JPH01264264A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01264264A
JPH01264264A JP9152688A JP9152688A JPH01264264A JP H01264264 A JPH01264264 A JP H01264264A JP 9152688 A JP9152688 A JP 9152688A JP 9152688 A JP9152688 A JP 9152688A JP H01264264 A JPH01264264 A JP H01264264A
Authority
JP
Japan
Prior art keywords
gate
polycrystalline silicon
gate electrode
electrodes
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9152688A
Other languages
Japanese (ja)
Inventor
Yasuo Igura
井倉 康雄
Ryuichi Izawa
井澤 龍一
Haruhiko Tanaka
田中 治彦
Akiyoshi Hamada
濱田 明美
Masaru Hisamoto
大 久本
Eiji Takeda
英次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9152688A priority Critical patent/JPH01264264A/en
Publication of JPH01264264A publication Critical patent/JPH01264264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain a high breakdown strength MIS FET whose leakage current is small by a method wherein gate electrodes are constituted of two electrodes whose work functions are different and which are mutually conductive, the first gate is formed on a channel part and the second gate electrode is formed on a low-concentration source-drain region. CONSTITUTION:An SiO2 film 2 is grown on a substrate 1; tungsten 5 used as a first gate electrode is deposited on it by a sputtering method. The gate is patterned; after that, a low-concentration source-drain diffusion layer 3 is formed; a polycrystalline silicon film is deposited on a whole face; phosphorus is diffused and transformed into an n-type. When this polycrystalline silicon is etched by an anisotropic operation, the polycrystalline silicon is left only on side walls of the gate; a second gate which is conductive to the first gate is formed. After that, a high-concentration diffusion layer 4 is formed by making use of the first and second gate electrodes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特に高集積化に好適な高信
頼度高速MIS型半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a highly reliable and high speed MIS type semiconductor device suitable for high integration.

〔従来の技術〕[Conventional technology]

従来ゲートとソース・ドレインをオーバラップさせたL
DD (ライトリ ドープト ドレイン;Lightl
y Doped Drain)型M I S (Met
al −Insulator−Semiconduct
or) F E Tについては。
Conventional L with overlapping gate, source and drain
DD (Lightly Doped Drain)
y Doped Drain) type M I S (Met
al-Insulator-Semiconductor
or) Regarding FET.

アイ・イー・デイ−・エム 1986.テクニカル・ダ
イジェスト(1986年)第742頁から第745頁(
丁E D M  1986 、 TechnicalD
igest(1986)PP742−745)において
論じられている。
I.E.D.M. 1986. Technical Digest (1986) pp. 742-745 (
Ding EDM 1986, Technical D
(1986) PP742-745).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術はソース抵抗の低減の効果について最−適
化が配慮されておらず、まだソース抵抗が高いという問
題があった。また、ゲートがオフの状態で起こるゲート
電極下のドレイン領域の表面反転層の゛形成及びそれに
起因する価電子帯、伝導帯間での電子のトンネル現象に
よるリーク電流の増大について配慮がなされておらず、
ダイナミック回路への適用が困難という問題があった。
The above-mentioned conventional technology does not consider optimization of the effect of reducing source resistance, and there is still a problem in that the source resistance is high. In addition, no consideration has been given to the formation of a surface inversion layer in the drain region under the gate electrode that occurs when the gate is off, and the resulting increase in leakage current due to electron tunneling between the valence band and conduction band. figure,
There was a problem in that it was difficult to apply to dynamic circuits.

本発明の目的はこれらの問題を同時に解決することにあ
る。
The purpose of the present invention is to simultaneously solve these problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ソース・ドレイン部にオーバラップした部
分のゲート電極の仕事関数を、チャネル部の電極のそれ
と異なるものにする事により、達成される。
The above object is achieved by making the work function of the portion of the gate electrode that overlaps the source/drain portion different from that of the electrode in the channel portion.

〔作用〕[Effect]

第1図(a)は本発明をnチャネルMO3FETを適用
した場合の基本的な構成を示す断面図である。
FIG. 1(a) is a sectional view showing the basic configuration when the present invention is applied to an n-channel MO3FET.

第1電極5及び第2電極6をいずれもp型不純物である
ホウ素をドープした縮退した多結晶シリコンで形成した
場合1図中A−A’で示した断面のエネルギ帯のダイヤ
グラフは第1図(b)の如くなる。但し、ここではフラ
ットバンド状態を想定している。今、V a = V 
g = 5 Vという高電流動作状態でのソース側を考
える。エネルギ帯のダイヤグラムは第1図(Q)の様に
なるmn−″ソース領域の表面は電荷の蓄積層が形成さ
れる。この蓄積層の形成によりソースのn−領域の寄生
抵抗が低減される。ここでゲート材料としてn型にドー
プした縮退した多結晶ポリシリコンを用いると仕事関数
がp型の場合に比べ約1v低いので、n−ソース領域の
エネルギ帯の曲がりが大きくなり、第1図(d)の様に
蓄積電荷量が増大する。この様にゲート電極の仕事関数
を小さくすればソースの寄生抵抗を下げる事ができる。
When both the first electrode 5 and the second electrode 6 are formed of degenerate polycrystalline silicon doped with boron, which is a p-type impurity, the energy band diagram of the cross section indicated by A-A' in Figure 1 is the first one. It will look like figure (b). However, a flat band state is assumed here. Now, V a = V
Consider the source side under high current operating conditions of g = 5 V. The energy band diagram is shown in Figure 1 (Q). A charge accumulation layer is formed on the surface of the mn-" source region. The formation of this accumulation layer reduces the parasitic resistance of the n- region of the source. If n-type doped degenerate polycrystalline polysilicon is used as the gate material, the work function is approximately 1V lower than that of p-type, so the energy band of the n-source region becomes more curved, as shown in Figure 1. The amount of accumulated charge increases as shown in (d).By reducing the work function of the gate electrode in this way, the parasitic resistance of the source can be lowered.

次に■「=o■、■、=5vという状態でのドレイン側
を考える。まずp型にドープした多結晶シリコンゲート
な極の場合のエネルギ帯のダイヤグラムは第1図(e)
の如くである。n−シリコンのエネルギ帯の曲がりが大
きいため、n−領域の表面は反転層を形成し1図中に矢
印で示した様に価電子帯から伝導帯への電子のトンネル
現象が起こり、これに起因する電流がもれ電流として観
測される事になる。−力筒1図(f)に示した様にn型
にドープした多結晶シリコンゲート電極を用いた場合、
エネルギ帯の曲がりは抑えられ、このもれ電流が抑えら
れる。
Next, consider the drain side in the state of ■=o■,■,=5V.First, the energy band diagram for a p-type doped polycrystalline silicon gate pole is shown in Figure 1(e).
It's like this. Because the energy band of n-silicon has a large bend, an inversion layer is formed on the surface of the n- region, and a tunneling phenomenon of electrons from the valence band to the conduction band occurs as shown by the arrow in Figure 1. The resulting current will be observed as a leakage current. - When using an n-type doped polycrystalline silicon gate electrode as shown in Figure 1(f),
The bending of the energy band is suppressed, and this leakage current is suppressed.

以上述べてきた様に、いずれの問題に関してもn′″ソ
ース・ドレイン領域上のゲート電極の仕事関数は小さい
方が好ましい。以上の説明では、p+ゲートとn+ゲー
トでの比較を行なったが、その他の金属ゲートであって
も上の考察があてはまる。また、pチャネルMO3の場
合は、電圧の極性が逆のため、p−ソース・ドレイン領
域上のゲート電極の仕事関数は大きい方が良い事になる
As mentioned above, for any problem, it is preferable that the work function of the gate electrode on the n''' source/drain region is smaller.In the above explanation, a comparison was made between a p+ gate and an n+ gate. The above considerations also apply to other metal gates.Also, in the case of p-channel MO3, since the voltage polarity is opposite, it is better to have a larger work function for the gate electrode on the p-source/drain region. become.

チャネル部のゲート電極も同じ指針でその材料を決めて
差しつかえないが、現実にはゲート電極の抵抗の観点か
ら仕事関数のある程度大きい材料。
The material for the gate electrode in the channel section can be determined using the same guidelines, but in reality, it is a material with a somewhat large work function from the viewpoint of the resistance of the gate electrode.

例えばタングステンやモリブデン等の金属等が使われる
。こうした場合にソース・ドレイン部のオーバラップし
たゲート電極を仕事関数の低い材料に変える事により、
ソース抵抗、ゲート誘起のもれ電流の問題を両方改善で
きる。
For example, metals such as tungsten and molybdenum are used. In such cases, by changing the overlapping gate electrodes in the source and drain regions to a material with a low work function,
Both source resistance and gate-induced leakage current problems can be improved.

〔実施例〕〔Example〕

以下1本発明の実施例を図を用いて、説明する。 An embodiment of the present invention will be described below with reference to the drawings.

実施例1 p型Si基板1上に熱酸化法で10nm程度のS j、
 Oz膜2を成長し、その上にスパッタ法で第1のゲー
ト電極となるタングステン5を250nm堆積する。こ
の材料は、タングステンに限らずモリブデン等でも良い
Example 1 S j of about 10 nm is formed on a p-type Si substrate 1 by thermal oxidation method.
An Oz film 2 is grown, and 250 nm of tungsten 5, which will become a first gate electrode, is deposited thereon by sputtering. This material is not limited to tungsten, but may also be molybdenum or the like.

写真蝕刻法あるいは電子線描画技術を用いてゲートをパ
タニングした後、低濃度のソース・ドレイン拡散層3を
形成する。この時の断面構造が第2図(a)である。
After patterning the gate using photolithography or electron beam lithography, a low concentration source/drain diffusion layer 3 is formed. The cross-sectional structure at this time is shown in FIG. 2(a).

更に、CVD法で全面に多結晶シリコン膜を200nm
堆積し、875℃でリンを拡散してn型化する。異方性
エツチングでこの多結晶シリコンをエツチングするとゲ
ート側壁部にのみ多結晶シリコンが残り、第1のタング
ステンゲートと導通のとれた第2のゲートが形成される
(第2図(b−))。
Furthermore, a 200nm polycrystalline silicon film is deposited on the entire surface using the CVD method.
It is deposited and phosphorous is diffused at 875° C. to make it n-type. When this polycrystalline silicon is etched using anisotropic etching, the polycrystalline silicon remains only on the side walls of the gate, forming a second gate that is electrically connected to the first tungsten gate (Figure 2 (b-)). .

この後、第1及び第2のゲート電極をマスクに高濃度拡
散M4を形成する。これにより第2図(Q)の如き構造
が得られる。
Thereafter, high concentration diffusion M4 is formed using the first and second gate electrodes as masks. As a result, a structure as shown in FIG. 2(Q) is obtained.

本実施例により、ゲートの抵抗が低く、高耐圧であり且
つ、ソース抵抗が低く、ゲート誘起のもれ電流も少ない
デバイスが得られる。
According to this embodiment, a device with low gate resistance, high breakdown voltage, low source resistance, and low gate-induced leakage current can be obtained.

実施例2 実施例1と同様に低濃度ソース・ドレイン領域までを形
成する。その後、Hx OとHzの雰囲気中で熱処理す
る事により拡散層上に5iOz7を成長させる。この時
、タングステンの第1ゲート電極5は酸化されない。そ
の後は、実施例1と同様のプログラムを経て第3図の如
き構造が得られる。
Example 2 Similar to Example 1, up to the low concentration source/drain regions are formed. Thereafter, 5iOz7 is grown on the diffusion layer by heat treatment in an atmosphere of HxO and Hz. At this time, the tungsten first gate electrode 5 is not oxidized. Thereafter, the same program as in Example 1 is run to obtain the structure shown in FIG. 3.

本実施例により、低濃度ソース・ドレイン拡散層3の形
成時の損傷を回復する事ができ、また、第2電極下のS
 i O2膜厚7が厚いのでゲートとソース・ドレイン
間のオーバラップ容量が低減できる。
According to this embodiment, it is possible to recover from the damage caused during the formation of the low concentration source/drain diffusion layer 3, and also to recover the S under the second electrode.
Since the iO2 film thickness 7 is thick, the overlap capacitance between the gate and the source/drain can be reduced.

実施例3 P型Sj基板上に熱酸化法で10nm程度の5i()z
膜2を成長し、その上にスパッタ法で第1ゲート電極と
なるタングステン5を250nm堆積する。この材料は
モリブデン等でも良い、更にCVD法で全面に5iOz
8を300nm程度堆積する。写式蝕刻法あるいは電子
線描画技術を用いて、この2層膜を所望の形状にパタニ
ングする。その後は実施例2と同様のプロセスで第4図
の如き構造を得る。
Example 3 Approximately 10 nm of 5i()z was deposited on a P-type Sj substrate by thermal oxidation method.
A film 2 is grown, and 250 nm of tungsten 5, which will become a first gate electrode, is deposited thereon by sputtering. This material may be molybdenum, etc., and furthermore, it is coated with 5iOz on the entire surface by CVD method.
8 is deposited to a thickness of about 300 nm. This two-layer film is patterned into a desired shape using photoetching or electron beam lithography. Thereafter, a structure as shown in FIG. 4 is obtained by the same process as in Example 2.

本実施例によれば、ソース・ドレイン形成の為のイオン
打込み時に、イオンが5iOz中で停止するので、タン
グステンを突き抜ける心配がなくなる。
According to this embodiment, when ions are implanted to form sources and drains, the ions stop at 5 iOz, so there is no fear of them penetrating tungsten.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低ソース抵抗により大電流を流せ、も
れ電流も少ない高耐圧のMISFETが実現できるので
、MTSFETの微細化に極めて大きな効果を有する。
According to the present invention, it is possible to realize a high breakdown voltage MISFET that allows a large current to flow with a low source resistance and has little leakage current, so it has an extremely large effect on the miniaturization of MTSFETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の基本構造断面とその原理を説明する
ためのバンド構造図、第2図は本発明の実施例になる半
導体装置の製造工程を説明する断面図、第3図、第4図
は本発明の他の実施例になる半導体装置の断面図である
。 1・・・p型Si、2・・・ゲート絶縁膜、コ3・・・
n−拡散領域、4・・・n十拡散領域、5・・・第1ゲ
ート電極、罵 1 図 b  物へ2ケ二−ト電イヨk f 1 図 ηZ図 1 P−rs、基し);i:づ zS、ρ2 3n−→威 11、  n’領域 5 7シフ′ステシ 乙 〆if舌h)9コン Z3図 不 4 層 7  Siρ2 B; 5tl)z
FIG. 1 is a cross-sectional view of the basic structure of the present invention and a band structure diagram for explaining its principle. FIG. 2 is a cross-sectional diagram for explaining the manufacturing process of a semiconductor device according to an embodiment of the present invention. FIG. 4 is a sectional view of a semiconductor device according to another embodiment of the present invention. 1...p-type Si, 2...gate insulating film, 3...
n-diffusion region, 4...n10 diffusion region, 5...first gate electrode, ;i: zuzS, ρ2 3n-→Wei 11, n' area 5 7 shift 'steshi otsu 〆if tongue h) 9 con Z3 figure not 4 layer 7 Siρ2 B; 5tl) z

Claims (1)

【特許請求の範囲】[Claims] 1、MIS(メタル インシュレータ セミコンダクタ
:Metal−Insulator−Semicond
uctor)型電界効果トランジスタにおいて、ゲート
電極が異なる仕事関数を有し、、互いに導通のとれた2
つの電極により構成され、第1のゲート電極がチャネル
部の上に存在し、第2のゲート電極が低濃度ソース・ド
レイン領域上に存在することを特徴とする半導体装置。
1. MIS (Metal-Insulator-Semiconductor)
uctor) type field effect transistor, the gate electrodes have different work functions, and two
What is claimed is: 1. A semiconductor device comprising two electrodes, the first gate electrode being present on a channel portion, and the second gate electrode being present on a lightly doped source/drain region.
JP9152688A 1988-04-15 1988-04-15 Semiconductor device Pending JPH01264264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9152688A JPH01264264A (en) 1988-04-15 1988-04-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9152688A JPH01264264A (en) 1988-04-15 1988-04-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01264264A true JPH01264264A (en) 1989-10-20

Family

ID=14028872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9152688A Pending JPH01264264A (en) 1988-04-15 1988-04-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01264264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116171A (en) * 1988-10-25 1990-04-27 Nec Corp Manufacture of mos transistor
US6611031B2 (en) 2000-09-28 2003-08-26 Nec Corporation Semiconductor device and method for its manufacture
KR100436287B1 (en) * 2001-11-17 2004-06-16 주식회사 하이닉스반도체 Transistor of a semiconductor device and method of manufacturing thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116171A (en) * 1988-10-25 1990-04-27 Nec Corp Manufacture of mos transistor
US6611031B2 (en) 2000-09-28 2003-08-26 Nec Corporation Semiconductor device and method for its manufacture
KR100436287B1 (en) * 2001-11-17 2004-06-16 주식회사 하이닉스반도체 Transistor of a semiconductor device and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
KR0180066B1 (en) Semiconductor device and fabrication thereof
KR100495023B1 (en) A semiconductor device and manufacturing method thereof
US5272100A (en) Field effect transistor with T-shaped gate electrode and manufacturing method therefor
US5089863A (en) Field effect transistor with T-shaped gate electrode
JP2752991B2 (en) Semiconductor device
TW202030841A (en) Gate structure of split-gate mosfet and manufacturing method thereof
JPH0237777A (en) Vertical type field-effect transistor
JPS62126675A (en) Semiconductor device and manufacture thereof
JPH01264264A (en) Semiconductor device
US6150202A (en) Method for fabricating semiconductor device
JP2579954B2 (en) MOS transistor
JP2876866B2 (en) Semiconductor device
JPS5847860B2 (en) Hand tie souchi
JPS59231864A (en) Semiconductor device
JPH036060A (en) Mis-type semiconductor device
JPH0612826B2 (en) Method of manufacturing thin film transistor
JP2759472B2 (en) Method of manufacturing high voltage MOS field effect transistor
JPH02137372A (en) Mos field-effect transistor
JP2796655B2 (en) Semiconductor device and manufacturing method thereof
JP2904081B2 (en) Method for manufacturing semiconductor device
JPS6146990B2 (en)
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH04115538A (en) Semiconductor device
JPS5921191B2 (en) Method for manufacturing field effect semiconductor device
JP2719642B2 (en) Semiconductor device and manufacturing method thereof