas pressure balance control means when an organometallic compound is used in the thin film growth apparatus of the present invention, and FIG. FIG. 2 is a piping system diagram showing an example of gas pressure balance control means when hydride is used in the thin film growth apparatus of the invention. FIG. 2 shows an example of the piping system from the integration valve to the reaction chamber in the thin film growth apparatus of the invention. A schematic diagram, FIG. 3(a) is a schematic diagram showing an example of the cross-sectional structure of a gas mixing device and a reaction chamber in the thin film growth apparatus of the present invention, and FIG. 3(b) is a view taken in the direction of the X arrow in FIG. 3(a). Figure, Figure 3 (
c) is a sectional view taken along line II in FIG. 3(a), and FIG. 4 is a graph showing the composition distribution of a crystalline thin film formed on a substrate in an example of the present invention. 1... Main gas system 2... Gas exhaust system 3.4
...Three-way valve 5...Hydrogen gas (dummy gas) system 6...Organic metal (or hydride) gas system 7...Gas flow controller 8...Integrated valve 9...Gas mixing jig 10
...Through hole 11...Mixer 12...
Reaction chamber 13...Hydrogen gas agent patent attorney
Junnosuke Nakamura (Q) (b) Figure 1 Figure 2 Figure 3 η゛Zata detailed comparison? ! Hikareo 1% 7J big g+1 (c-)
Figure 4

Claims (1)

【特許請求の範囲】 1、基板を反応室に収容し、薄膜形成用の反応成分ガス
を導入して気相反応により上記基板上に薄膜を形成させ
る反応室と、該反応室に上記反応成分ガスを導入する反
応成分ガス輸送手段と、少なくとも1種以上の原料ガス
を集めて混合して上記反応成分ガスとなし上記反応成分
ガス輸送手段へ送給するガス混合室と、該ガス混合室へ
上記原料ガスを輸送する原料ガス輸送手段を備えた薄膜
成長装置であって、上記原料ガス輸送手段は、上記ガス
混合室に接続されたガス主流系配管と、上記ガス混合室
以外に上記原料ガスを排出させるガス排出系配管とを一
組として通常は所定流量の輸送ガスを流している輸送ガ
ス配管を、少なくとも一組以上備え、上記一組の輸送ガ
ス配管のガス主流系配管とガス排出系配管とに対して、
所定流量の原料ガスを切換え可能に接続した原料ガス配
管を1本以上有し、かつ上記原料ガス配管に対応して原
料ガスと同一流量のダミーガスを流すダミーガス配管を
、上記一組の輸送ガス配管のそれぞれの配管に対して切
換え可能に接続し、上記原料ガス配管が上記ガス主流系
配管またはガス排出系配管の一方に接続されているとき
、ダミーガス配管は他方に接続されるように構成して、
上記ガス主流系配管と上記ガス排出系配管とに流れるガ
ス流量の和を任意の値で常に一定に保持することを特徴
とする薄膜成長装置。 2、特許請求の範囲第1項において、少なくとも1種の
原料ガスを集めて混合するガス混合室は、複数のガス主
流系配管の反応成分ガスを1箇所に集めて二重に衝突混
合させる構造を有することを特徴とする薄膜成長装置。 3、特許請求の範囲第1項または第2項において、ガス
主流系配管とガス排出系配管とに対して原料ガス配管ま
たはダミーガス配管を、それぞれに切換え可能に接続す
る手段は、空気圧式の三方向切換弁もしくは電磁弁式の
三方向切換弁を用い、かつ内部にガス溜り部が生じない
構造とすることを特徴とする薄膜成長装置。 4、特許請求の範囲第1項、第2項または第3項におい
て、用いる反応室は、反応室への反応成分ガス導入部の
開口角を10度以下とすることを特徴とする薄膜成長装
置。 5、特許請求の範囲第1項、第2項、第3項または第4
項において、基板上に形成される薄膜が、元素の周期表
III−V族、II−VI族化合物半導体膜、またはそ
れらの混晶半導体膜、もしくは超電導材料からなる薄膜
であって、薄膜形成用の原料ガスは、上記薄膜の構成元
素を含む有機金属化合物もしくは水素化物を用い、輸送
ガスとして水素ガスを用いることを特徴とする薄膜成長
装置。
[Scope of Claims] 1. A reaction chamber in which a substrate is housed in a reaction chamber, and a reaction component gas for forming a thin film is introduced to form a thin film on the substrate by a gas phase reaction; a reaction component gas transport means for introducing gas; a gas mixing chamber for collecting and mixing at least one kind of raw material gas to form the reaction component gas; and supplying the reaction component gas to the reaction component gas transport means; A thin film growth apparatus equipped with a raw material gas transporting means for transporting the raw material gas, wherein the raw material gas transporting means has a main gas system piping connected to the gas mixing chamber, and a part of the raw material gas other than the gas mixing chamber. At least one set of transport gas piping that normally flows a predetermined flow rate of transport gas is provided, including a gas exhaust system piping that discharges gas, and a main gas system piping and a gas exhaust system of the one set of transport gas piping. With respect to piping,
The set of transport gas piping includes one or more raw gas pipes connected to switchably supply raw material gas at a predetermined flow rate, and a dummy gas pipe that flows a dummy gas at the same flow rate as the raw material gas corresponding to the raw gas pipe. The dummy gas piping is configured to be switchably connected to each of the piping, and when the source gas piping is connected to one of the main gas system piping or the gas exhaust system piping, the dummy gas piping is connected to the other. ,
A thin film growth apparatus characterized in that the sum of the gas flow rates flowing through the main gas system piping and the gas exhaust system piping is always kept constant at an arbitrary value. 2. In claim 1, the gas mixing chamber that collects and mixes at least one type of raw material gas has a structure that collects the reaction component gases of a plurality of main gas system pipes in one place and performs double collision mixing. A thin film growth apparatus characterized by having: 3. In claim 1 or 2, the means for switchably connecting the source gas piping or the dummy gas piping to the main gas system piping and the gas exhaust system piping, respectively, is a pneumatic type three. A thin film growth apparatus characterized by using a directional switching valve or a three-way electromagnetic switching valve, and having a structure in which no gas accumulation occurs inside the apparatus. 4. A thin film growth apparatus according to claim 1, 2, or 3, characterized in that the reaction chamber used has an opening angle of a reaction component gas introduction part to the reaction chamber of 10 degrees or less. . 5. Claims 1, 2, 3, or 4
In paragraph 1, the thin film formed on the substrate is a thin film made of a compound semiconductor film of group III-V or group II-VI of the periodic table of elements, a mixed crystal semiconductor film thereof, or a superconducting material, and A thin film growth apparatus characterized in that the raw material gas is an organometallic compound or hydride containing the constituent elements of the thin film, and hydrogen gas is used as the transport gas.
JP9348388A 1988-04-18 1988-04-18 Thin film growth apparatus Pending JPH01266715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9348388A JPH01266715A (en) 1988-04-18 1988-04-18 Thin film growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9348388A JPH01266715A (en) 1988-04-18 1988-04-18 Thin film growth apparatus

Publications (1)

Publication Number Publication Date
JPH01266715A true JPH01266715A (en) 1989-10-24

Family

ID=14083593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9348388A Pending JPH01266715A (en) 1988-04-18 1988-04-18 Thin film growth apparatus

Country Status (1)

Country Link
JP (1) JPH01266715A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524244A (en) * 2006-01-19 2009-06-25 エーエスエム アメリカ インコーポレイテッド High temperature ALD inlet manifold
JP2012199511A (en) * 2011-03-04 2012-10-18 Stanley Electric Co Ltd Vapor phase growth apparatus and vapor phase growth method
JP2016515925A (en) * 2013-03-15 2016-06-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Small device to enhance the mixing of gaseous species

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524244A (en) * 2006-01-19 2009-06-25 エーエスエム アメリカ インコーポレイテッド High temperature ALD inlet manifold
JP2012199511A (en) * 2011-03-04 2012-10-18 Stanley Electric Co Ltd Vapor phase growth apparatus and vapor phase growth method
JP2016515925A (en) * 2013-03-15 2016-06-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Small device to enhance the mixing of gaseous species

Similar Documents

Publication Publication Date Title
US4404265A (en) Epitaxial composite and method of making
Bedair et al. Atomic layer epitaxy of III‐V binary compounds
JP3156326B2 (en) Semiconductor growth apparatus and semiconductor growth method using the same
US5077875A (en) Reactor vessel for the growth of heterojunction devices
JP3093904B2 (en) Method for growing compound semiconductor crystal
US5168077A (en) Method of manufacturing a p-type compound semiconductor thin film containing a iii-group element and a v-group element by metal organics chemical vapor deposition
Nguyen et al. Selective epitaxial growth of III-V semiconductor heterostructures on Si substrates for logic applications
JPH01266715A (en) Thin film growth apparatus
JPS5825226A (en) Plasma cvd unit
JP3536699B2 (en) Compound semiconductor vapor phase epitaxial growth method
JP3189061B2 (en) Method for manufacturing compound semiconductor device
JPH11329980A (en) Organic metallic gaseous phase growing device and method therefor using the same
EP0525297A2 (en) Method of growing doped crystal
JPS6129915B2 (en)
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPH03110829A (en) Manufacture of compound semiconductor thin film
JPH02203520A (en) Growth of compound semiconductor crystal
JPH03280419A (en) Method for formation of compound semiconductor thin film
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JPS63205911A (en) Vapor growth equipment
JPS60176992A (en) Device for gaseous phase epitaxial growth of organometallic compound
JPS63174314A (en) Method for doping iii-v compound semiconductor crystal
JPH0590160A (en) Growing method of crystal
JPH0626187B2 (en) Semiconductor crystal manufacturing equipment
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus